package IPC::Shareable;
use warnings;
use strict;
require 5.00503;
use Carp qw(croak confess carp);
use Data::Dumper;
use IPC::Semaphore;
use IPC::Shareable::SharedMem;
use IPC::SysV qw(
IPC_PRIVATE
IPC_CREAT
IPC_EXCL
IPC_NOWAIT
SEM_UNDO
);
use JSON qw(-convert_blessed_universally);
use Scalar::Util;
use String::CRC32;
use Storable 0.6 qw(freeze thaw);
our $VERSION = '1.13';
use constant {
LOCK_SH => 1,
LOCK_EX => 2,
LOCK_NB => 4,
LOCK_UN => 8,
DEBUGGING => ($ENV{SHAREABLE_DEBUG} or 0),
SHM_BUFSIZ => 65536,
SEM_MARKER => 0,
SHM_EXISTS => 1,
SHMMAX_BYTES => 1073741824, # 1 GB
# Perl sends in a double as opposed to an integer to shmat(), and on some
# systems, this causes the IPC system to round down to the maximum integer
# size of 0x80000000 we correct that when generating keys with CRC32
MAX_KEY_INT_SIZE => 0x80000000,
EXCLUSIVE_CHECK_LIMIT => 10, # Number of times we'll check for existing segs
};
require Exporter;
our @ISA = 'Exporter';
our @EXPORT_OK = qw(LOCK_EX LOCK_SH LOCK_NB LOCK_UN);
our %EXPORT_TAGS = (
all => [qw( LOCK_EX LOCK_SH LOCK_NB LOCK_UN )],
lock => [qw( LOCK_EX LOCK_SH LOCK_NB LOCK_UN )],
flock => [qw( LOCK_EX LOCK_SH LOCK_NB LOCK_UN )],
);
Exporter::export_ok_tags('all', 'lock', 'flock');
# Locking scheme copied from IPC::ShareLite -- ltl
my %semop_args = (
(LOCK_EX),
[
1, 0, 0, # wait for readers to finish
2, 0, 0, # wait for writers to finish
2, 1, SEM_UNDO, # assert write lock
],
(LOCK_EX|LOCK_NB),
[
1, 0, IPC_NOWAIT, # wait for readers to finish
2, 0, IPC_NOWAIT, # wait for writers to finish
2, 1, (SEM_UNDO | IPC_NOWAIT), # assert write lock
],
(LOCK_EX|LOCK_UN),
[
2, -1, (SEM_UNDO | IPC_NOWAIT),
],
(LOCK_SH),
[
2, 0, 0, # wait for writers to finish
1, 1, SEM_UNDO, # assert shared read lock
],
(LOCK_SH|LOCK_NB),
[
2, 0, IPC_NOWAIT, # wait for writers to finish
1, 1, (SEM_UNDO | IPC_NOWAIT), # assert shared read lock
],
(LOCK_SH|LOCK_UN),
[
1, -1, (SEM_UNDO | IPC_NOWAIT), # remove shared read lock
],
);
my %default_options = (
key => IPC_PRIVATE,
create => 0,
exclusive => 0,
destroy => 0,
mode => 0666,
size => SHM_BUFSIZ,
protected => 0,
limit => 1,
graceful => 0,
warn => 0,
tidy => 0,
serializer => 'storable',
);
my %global_register;
my %process_register;
my %used_ids;
sub _trace;
sub _debug;
# --- "Magic" methods
sub TIESCALAR {
return _tie('SCALAR', @_);
}
sub TIEARRAY {
return _tie('ARRAY', @_);
}
sub TIEHASH {
return _tie('HASH', @_);
}
sub STORE {
my $knot = shift;
if (! exists $global_register{$knot->seg->id}) {
$global_register{$knot->seg->id} = $knot;
}
$knot->{_data} = $knot->_decode($knot->seg) unless ($knot->{_lock});
if ($knot->{_type} eq 'HASH') {
my ($key, $val) = @_;
_mg_tie($knot, $val, $key) if $knot->_need_tie($val, $key);
$knot->{_data}{$key} = $val;
}
elsif ($knot->{_type} eq 'ARRAY') {
my ($i, $val) = @_;
_mg_tie($knot, $val, $i) if $knot->_need_tie($val, $i);
$knot->{_data}[$i] = $val;
}
elsif ($knot->{_type} eq 'SCALAR') {
my ($val) = @_;
_mg_tie($knot, $val) if $knot->_need_tie($val);
$knot->{_data} = \$val;
}
else {
croak "Variables of type $knot->{_type} not supported";
}
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!\n";
}
}
return 1;
}
sub FETCH {
my $knot = shift;
if (! exists $global_register{$knot->seg->id}) {
$global_register{$knot->seg->id} = $knot;
}
my $data;
if ($knot->{_lock} || $knot->{_iterating}) {
$knot->{_iterating} = 0; # In case we break out
$data = $knot->{_data};
} else {
$data = $knot->_decode($knot->seg);
$knot->{_data} = $data;
}
my $val;
if ($knot->{_type} eq 'HASH') {
if (defined $data) {
my $key = shift;
$val = $data->{$key};
} else {
return;
}
}
elsif ($knot->{_type} eq 'ARRAY') {
if (defined $data) {
my $i = shift;
$val = $data->[$i];
} else {
return;
}
}
elsif ($knot->{_type} eq 'SCALAR') {
if (defined $data) {
$val = $$data;
} else {
return;
}
}
else {
croak "Variables of type $knot->{_type} not supported";
}
if (my $inner = _is_kid($val)) {
my $s = $inner->seg;
$inner->{_data} = $knot->_decode($s);
}
return $val;
}
sub CLEAR {
my $knot = shift;
if ($knot->{_type} eq 'HASH') {
$knot->{_data} = { };
}
elsif ($knot->{_type} eq 'ARRAY') {
$knot->{_data} = [ ];
}
else {
croak "Attempt to clear non-aggegrate";
}
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!";
}
}
}
sub DELETE {
my $knot = shift;
my $key = shift;
$knot->{_data} = $knot->_decode($knot->seg) unless $knot->{_lock};
my $val = delete $knot->{_data}->{$key};
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!";
}
}
return $val;
}
sub EXISTS {
my $knot = shift;
