The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.

NAME

Bio::Ontology::Ontology - standard implementation of an Ontology

SYNOPSIS

    use Bio::Ontology::Ontology;

    # create ontology object
    my $ont = Bio::Ontology::Ontology->new(-name => "OBF");

    # add terms, relationships ...
    my $bp = Bio::Ontology::Term->new(-name => "Bioperl");
    my $obf = Bio::Ontology::Term->new(-name => "OBF");
    my $partof = Bio::Ontology::RelationshipType->get_instance("PART_OF");
    $ont->add_term($bp);
    $ont->add_term($obf);
    $ont->add_relationship($bp, $obf, $partof);

    # then query
    my @terms = $ont->get_root_terms(); # "OBF"
    my @desc = $ont->get_descendant_terms($terms[0], $partof); # "Bioperl"
    # ... see methods for other ways to query

    # for advanced users, you can re-use the query engine outside of an
    # ontology to let one instance manage multiple ontologies
    my $ont2 = Bio::Ontology::Ontology->new(-name => "Foundations",
                                            -engine => $ont->engine());

DESCRIPTION

This is a no-frills implementation of Bio::Ontology::OntologyI.

The query functions are implemented by delegation to an OntologyEngineI implementation.

FEEDBACK

Mailing Lists

User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to the Bioperl mailing list. Your participation is much appreciated.

  bioperl-l@bioperl.org              - General discussion
  http://bioperl.org/MailList.shtml  - About the mailing lists

Reporting Bugs

Report bugs to the Bioperl bug tracking system to help us keep track of the bugs and their resolution. Bug reports can be submitted via the web:

  http://bugzilla.bioperl.org/

AUTHOR - Hilmar Lapp

Email hlapp at gmx.net

CONTRIBUTORS

Additional contributors names and emails here

APPENDIX

The rest of the documentation details each of the object methods. Internal methods are usually preceded with a _

new

 Title   : new
 Usage   : my $obj = new Bio::Ontology::Ontology();
 Function: Builds a new Bio::Ontology::Ontology object
 Returns : an instance of Bio::Ontology::Ontology
 Args    :

Methods from Bio::Ontology::OntologyI

name

 Title   : name
 Usage   : $obj->name($newval)
 Function: Get/set the name of the ontology.
 Example :
 Returns : value of name (a scalar)
 Args    : on set, new value (a scalar or undef, optional)

authority

 Title   : authority
 Usage   : $obj->authority($newval)
 Function: Get/set the authority for this ontology, for instance the
           DNS base for the organization granting the name of the
           ontology and identifiers for the terms.

           This attribute is optional and should not generally
           expected by applications to have been set. It is here to
           follow the rules for namespaces, which ontologies serve as
           for terms.

 Example :
 Returns : value of authority (a scalar)
 Args    : on set, new value (a scalar or undef, optional)

definition

 Title   : definition
 Usage   : $obj->definition($newval)
 Function: Get/set a descriptive definition of the ontology.
 Example :
 Returns : value of definition (a scalar)
 Args    : on set, new value (a scalar or undef, optional)

identifier

 Title   : identifier
 Usage   : $id = $obj->identifier()
 Function: Get an identifier for this ontology.

           This is primarily intended for look-up purposes. The value
           is not modifiable and is determined automatically by the
           implementation.  Also, the identifier's uniqueness will only
           hold within the scope of a particular application's run
           time since it is derived from a memory location.

 Example :
 Returns : value of identifier (a scalar)
 Args    :

close

 Title   : close
 Usage   :
 Function: Release any resources this ontology may occupy. In order
           to efficiently release unused memory or file handles, you
           should call this method once you are finished with an
           ontology.

 Example :
 Returns : TRUE on success and FALSE otherwise
 Args    : none

Implementation-specific public methods

engine

 Title   : engine
 Usage   : $engine = $obj->engine()
 Function: Get/set the ontology engine to which all the query methods
           delegate.
 Example :
 Returns : an object implementing L<Bio::Ontology::OntologyEngineI>
 Args    : on set, new value (an object implementing
           L<Bio::Ontology::OntologyEngineI>, or  undef)

Methods defined in Bio::Ontology::OntologyEngineI

add_term

 Title   : add_term
 Usage   : add_term(TermI term): TermI
 Function: Adds TermI object to the ontology engine term store

           If the ontology property of the term object was not set,
           this implementation will set it to itself upon adding the
           term.

 Example : $oe->add_term($term)
 Returns : its argument.
 Args    : object of class TermI.

add_relationship

 Title   : add_relationship
 Usage   : add_relationship(RelationshipI relationship): RelationshipI
  add_relatioship(TermI subject, TermI predicate, TermI object)
 Function: Adds a relationship object to the ontology engine.
 Example :
 Returns : Its argument.
 Args    : A RelationshipI object.

get_relationships

 Title   : get_relationships
 Usage   : get_relationships(TermI term): RelationshipI[]
 Function: Retrieves all relationship objects in the ontology, or all
           relationships of a given term.
 Example :
 Returns : Array of Bio::Ontology::RelationshipI objects
 Args    : Optionally, a Bio::Ontology::TermI compliant object

get_predicate_terms

 Title   : get_predicate_terms
 Usage   : get_predicate_terms(): TermI[]
 Function: Retrieves all relationship types.
 Example :
 Returns : Array of TermI objects
 Args    :

get_child_terms

 Title   : get_child_terms
 Usage   : get_child_terms(TermI term, TermI[] predicate_terms): TermI[]
 Function: Retrieves all child terms of a given term, that satisfy a
           relationship among those that are specified in the second
           argument or undef otherwise. get_child_terms is a special
           case of get_descendant_terms, limiting the search to the
           direct descendants.

