copy()
Returns a copy of the Complex number, which resides at a different location in memory.
my $z = Math::GSL::Complex>new([10,5]);
my $copy = $z>copy;
NAME
Math::GSL::Complex  Complex Numbers
SYNOPSIS
use Math::GSL::Complex qw/:all/;
my $complex = Math::GSL::Complex>new([3,2]); # creates a complex number 3+2*i
my $real = $complex>real; # returns the real part
my $imag = $complex>imag; # returns the imaginary part
$complex>gsl_set_real(5); # changes the real part to 5
$complex>gsl_set_imag(4); # changes the imaginary part to 4
$complex>gsl_set_complex(7,6); # changes it to 7 + 6*i
($real, $imag) = $complex>parts; # get both at once
DESCRIPTION
Here is a list of all the functions included in this module :
gsl_complex_arg($z)

Return the argument of the complex number $z
gsl_complex_abs($z)

Return $z, the magnitude of the complex number $z
gsl_complex_rect($x,$y)

Create a complex number in cartesian form $x + $y*i
gsl_complex_polar($r,$theta)

Create a complex number in polar form $r*exp(i*$theta)
gsl_complex_abs2($z)

Return $z^2, the squared magnitude of the complex number $z
gsl_complex_logabs($z)

Return log($z), the natural logarithm of the magnitude of the complex number $z
gsl_complex_add($c1, $c2)

Return a complex number which is the sum of the complex numbers $c1 and $c2
gsl_complex_sub($c1, $c2)

Return a complex number which is the difference between $c1 and $c2 ($c1  $c2)
gsl_complex_mul($c1, $c2)

Return a complex number which is the product of the complex numbers $c1 and $c2
gsl_complex_div($c1, $c2)

Return a complex number which is the quotient of the complex numbers $c1 and $c2 ($c1 / $c2)
gsl_complex_add_real($c, $x)

Return the sum of the complex number $c and the real number $x
gsl_complex_sub_real($c, $x)

Return the difference of the complex number $c and the real number $x
gsl_complex_mul_real($c, $x)

Return the product of the complex number $c and the real number $x
gsl_complex_div_real($c, $x)

Return the quotient of the complex number $c and the real number $x
gsl_complex_add_imag($c, $y)

Return sum of the complex number $c and the imaginary number i*$x
gsl_complex_sub_imag($c, $y)

Return the diffrence of the complex number $c and the imaginary number i*$x
gsl_complex_mul_imag($c, $y)

Return the product of the complex number $c and the imaginary number i*$x
gsl_complex_div_imag($c, $y)

Return the quotient of the complex number $c and the imaginary number i*$x
gsl_complex_conjugate($c)

Return the conjugate of the of the complex number $c (x  i*y)
gsl_complex_inverse($c)

Return the inverse, or reciprocal of the complex number $c (1/$c)
gsl_complex_negative($c)

Return the negative of the complex number $c (x i*y)
gsl_complex_sqrt($c)

Return the square root of the complex number $c
gsl_complex_sqrt_real($x)

Return the complex square root of the real number $x, where $x may be negative
gsl_complex_pow($c1, $c2)

Return the complex number $c1 raised to the complex power $c2
gsl_complex_pow_real($c, $x)

Return the complex number raised to the real power $x
gsl_complex_exp($c)

Return the complex exponential of the complex number $c
gsl_complex_log($c)

Return the complex natural logarithm (base e) of the complex number $c
gsl_complex_log10($c)

Return the complex base10 logarithm of the complex number $c
gsl_complex_log_b($c, $b)

Return the complex base$b of the complex number $c
gsl_complex_sin($c)

Return the complex sine of the complex number $c
gsl_complex_cos($c)

Return the complex cosine of the complex number $c
gsl_complex_sec($c)

Return the complex secant of the complex number $c
gsl_complex_csc($c)

Return the complex cosecant of the complex number $c
gsl_complex_tan($c)

Return the complex tangent of the complex number $c
gsl_complex_cot($c)

Return the complex cotangent of the complex number $c
gsl_complex_arcsin($c)

Return the complex arcsine of the complex number $c
gsl_complex_arcsin_real($x)

Return the complex arcsine of the real number $x
gsl_complex_arccos($c)

Return the complex arccosine of the complex number $c
gsl_complex_arccos_real($x)

Return the complex arccosine of the real number $x
gsl_complex_arcsec($c)

Return the complex arcsecant of the complex number $c
gsl_complex_arcsec_real($x)

Return the complex arcsecant of the real number $x
gsl_complex_arccsc($c)

Return the complex arccosecant of the complex number $c
gsl_complex_arccsc_real($x)

Return the complex arccosecant of the real number $x
gsl_complex_arctan($c)

Return the complex arctangent of the complex number $c
gsl_complex_arccot($c)

Return the complex arccotangent of the complex number $c
gsl_complex_sinh($c)

Return the complex hyperbolic sine of the complex number $c
gsl_complex_cosh($c)

Return the complex hyperbolic cosine of the complex number $cy
gsl_complex_sech($c)

Return the complex hyperbolic secant of the complex number $c
gsl_complex_csch($c)

Return the complex hyperbolic cosecant of the complex number $c
gsl_complex_tanh($c)

Return the complex hyperbolic tangent of the complex number $c
gsl_complex_coth($c)

Return the complex hyperbolic cotangent of the complex number $c
gsl_complex_arcsinh($c)

Return the complex hyperbolic arcsine of the complex number $c
gsl_complex_arccosh($c)

Return the complex hyperbolic arccosine of the complex number $c
gsl_complex_arccosh_real($x)

Return the complex hyperbolic arccosine of the real number $x
gsl_complex_arcsech($c)

Return the complex hyperbolic arcsecant of the complex number $c
gsl_complex_arccsch($c)

Return the complex hyperbolic arccosecant of the complex number $c
gsl_complex_arctanh($c)

Return the complex hyperbolic arctangent of the complex number $c
gsl_complex_arctanh_real($x)

Return the complex hyperbolic arctangent of the real number $x
gsl_complex_arccoth($c)

Return the complex hyperbolic arccotangent of the complex number $c
gsl_real($z)

Return the real part of $z
gsl_imag($z)

Return the imaginary part of $z
gsl_parts($z)

Return a list of the real and imaginary parts of $z
gsl_set_real($z, $x)

Sets the real part of $z to $x
gsl_set_imag($z, $y)

Sets the imaginary part of $z to $y
gsl_set_complex($z, $x, $h)

Sets the real part of $z to $x and the imaginary part to $y
EXAMPLES
This code defines $z as 6 + 4*i, takes the complex conjugate of that number, then prints it out.
my $z = gsl_complex_rect(6,4);
my $y = gsl_complex_conjugate($z);
my ($real, $imag) = gsl_parts($y);
print "z = $real + $imag*i\n";
This code defines $z as 5 + 3*i, multiplies it by 2 and then prints it out.
my $x = gsl_complex_rect(5,3);
my $z = gsl_complex_mul_real($x, 2);
my $real = gsl_real($z);
my $imag = gsl_imag($z);
print "Re(\$z) = $real\n";
AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
COPYRIGHT AND LICENSE
Copyright (C) 20082014 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.