my $key = shift;
$knot->{_data} = $knot->_decode($knot->seg) unless $knot->{_lock};
return exists $knot->{_data}->{$key};
}
sub FIRSTKEY {
my $knot = shift;
$knot->{_iterating} = 1;
$knot->{_data} = $knot->_decode($knot->seg) unless $knot->{_lock};
my $reset = keys %{$knot->{_data}};
my $first = each %{$knot->{_data}};
return $first;
}
sub NEXTKEY {
my $knot = shift;
# caveat emptor if hash was changed by another process
my $next = each %{$knot->{_data}};
if (not defined $next) {
$knot->{_iterating} = 0;
return;
} else {
$knot->{_iterating} = 1;
return $next;
}
}
sub EXTEND {
#XXX Noop
}
sub PUSH {
my $knot = shift;
if (! exists $global_register{$knot->seg->id}) {
$global_register{$knot->seg->id} = $knot;
}
$knot->{_data} = $knot->_decode($knot->seg, $knot->{_data}) unless $knot->{_lock};
push @{$knot->{_data}}, @_;
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!";
};
}
}
sub POP {
my $knot = shift;
$knot->{_data} = $knot->_decode($knot->seg, $knot->{_data}) unless $knot->{_lock};
my $val = pop @{$knot->{_data}};
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!";
}
}
return $val;
}
sub SHIFT {
my $knot = shift;
$knot->{_data} = $knot->_decode($knot->seg, $knot->{_data}) unless $knot->{_lock};
my $val = shift @{$knot->{_data}};
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!";
}
}
return $val;
}
sub UNSHIFT {
my $knot = shift;
$knot->{_data} = $knot->_decode($knot->seg, $knot->{_data}) unless $knot->{_lock};
my $val = unshift @{$knot->{_data}}, @_;
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!";
}
}
return $val;
}
sub SPLICE {
my($knot, $off, $n, @av) = @_;
$knot->{_data} = $knot->_decode($knot->seg, $knot->{_data}) unless $knot->{_lock};
my @val = splice @{$knot->{_data}}, $off, $n, @av;
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!";
}
}
return @val;
}
sub FETCHSIZE {
my $knot = shift;
$knot->{_data} = $knot->_decode($knot->seg) unless $knot->{_lock};
return scalar(@{$knot->{_data}});
}
sub STORESIZE {
my $knot = shift;
my $n = shift;
$knot->{_data} = $knot->_decode($knot->seg) unless $knot->{_lock};
$#{$knot->{_data}} = $n - 1;
if ($knot->{_lock} & LOCK_EX) {
$knot->{_was_changed} = 1;
} else {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!";
}
}
return $n;
}
# --- Public methods
sub new {
my ($class, %opts) = @_;
my $type = $opts{var} || 'HASH';
if ($type eq 'HASH') {
my $k = tie my %h, 'IPC::Shareable', \%opts;
return \%h;
}
if ($type eq 'ARRAY') {
my $k = tie my @a, 'IPC::Shareable', \%opts;
return \@a;
}
if ($type eq 'SCALAR') {
my $k = tie my $s, 'IPC::Shareable', \%opts;
return \$s;
}
}
sub global_register {
# This is a ridiculous way to do this, but if we don't call Dumper, hashes
# that are created in a separate process than the parent hash don't
# show up properly in the global register. t/81
local $SIG{__WARN__} = sub {
my ($warning) = @_;
if ($warning !~ /hash after insertion/) {
warn $warning;
}
};
Dumper \%global_register;
return \%global_register;
}
sub process_register {
return \%process_register;
}
sub attributes {
my ($knot, $attr) = @_;
my $attrs = $knot->{attributes};
if (defined $attr) {
return $knot->{attributes}{$attr};
}
else {
return $knot->{attributes};
}
}
sub ipcs {
my $count = `ipcs -m | wc -l`;
chomp $count;
return int($count);
}
sub lock {
my ($knot, $flags) = @_;
$flags = LOCK_EX if ! defined $flags;
return $knot->unlock if ($flags & LOCK_UN);
return 1 if ($knot->{_lock} & $flags);
# If they have a different lock than they want, release it first
$knot->unlock if ($knot->{_lock});
my $sem = $knot->sem;
my $return_val = $sem->op(@{ $semop_args{$flags} });
if ($return_val) {
$knot->{_lock} = $flags;
$knot->{_data} = $knot->_decode($knot->seg),
}
return $return_val;
}
sub unlock {
my $knot = shift;
return 1 unless $knot->{_lock};
if ($knot->{_was_changed}) {
if (! defined $knot->_encode($knot->seg, $knot->{_data})){
croak "Could not write to shared memory: $!\n";
}
$knot->{_was_changed} = 0;
}
my $sem = $knot->sem;
my $flags = $knot->{_lock} | LOCK_UN;
$flags ^= LOCK_NB if ($flags & LOCK_NB);
$sem->op(@{ $semop_args{$flags} });
$knot->{_lock} = 0;
1;
}
*shlock = \&lock;
*shunlock = \&unlock;
sub clean_up {
my $class = shift;
for my $id (keys %process_register) {
my $s = $process_register{$id};
next unless $s->attributes('owner') == $$;
next if $s->attributes('protected');
remove($s);
}
}
sub clean_up_all {
my $class = shift;
my $global_register = __PACKAGE__->global_register;
for my $id (keys %$global_register) {
my $s = $global_register->{$id};