           Note that a returned term may possibly be in another
           ontology than this one, because the underlying engine may
           manage multiple ontologies and the relationships of terms
           between them. If you only want descendants within this
           ontology, you need to filter the returned array.

 Example :
 Returns : Array of TermI objects.
 Args    : First argument is the term of interest, second is the list
           of relationship type terms.

get_descendant_terms

 Title   : get_descendant_terms
 Usage   : get_descendant_terms(TermI term, TermI[] rel_types): TermI[]
 Function: Retrieves all descendant terms of a given term, that
           satisfy a relationship among those that are specified in
           the second argument or undef otherwise.

           Note that a returned term may possibly be in another
           ontology than this one, because the underlying engine may
           manage multiple ontologies and the relationships of terms
           between them. If you only want descendants within this
           ontology, you need to filter the returned array.

 Example :
 Returns : Array of TermI objects.
 Args    : First argument is the term of interest, second is the list
           of relationship type terms.

get_parent_terms

 Title   : get_parent_terms
 Usage   : get_parent_terms(TermI term, TermI[] predicate_terms): TermI[]
 Function: Retrieves all parent terms of a given term, that satisfy a
           relationship among those that are specified in the second
           argument or undef otherwise. get_parent_terms is a special
           case of get_ancestor_terms, limiting the search to the
           direct ancestors.

           Note that a returned term may possibly be in another
           ontology than this one, because the underlying engine may
           manage multiple ontologies and the relationships of terms
           between them. If you only want descendants within this
           ontology, you need to filter the returned array.

 Example :
 Returns : Array of TermI objects.
 Args    : First argument is the term of interest, second is the list
           of relationship type terms.

get_ancestor_terms

 Title   : get_ancestor_terms
 Usage   : get_ancestor_terms(TermI term, TermI[] predicate_terms): TermI[]
 Function: Retrieves all ancestor terms of a given term, that satisfy
           a relationship among those that are specified in the second
           argument or undef otherwise.

           Note that a returned term may possibly be in another
           ontology than this one, because the underlying engine may
           manage multiple ontologies and the relationships of terms
           between them. If you only want descendants within this
           ontology, you need to filter the returned array.

 Example :
 Returns : Array of TermI objects.
 Args    : First argument is the term of interest, second is the list
           of relationship type terms.

get_leaf_terms

 Title   : get_leaf_terms
 Usage   : get_leaf_terms(): TermI[]
 Function: Retrieves all leaf terms from the ontology. Leaf term is a
           term w/o descendants.

 Example : @leaf_terms = $obj->get_leaf_terms()
 Returns : Array of TermI objects.
 Args    :

get_root_terms()

 Title   : get_root_terms
 Usage   : get_root_terms(): TermI[]
 Function: Retrieves all root terms from the ontology. Root term is a
           term w/o descendants.

 Example : @root_terms = $obj->get_root_terms()
 Returns : Array of TermI objects.
 Args    :

get_all_terms

 Title   : get_all_terms
 Usage   : get_all_terms: TermI[]
 Function: Retrieves all terms from the ontology.

           We do not mandate an order here in which the terms are
           returned. In fact, the default implementation will return
           them in unpredictable order.

 Example : @terms = $obj->get_all_terms()
 Returns : Array of TermI objects.
 Args    :

find_terms

 Title   : find_terms
 Usage   : ($term) = $oe->find_terms(-identifier => "SO:0000263");
 Function: Find term instances matching queries for their attributes.

           An implementation may not support querying for arbitrary
           attributes, but can generally be expected to accept
           -identifier and -name as queries. If both are provided,
           they are implicitly intersected.

 Example :
 Returns : an array of zero or more Bio::Ontology::TermI objects
 Args    : Named parameters. The following parameters should be recognized
           by any implementations:

              -identifier    query by the given identifier
              -name          query by the given name

Factory for relationships and terms

relationship_factory

 Title   : relationship_factory
 Usage   : $fact = $obj->relationship_factory()
 Function: Get (and set, if the engine supports it) the object
           factory to be used when relationship objects are created by
           the implementation on-the-fly.

 Example : 
 Returns : value of relationship_factory (a Bio::Factory::ObjectFactoryI
           compliant object)
 Args    : 

term_factory

 Title   : term_factory
 Usage   : $fact = $obj->term_factory()
 Function: Get (and set, if the engine supports it) the object
           factory to be used when term objects are created by
           the implementation on-the-fly.

 Example : 
 Returns : value of term_factory (a Bio::Factory::ObjectFactoryI
           compliant object)
 Args    :