next if $s->attributes('protected');
remove($s);
}
}
sub clean_up_protected {
my ($knot, $protect_key);
if (scalar @_ == 2) {
($knot, $protect_key) = @_;
}
if (scalar @_ == 1) {
($protect_key) = @_;
}
if (! defined $protect_key) {
croak "clean_up_protected() requires a \$protect_key param";
}
if ($protect_key !~ /^\d+$/) {
croak
"clean_up_protected() \$protect_key must be an integer. You sent $protect_key";
}
my $global_register = __PACKAGE__->global_register;
for my $id (keys %$global_register) {
my $s = $global_register->{$id};
my $stored_key = $s->attributes('protected');
if ($stored_key && $stored_key == $protect_key) {
remove($s);
}
}
}
sub remove {
my $knot = shift;
my $s = $knot->seg;
my $id = $s->id;
$s->remove or warn "Couldn't remove shared memory segment $id: $!";
$s = $knot->sem;
$s->remove or warn "Couldn't remove semaphore set $id: $!";
delete $process_register{$id};
delete $global_register{$id};
}
sub seg {
my ($knot) = @_;
return $knot->{_shm} if defined $knot->{_shm};
}
sub sem {
my ($knot) = @_;
return $knot->{_sem} if defined $knot->{_sem};
}
sub singleton {
# If called with IPC::Shareable::singleton() as opposed to
# IPC::Shareable->singleton(), the class isn't sent in. Check
# for this and fix it if necessary
if (! defined $_[0] || $_[0] ne __PACKAGE__) {
unshift @_, __PACKAGE__;
}
my ($class, $glue, $warn) = @_;
if (! defined $glue) {
croak "singleton() requires a GLUE parameter";
}
$warn = 0 if ! defined $warn;
tie my $lock, 'IPC::Shareable', {
key => $glue,
create => 1,
exclusive => 1,
graceful => 1,
destroy => 1,
warn => $warn
};
return $$;
}
END {
_end();
}
# --- Private methods below
sub _encode {
my ($knot, $seg, $data) = @_;
my $serializer = $knot->attributes('serializer');
if ($serializer eq 'storable') {
return _freeze($seg, $data);
}
elsif ($serializer eq 'json'){
return _encode_json($seg, $data);
}
return undef;
}
sub _end {
for my $s (values %process_register) {
unlock($s);
next if $s->attributes('protected');
next if ! $s->attributes('destroy');
next if $s->attributes('owner') != $$;
remove($s);
}
}
sub _decode {
my ($knot, $seg) = @_;
my $serializer = $knot->attributes('serializer');
if ($serializer eq 'storable') {
return _thaw($seg);
}
elsif ($serializer eq 'json'){
return _decode_json($seg);
}
return undef;
}
sub _encode_json {
my $seg = shift;
my $data = shift;
my $json = encode_json $data;
if (length($json) > $seg->size) {
croak "Length of shared data exceeds shared segment size";
}
$seg->shmwrite($json);
}
sub _decode_json {
my $seg = shift;
my $json = $seg->shmread;
return if ! $json;
# Remove \x{0} after end of string (broke JSON)
$json =~ s/\x00+//;
# my $tag = substr $json, 0, 14, '';
# if ($tag eq 'IPC::Shareable') {
my $data = decode_json $json;
if (! defined($data)){
croak "Munged shared memory segment (size exceeded?)";
}
return $data;
# } else {
# return;
# }
}
sub _freeze {
my $seg = shift;
my $water = shift;
my $ice = freeze $water;
# Could be a large string. No need to copy it. substr more efficient
substr $ice, 0, 0, 'IPC::Shareable';
if (length($ice) > $seg->size) {
croak "Length of shared data exceeds shared segment size";
}
$seg->shmwrite($ice);
}
sub _thaw {
my $seg = shift;
my $ice = $seg->shmread;
return if ! $ice;
my $tag = substr $ice, 0, 14, '';
if ($tag eq 'IPC::Shareable') {
my $water = thaw $ice;
if (! defined($water)){
croak "Munged shared memory segment (size exceeded?)";
}
return $water;
} else {
return;
}
}
sub _tie {
my ($type, $class, $key_str, $opts);
if (scalar @_ == 4) {
($type, $class, $key_str, $opts) = @_;
$opts->{key} = $key_str;
}
else {
($type, $class, $opts) = @_;
}
$opts = _parse_args($opts);
my $knot = bless { attributes => $opts }, $class;
my $key = $knot->_shm_key;
my $flags = $knot->_shm_flags;
my $shm_size = $knot->attributes('size');
if ($knot->attributes('limit') && $shm_size > SHMMAX_BYTES) {
croak
"Shared memory segment size '$shm_size' is larger than max size of " .
SHMMAX_BYTES;
}
my $seg;
if ($knot->attributes('graceful')) {
my $exclusive = eval {
$seg = IPC::Shareable::SharedMem->new($key, $shm_size, $flags);
1;
};
if (! defined $exclusive) {
if ($knot->attributes('warn')) {
my $key = lc(sprintf("0x%X", $knot->_shm_key));
warn "Process ID $$ exited due to exclusive shared memory collision at segment/semaphore key '$key'\n";
}
exit(0);
}
}
else {
$seg = IPC::Shareable::SharedMem->new($key, $shm_size, $flags);
}
if (! defined $seg) {
if ($! =~ /Cannot allocate memory/) {
croak "\nERROR: Could not create shared memory segment: $!\n\n" .
"Are you using too large a size?";
}
if ($! =~ /No space left on device/) {
croak "\nERROR: Could not create shared memory segment: $!\n\n" .
"Are you spawning too many segments in a loop?";
}
if (! $knot->attributes('create')) {
confess "ERROR: Could not acquire shared memory segment... 'create' ".
"option is not set, and the segment hasn't been created " .
"yet:\n\n $!";
}
elsif ($knot->attributes('create') && $knot->attributes('exclusive')){
croak "ERROR: Could not create shared memory segment. 'create' " .
"and 'exclusive' are set. Does the segment already exist? " .
"\n\n$!";
}
else {
croak "ERROR: Could not create shared memory segment.\n\n$!";
}
}
my $sem = IPC::Semaphore->new($key, 3, $flags);
if (! defined $sem){
croak "Could not create semaphore set: $!\n";
}
if (! $sem->op(@{ $semop_args{(LOCK_SH)} }) ) {
croak "Could not obtain semaphore set lock: $!\n";
}
%$knot = (
%$knot,
_iterating => 0,
_key => $key,
_lock => 0,
_shm => $seg,
_sem => $sem,
_type => $type,
_was_changed => 0,
);
$knot->{_data} = _thaw($seg);
if ($sem->getval(SEM_MARKER) != SHM_EXISTS) {
if (! exists $global_register{$knot->seg->id}) {
$global_register{$knot->seg->id} = $knot;
}
$process_register{$knot->seg->id} ||= $knot;
if (! $sem->setval(SEM_MARKER, SHM_EXISTS)){
croak "Couldn't set semaphore during object creation: $!";
}
}
$sem->op(@{ $semop_args{(LOCK_SH|LOCK_UN)} });
return $knot;
}
sub _parse_args {
my ($opts) = @_;
$opts = defined $opts ? $opts : { %default_options };
for my $k (keys %default_options) {
if (not defined $opts->{$k}) {
$opts->{$k} = $default_options{$k};
}
elsif ($opts->{$k} eq 'no') {
if ($^W) {
require Carp;
Carp::carp("Use of `no' in IPC::Shareable args is obsolete");
}
$opts->{$k} = 0;
}
}
$opts->{owner} = ($opts->{owner} or $$);
$opts->{magic} = ($opts->{magic} or 0);
return $opts;
}
sub _shm_key {
# Generates a 32-bit CRC on the key string. The $key_str parameter is used
# for testing only, for purposes of testing various key strings
my ($knot, $key_str) = @_;
$key_str //= ($knot->attributes('key') || '');
my $key;
if ($key_str eq '') {
$key = IPC_PRIVATE;
}
elsif ($key_str =~ /^\d+$/) {
$key = $key_str;
}
else {
$key = crc32($key_str);
}
$used_ids{$key}++;
if ($key > MAX_KEY_INT_SIZE) {
$key = $key - MAX_KEY_INT_SIZE;
if ($key == 0) {
croak "We've calculated a key which equals 0. This is a fatal error";
}
}
return $key;
}
sub _shm_key_rand {
my $key;
# Unfortunatly, the only way I know how to check if a segment exists is
# to actually create it. We must do that here, then remove it just to
# ensure the slot is available
my $verified_exclusive = 0;
my $check_count = 0;
while (! $verified_exclusive && $check_count < EXCLUSIVE_CHECK_LIMIT) {
$check_count++;
$key = _shm_key_rand_int();
next if $used_ids{$key};
my $flags;
$flags |= IPC_CREAT;
$flags |= IPC_EXCL;
my $seg;
my $shm_slot_available = eval {
$seg = IPC::Shareable::SharedMem->new($key, 1, $flags);
1;
};
if ($shm_slot_available) {
$verified_exclusive = 1;
$seg->remove if $seg;
}
}
if (! $verified_exclusive) {
croak
"_shm_key_rand() can't get an available key after $check_count tries";
}
$used_ids{$key}++;
return $key;
}
sub _shm_key_rand_int {
srand();
return int(rand(1_000_000));
}
sub _shm_flags {
# --- Parses the anonymous hash passed to constructors; returns a list
# --- of args suitable for passing to shmget
my ($knot) = @_;
my $flags = 0;
$flags |= IPC_CREAT if $knot->attributes('create');
$flags |= IPC_EXCL if $knot->attributes('exclusive');;
$flags |= ($knot->attributes('mode') or 0666);
return $flags;
}
sub _mg_tie {
my ($parent, $val, $identifier) = @_;
my $key;
if ($parent->{_key} == IPC_PRIVATE) {
$key = IPC_PRIVATE;
}
else {
$key = _shm_key_rand();
}
my %opts = (
%{ $parent->attributes },
key => $key,
exclusive => 1,
create => 1,
magic => 1,
);
# XXX I wish I didn't have to take a copy of data here and copy it back in
# XXX Also, have to peek inside potential objects to see their implementation
my $child;
my $type = Scalar::Util::reftype($val) || '';
if ($type eq "HASH") {
my %copy = %$val;
$child = tie %$val, 'IPC::Shareable', $key, { %opts };
croak "Could not create inner tie" if ! $child;
_reset_segment($parent, $identifier) if $opts{tidy};
%$val = %copy;
}
elsif ($type eq "ARRAY") {
my @copy = @$val;
$child = tie @$val, 'IPC::Shareable', $key, { %opts };
croak "Could not create inner tie" if ! $child;
_reset_segment($parent, $identifier) if $opts{tidy};
@$val = @copy;
}
elsif ($type eq "SCALAR") {
my $copy = $$val;
$child = tie $$val, 'IPC::Shareable', $key, { %opts };
croak "Could not create inner tie" if ! $child;
$$val = $copy;
}
else {
croak "Variables of type $type not implemented";
}
return $child;
}
sub _is_kid {
my $data = shift or return;
my $type = Scalar::Util::reftype( $data );
return unless $type;
my $obj;
if ($type eq "HASH") {
$obj = tied %$data;
}
elsif ($type eq "ARRAY") {
$obj = tied @$data;
}
elsif ($type eq "SCALAR") {
$obj = tied $$data;
}
if (ref $obj eq 'IPC::Shareable') {
return $obj;
}
return;
}
sub _need_tie {
my ($knot, $val, $identifier) = @_;
my $type = Scalar::Util::reftype($val);
return 0 if ! $type;
my $need_tie;
if ($type eq "HASH") {
$need_tie = !(tied %$val);
}
elsif ($type eq "ARRAY") {
$need_tie = !(tied @$val);
}
elsif ($type eq "SCALAR") {
$need_tie = !(tied $$val);
}
return $need_tie ? 1 : 0;
}
sub _reset_segment {
my ($parent, $id) = @_;
my $parent_type = Scalar::Util::reftype($parent->{_data}) || '';
if ($parent_type eq 'HASH') {
my $data = $parent->{_data};
if (exists $data->{$id} && keys %{ $data->{$id} } && tied %{ $data->{$id} }) {
(tied %{ $parent->{_data}{$id} })->remove;
}
}
elsif ($parent_type eq 'ARRAY') {
my $data = $parent->{_data};
if (exists $data->[$id] && tied @{ $data->[$id] }) {
(tied @{ $parent->{_data}[$id] })->remove;
}
}
}
sub _trace {
require Carp;
require Data::Dumper;
my $caller = ' ' . (caller(1))[3] . " called with:\n";
my $i = -1;
my @msg = map {
++$i;
my $obj;
if (ref eq 'IPC::Shareable') {
' ' . "\$_[$i] = $_: shmid: $_->{_shm}->{_id}; " .
Data::Dumper->Dump([ $_->attributes ], [ 'opts' ]);
} else {
' ' . Data::Dumper->Dump( [ $_ ] => [ "\_[$i]" ]);
}
} @_;
Carp::carp "IPC::Shareable ($$) debug:\n", $caller, @msg;
}
sub _debug {
require Carp;
require Data::Dumper;
local $Data::Dumper::Terse = 1;
my $caller = ' ' . (caller(1))[3] . " tells us that:\n";
my @msg = map {
my $obj;
if (ref eq 'IPC::Shareable') {
' ' . "$_: shmid: $_->{_shm}->{_id}; " .
Data::Dumper->Dump([ $_->attributes ], [ 'opts' ]);
}
else {
' ' . Data::Dumper::Dumper($_);
}
} @_;
Carp::carp "IPC::Shareable ($$) debug:\n", $caller, @msg;
}
sub _placeholder {}
1;
__END__
=head1 NAME
IPC::Shareable - Use shared memory backed variables across processes
=for html
<a href="https://github.com/stevieb9/ipc-shareable/actions"><img src="https://github.com/stevieb9/ipc-shareable/workflows/CI/badge.svg"/></a>
<a href='https://coveralls.io/github/stevieb9/ipc-shareable?branch=master'><img src='https://coveralls.io/repos/stevieb9/ipc-shareable/badge.svg?branch=master&service=github' alt='Coverage Status' /></a>
=head1 SYNOPSIS
use IPC::Shareable qw(:lock);
my $href = IPC::Shareable->new(%options);
# ...or
tie SCALAR, 'IPC::Shareable', OPTIONS;
tie ARRAY, 'IPC::Shareable', OPTIONS;
tie HASH, 'IPC::Shareable', OPTIONS;
tied(VARIABLE)->lock;
tied(VARIABLE)->unlock;
tied(VARIABLE)->lock(LOCK_SH|LOCK_NB)
or print "Resource unavailable\n";
my $segment = tied(VARIABLE)->seg;
my $semaphore = tied(VARIABLE)->sem;
tied(VARIABLE)->remove;
IPC::Shareable::clean_up;
IPC::Shareable::clean_up_all;
IPC::Shareable::clean_up_protected;
# Ensure only one instance of a script can be run at any time
IPC::Shareable->singleton('UNIQUE SCRIPT LOCK STRING');
# Get the actual IPC::Shareable tied object
my $knot = tied(VARIABLE); # Dereference first if using a tied reference
=head1 DESCRIPTION
IPC::Shareable allows you to tie a variable to shared memory making it
easy to share the contents of that variable with other Perl processes and
scripts.
Scalars, arrays, hashes and even objects can be tied. The variable being
tied may contain arbitrarily complex data structures - including references to
arrays, hashes of hashes, etc.
The association between variables in distinct processes is provided by
GLUE (aka "key"). This is any arbitrary string or integer that serves as a
common identifier for data across process space. Hence the statement:
tie my $scalar, 'IPC::Shareable', { key => 'GLUE STRING', create => 1 };
...in program one and the statement
tie my $variable, 'IPC::Shareable', { key => 'GLUE STRING' };
...in program two will create and bind C<$scalar> the shared memory in program
one and bind it to C<$variable> in program two.
There is no pre-set limit to the number of processes that can bind to
data; nor is there a pre-set limit to the complexity of the underlying
data of the tied variables. The amount of data that can be shared
within a single bound variable is limited by the system's maximum size
for a shared memory segment (the exact value is system-dependent).
The bound data structures are all linearized (using Raphael Manfredi's
L<Storable> module or optionally L<JSON>) before being slurped into shared
memory. Upon retrieval, the original format of the data structure is recovered.
Semaphore flags can be used for locking data between competing processes.
=head1 OPTIONS
Options are specified by passing a reference to a hash as the third argument to
the C<tie()> function that enchants a variable.
The following fields are recognized in the options hash:
=head2 key
B<key> is the GLUE that is a direct reference to the shared memory segment
that's to be tied to the variable.
If this option is missing, we'll default to using C<IPC_PRIVATE>. This
default key will not allow sharing of the variable between processes.
Default: B<IPC_PRIVATE>
=head2 create
B<create> is used to control whether the process creates a new shared
memory segment or not. If B<create> is set to a true value,
L<IPC::Shareable> will create a new binding associated with GLUE as
needed. If B<create> is false, L<IPC::Shareable> will not attempt to
create a new shared memory segment associated with GLUE. In this
case, a shared memory segment associated with GLUE must already exist
or we'll C<croak()>.
Defult: B<false>
=head2 exclusive
If B<exclusive> field is set to a true value, we will C<croak()> if the data
binding associated with GLUE already exists. If set to a false value, calls to
C<tie()> will succeed even if a shared memory segment associated with GLUE
already exists.
See L</graceful> for a silent, non-exception exit if a second process attempts
to obtain an in-use C<exclusive> segment.
Default: B<false>
=head2 graceful
If B<exclusive> is set to a true value, we normally C<croak()> if a second
process attempts to obtain the same shared memory segment. Set B<graceful>
to true and we'll C<exit> silently and gracefully. This option does nothing
if C<exclusive> isn't set.
Useful for ensuring only a single process is running at a time.
Default: B<false>
=head2 warn
When set to a true value, B<graceful> will output a warning if there are
process collisions.
Default: B<false>
=head2 mode
The B<mode> argument is an octal number specifying the access
permissions when a new data binding is being created. These access
permission are the same as file access permissions in that C<0666> is
world readable, C<0600> is readable only by the effective UID of the
process creating the shared variable, etc.
Default: B<0666> (world read and writeable)
=head2 size
This field may be used to specify the size of the shared memory segment
allocated.
The maximum size we allow by default is ~1GB. See the L</limit> option to
override this default.
Default: C<IPC::Shareable::SHM_BUFSIZ()> (ie. B<65536>)
=head2 protected
If set, the C<clean_up()> and C<clean_up_all()> routines will not remove the
segments or semaphores related to the tied object.
Set this to a specific integer so we can pass the value to any child objects
created under the main one.
To clean up protected objects, call
C<< (tied %object)->clean_up_protected(integer) >>, where 'integer' is the
value you set the C<protected> option to. You can call this cleanup routine in
the script you created the segment, or anywhere else, at any time.
Default: B<0>
=head2 limit
This field will allow you to set a segment size larger than the default maximum
which is 1,073,741,824 bytes (approximately 1 GB). If set, we will
C<croak()> if a size specified is larger than the maximum. If it's set to a
false value, we'll C<croak()> if you send in a size larger than the total
system RAM.
Default: B<true>
=head2 destroy
If set to a true value, the shared memory segment underlying the data
binding will be removed when the process that initialized the shared memory
segment exits (gracefully)[1].
Only those memory segments that were created by the current process will be
removed.
Use this option with care. In particular you should not use this option in a
program that will fork after binding the data. On the other hand, shared memory
is a finite resource and should be released if it is not needed.
B<NOTE>: If the segment was created with its L</protected> attribute set,
it will not be removed upon program completion, even if C<destroy> is set.
Default: B<false>
=head2 tidy
For long running processes, set this to a true value to clean up unneeded
segments from nested data structures. Comes with a slight performance hit.
Default: B<false>
=head2 serializer
By default, we use L<Storable> as the data serializer when writing to or
reading from the shared memory segments we create. For cross-platform and
cross-language purposes, you can optionally use L<JSON> for this task.
Send in either C<json> or C<storable> as the value to use the respective
serializer.
Default: B<storable>
=head2 Default Option Values
Default values for options are:
key => IPC_PRIVATE, # 0
create => 0,
exclusive => 0,
mode => 0666,
size => IPC::Shareable::SHM_BUFSIZ(), # 65536
protected => 0,
limit => 1,
destroy => 0,
graceful => 0,
warn => 0,
tidy => 0,
serializer => 'storable',
=head1 METHODS
=head2 new
Instantiates and returns a reference to a hash backed by shared memory.
my $href = IPC::Shareable->new(key => "testing", create => 1);
$href=>{a} = 1;
# Call tied() on the dereferenced variable to access object methods
# and information
tied(%$href)->ipcs;
Parameters:
Hash, Optional: See the L</OPTIONS> section for a list of all available options.
Most often, you'll want to send in the B<key> and B<create> options.
It is possible to get a reference to an array or scalar as well. Simply send in
either C<< var = > 'ARRAY' >> or C<< var => 'SCALAR' >> to do so.
Return: A reference to a hash (or array or scalar) which is backed by shared
memory.
=head2 singleton($glue, $warn)
Class method that ensures that only a single instance of a script can be run
at any given time.
Parameters:
$glue
Mandatory, String: The key/glue that identifies the shared memory segment.
$warn
Optional, Bool: Send in a true value to have subsequent processes throw a
warning that there's been a shared memory violation and that it will exit.
Default: B<false>
=head2 ipcs
Returns the number of instantiated shared memory segments that currently exist
on the system. This isn't precise; it simply does a C<wc -l> line count on your
system's C<ipcs -m> call. It is guaranteed though to produce reliable results.
Return: Integer
=head2 lock($flags)
Obtains a lock on the shared memory. C<$flags> specifies the type
of lock to acquire. If C<$flags> is not specified, an exclusive
read/write lock is obtained. Acceptable values for C<$flags> are
the same as for the C<flock()> system call.
Returns C<true> on success, and C<undef> on error. For non-blocking calls
(see below), the method returns C<0> if it would have blocked.
Obtain an exclusive lock like this:
tied(%var)->lock(LOCK_EX); # same as default
Only one process can hold an exclusive lock on the shared memory at a given
time.
Obtain a shared (read) lock:
tied(%var)->lock(LOCK_SH);
Multiple processes can hold a shared (read) lock at a given time. If a process
attempts to obtain an exclusive lock while one or more processes hold
shared locks, it will be blocked until they have all finished.
Either of the locks may be specified as non-blocking:
tied(%var)->lock( LOCK_EX|LOCK_NB );
tied(%var)->lock( LOCK_SH|LOCK_NB );
A non-blocking lock request will return C<0> if it would have had to
wait to obtain the lock.
Note that these locks are advisory (just like flock), meaning that
all cooperating processes must coordinate their accesses to shared memory
using these calls in order for locking to work. See the C<flock()> call for
details.
Locks are inherited through forks, which means that two processes actually
can possess an exclusive lock at the same time. Don't do that.
The constants C<LOCK_EX>, C<LOCK_SH>, C<LOCK_NB>, and C<LOCK_UN> are available
for import using any of the following export tags:
use IPC::Shareable qw(:lock);
use IPC::Shareable qw(:flock);
use IPC::Shareable qw(:all);
Or, just use the flock constants available in the Fcntl module.
See L</LOCKING> for further details.
=head2 unlock
Removes a lock. Takes no parameters, returns C<true> on success.
This is equivalent of calling C<shlock(LOCK_UN)>.
See L</LOCKING> for further details.
=head2 seg
Called on either the tied variable or the tie object, returns the shared
memory segment object currently in use.
=head2 sem
Called on either the tied variable or the tie object, returns the semaphore
object related to the memory segment currently in use.
=head2 attributes
Retrieves the list of attributes that drive the L<IPC::Shareable> object.
Parameters:
$attribute
Optional, String: The name of the attribute. If sent in, we'll return the value
of this specific attribute. Returns C<undef> if the attribute isn't found.
Attributes are the C<OPTIONS> that were used to create the object.
Returns: A hash reference of all attributes if C<$attributes> isn't sent in, the
value of the specific attribute if it is.
=head2 global_register
Returns a hash reference of hashes of all in-use shared memory segments across
all processes. The key is the memory segment ID, and the value is the segment
and semaphore objects.
=head2 process_register
Returns a hash reference of hashes of all in-use shared memory segments created
by the calling process. The key is the memory segment ID, and the value is the
segment and semaphore objects.
=head1 LOCKING
IPC::Shareable provides methods to implement application-level
advisory locking of the shared data structures. These methods are
called C<lock()> and C<unlock()>. To use them you must first get the
object underlying the tied variable, either by saving the return
value of the original call to C<tie()> or by using the built-in C<tied()>
function.
To lock and subsequently unlock a variable, do this:
my $knot = tie my %hash, 'IPC::Shareable', { %options };
$knot->lock;
$hash{a} = 'foo';
$knot->unlock;
or equivalently, if you've decided to throw away the return of C<tie()>:
tie my %hash, 'IPC::Shareable', { %options };
tied(%hash)->lock;
$hash{a} = 'foo';
tied(%hash)->unlock;
This will place an exclusive lock on the data of C<$scalar>. You can
also get shared locks or attempt to get a lock without blocking.
L<IPC::Shareable> makes the constants C<LOCK_EX>, C<LOCK_SH>, C<LOCK_UN>, and
C<LOCK_NB> exportable to your address space with the export tags C<:lock>,
C<:flock>, or C<:all>. The values should be the same as the standard C<flock>
option arguments.
if (tied(%hash)->lock(LOCK_SH|LOCK_NB)){
print "The value is $hash{a}\n";
tied(%hash)->unlock;
} else {
print "Another process has an exclusive lock.\n";
}
If no argument is provided to C<lock>, it defaults to C<LOCK_EX>.
There are some pitfalls regarding locking and signals about which you
should make yourself aware; these are discussed in L</NOTES>.
Note that in the background, we perform lock optimization when reading and
writing to the shared storage even if the advisory locks aren't being used.
Using the advisory locks can speed up processes that are doing several writes/
reads at the same time.
=head1 DESTRUCTION
perl(1) will destroy the object underlying a tied variable when then
tied variable goes out of scope. Unfortunately for L<IPC::Shareable>,
this may not be desirable: other processes may still need a handle on
the relevant shared memory segment.
L<IPC::Shareable> therefore provides several options to control the timing of
removal of shared memory segments.
=head2 destroy Option
As described in L</OPTIONS>, specifying the B<destroy> option when
C<tie()>ing a variable coerces L<IPC::Shareable> to remove the underlying
shared memory segment when the process calling C<tie()> exits gracefully.
B<NOTE>: The destruction is handled in an C<END> block. Only those memory
segments that are tied to the current process will be removed.
B<NOTE>: If the segment was created with its L</protected> attribute set,
it will not be removed in the C<END> block, even if C<destroy> is set.
=head2 remove
tied($var)->remove;
# or
$knot->remove;
Calling C<remove()> on the object underlying a C<tie()>d variable removes
the associated shared memory segments. The segment is removed
irrespective of whether it has the B<destroy> option set or not and
irrespective of whether the calling process created the segment.
=head2 clean_up
IPC::Shareable->clean_up;
# or
tied($var)->clean_up;
# or
$knot->clean_up;
This is a class method that provokes L<IPC::Shareable> to remove all
shared memory segments created by the process. Segments not created
by the calling process are not removed.
This method will not clean up segments created with the C<protected> option.
=head2 clean_up_all
IPC::Shareable->clean_up_all;
# or
tied($var)->clean_up_all;
# or
$knot->clean_up_all
This is a class method that provokes L<IPC::Shareable> to remove all
shared memory segments encountered by the process. Segments are
removed even if they were not created by the calling process.
This method will not clean up segments created with the C<protected> option.
=head2 clean_up_protected($protect_key)
If a segment is created with the C<protected> option, it, nor its children will
be removed during calls of C<clean_up()> or C<clean_up_all()>.
When setting L</protected>, you specified a lock key integer. When calling this
method, you must send that integer in as a parameter so we know which segments
to clean up.
my $protect_key = 93432;
IPC::Shareable->clean_up_protected($protect_key);
# or
tied($var)->clean_up_protected($protect_key;
# or
$knot->clean_up_protected($protect_key)
Parameters:
$protect_key
Mandatory, Integer: The integer protect key you assigned wit the C<protected>
option
=head1 RETURN VALUES
Calls to C<tie()> that try to implement L<IPC::Shareable> will return an
instance of C<IPC::Shareable> on success, and C<undef> otherwise.
=head1 AUTHOR
Benjamin Sugars <bsugars@canoe.ca>
=head1 MAINTAINED BY
Steve Bertrand <steveb@cpan.org>
=head1 NOTES
=head2 Footnotes from the above sections
=over 4
=item 1
If the process has been smoked by an untrapped signal, the binding will remain
in shared memory. If you're cautious, you might try:
$SIG{INT} = \&catch_int;
sub catch_int {
die;
}
...
tie $variable, IPC::Shareable, { key => 'GLUE', create => 1, 'destroy' => 1 };
which will at least clean up after your user hits CTRL-C because
IPC::Shareable's END method will be called. Or, maybe you'd like to
leave the binding in shared memory, so subsequent process can recover
the data...
=back
=head2 General Notes
=over 4
=item o
When using C<lock()> to lock a variable, be careful to guard against
signals. Under normal circumstances, C<IPC::Shareable>'s C<END> method
unlocks any locked variables when the process exits. However, if an
untrapped signal is received while a process holds an exclusive lock,
C<END> will not be called and the lock may be maintained even though
the process has exited. If this scares you, you might be better off
implementing your own locking methods.
One advantage of using C<flock> on some known file instead of the
locking implemented with semaphores in C<IPC::Shareable> is that when a
process dies, it automatically releases any locks. This only happens
with C<IPC::Shareable> if the process dies gracefully.
The alternative is to attempt to account for every possible calamitous ending
for your process (robust signal handling in Perl is a source of much debate,
though it usually works just fine) or to become familiar with your
system's tools for removing shared memory and semaphores. This
concern should be balanced against the significant performance
improvements you can gain for larger data structures by using the
locking mechanism implemented in IPC::Shareable.
=item o
There is a program called C<ipcs>(1/8) (and C<ipcrm>(1/8)) that is
available on at least Solaris and Linux that might be useful for
cleaning moribund shared memory segments or semaphore sets produced
by bugs in either L<IPC::Shareable> or applications using it.
Examples:
# List all semaphores and memory segments in use on the system
ipcs -a
# List all memory segments and semaphores along with each one's associated process ID
ipcs -ap
# List just the shared memory segments
ipcs -m
# List the details of an individual memory segment
ipcs -i 12345678
# Remove *all* semaphores and memory segments
ipcrm -a
=item o
This version of L<IPC::Shareable> does not understand the format of
shared memory segments created by versions prior to C<0.60>. If you try
to tie to such segments, you will get an error. The only work around
is to clear the shared memory segments and start with a fresh set.
=item o
Iterating over a hash causes a special optimization if you have not
obtained a lock (it is better to obtain a read (or write) lock before
iterating over a hash tied to L<IPC::Shareable>, but we attempt this
optimization if you do not).
For tied hashes, the C<fetch>/C<thaw> operation is performed
when the first key is accessed. Subsequent key and and value
accesses are done without accessing shared memory. Doing an
assignment to the hash or fetching another value between key
accesses causes the hash to be replaced from shared memory. The
state of the iterator in this case is not defined by the Perl
documentation. Caveat Emptor.
=back
=head1 CREDITS
Thanks to all those with comments or bug fixes, especially
Maurice Aubrey <maurice@hevanet.com>
Stephane Bortzmeyer <bortzmeyer@pasteur.fr>
Doug MacEachern <dougm@telebusiness.co.nz>
Robert Emmery <roberte@netscape.com>
Mohammed J. Kabir <kabir@intevo.com>
Terry Ewing <terry@intevo.com>
Tim Fries <timf@dicecorp.com>
Joe Thomas <jthomas@women.com>
Paul Makepeace <Paul.Makepeace@realprogrammers.com>
Raphael Manfredi <Raphael_Manfredi@pobox.com>
Lee Lindley <Lee.Lindley@bigfoot.com>
Dave Rolsky <autarch@urth.org>
Steve Bertrand <steveb@cpan.org>
=head1 SEE ALSO
L<perltie>, L<Storable>, C<shmget>, C<ipcs>, C<ipcrm> and other SysV IPC manual
pages.