The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.

NAME

IO::Async::Stream - event callbacks and write bufering for a stream filehandle

SYNOPSIS

 use IO::Socket::INET;
 use IO::Async::Stream;

 use IO::Async::Loop;
 my $loop = IO::Async::Loop->new();

 my $socket = IO::Socket::INET->new(
    PeerHost => "some.other.host",
    PeerPort => 12345,
    Blocking => 0,                   # This line is very important
 );

 my $stream = IO::Async::Stream->new(
    handle => $socket,

    on_read => sub {
       my ( $self, $buffref, $closed ) = @_;

       if( $$buffref =~ s/^(.*\n)// ) {
          print "Received a line $1";

          return 1;
       }

       if( $closed ) {
          print "Closed; last partial line is $$buffref\n";
       }

       return 0;
    }
 );

 $stream->write( "An initial line here\n" );

Or

 my $record_stream = IO::Async::Stream->new(
    handle => ...,

    on_read => sub {
       my ( $self, $buffref, $closed ) = @_;

       if( length $$buffref >= 16 ) {
          my $record = substr( $$buffref, 0, 16, "" );
          print "Received a 16-byte record: $record\n";

          return 1;
       }

       if( $closed and length $$buffref ) {
          print "Closed: a partial record still exists\n";
       }

       return 0;
    }
 );

Or

 use IO::Handle;

 my $stream = IO::Async::Stream->new(
    read_handle  => \*STDIN,
    write_handle => \*STDOUT,
    ...
 );

DESCRIPTION

This subclass of IO::Async::Handle contains a filehandle that represents a byte-stream. It provides buffering for both incoming and outgoing data. It invokes the on_read handler when new data is read from the filehandle. Data may be written to the filehandle by calling the write() method.

EVENTS

The following events are invoked, either using subclass methods or CODE references in parameters:

$ret = on_read \$buffer, $handleclosed

Invoked when more data is available in the internal receiving buffer.

The first argument is a reference to a plain perl string. The code should inspect and remove any data it likes, but is not required to remove all, or indeed any of the data. Any data remaining in the buffer will be preserved for the next call, the next time more data is received from the handle.

In this way, it is easy to implement code that reads records of some form when completed, but ignores partially-received records, until all the data is present. If the handler is confident no more useful data remains, it should return 0. If not, it should return 1, and the handler will be called again. This makes it easy to implement code that handles multiple incoming records at the same time. See the examples at the end of this documentation for more detail.

The second argument is a scalar indicating whether the handle has been closed. Normally it is false, but will become true once the handle closes. A reference to the buffer is passed to the handler in the usual way, so it may inspect data contained in it. Once the handler returns a false value, it will not be called again, as the handle is now closed and no more data can arrive.

The on_read() code may also dynamically replace itself with a new callback by returning a CODE reference instead of 0 or 1. The original callback or method that the object first started with may be restored by returning undef. Whenever the callback is changed in this way, the new code is called again; even if the read buffer is currently empty. See the examples at the end of this documentation for more detail.

on_read_error $errno

Optional. Invoked when the sysread() method on the read handle fails.

on_write_error $errno

Optional. Invoked when the syswrite() method on the write handle fails.

The on_read_error and on_write_error handlers are passed the value of $! at the time the error occured. (The $! variable itself, by its nature, may have changed from the original error by the time this handler runs so it should always use the value passed in).

If an error occurs when the corresponding error callback is not supplied, and there is not a handler for it, then the close() method is called instead.

on_outgoing_empty

Optional. Invoked when the writing data buffer becomes empty.

PARAMETERS

The following named parameters may be passed to new or configure:

read_handle => IO

The IO handle to read from. Must implement fileno and sysread methods.

write_handle => IO

The IO handle to write to. Must implement fileno and syswrite methods.

handle => IO

Shortcut to specifying the same IO handle for both of the above.

on_read => CODE
on_read_error => CODE
on_outgoing_empty => CODE
on_write_error => CODE

CODE references for event handlers.

autoflush => BOOL

Optional. If true, the write method will attempt to write data to the operating system immediately, without waiting for the loop to indicate the filehandle is write-ready. This is useful, for example, on streams that should contain up-to-date logging or console information.

It currently defaults to false for any file handle, but future versions of IO::Async may enable this by default on STDOUT and STDERR.

read_len => INT

Optional. Sets the buffer size for read() calls. Defaults to 8 KiBytes.

read_all => BOOL

Optional. If true, attempt to read as much data from the kernel as possible when the handle becomes readable. By default this is turned off, meaning at most one fixed-size buffer is read. If there is still more data in the kernel's buffer, the handle will still be readable, and will be read from again.

This behaviour allows multiple streams and sockets to be multiplexed simultaneously, meaning that a large bulk transfer on one cannot starve other filehandles of processing time. Turning this option on may improve bulk data transfer rate, at the risk of delaying or stalling processing on other filehandles.

write_len => INT

Optional. Sets the buffer size for write() calls. Defaults to 8 KiBytes.

write_all => BOOL

Optional. Analogous to the read_all option, but for writing. When autoflush is enabled, this option only affects deferred writing if the initial attempt failed due to buffer space.

If a read handle is given, it is required that either an on_read callback reference is configured, or that the object provides an on_read method. It is optional whether either is true for on_outgoing_empty; if neither is supplied then no action will be taken when the writing buffer becomes empty.

An on_read handler may be supplied even if no read handle is yet given, to be used when a read handle is eventually provided by the set_handles method.

This condition is checked at the time the object is added to a Loop; it is allowed to create a IO::Async::Stream object with a read handle but without a on_read handler, provided that one is later given using configure before the stream is added to its containing Loop, either directly or by being a child of another Notifier already in a Loop, or added to one.

METHODS

$stream->close

A synonym for close_when_empty. This should not be used when the deferred wait behaviour is required, as the behaviour of close may change in a future version of IO::Async. Instead, call close_when_empty directly.

$stream->close_when_empty

If the write buffer is empty, this method calls close on the underlying IO handles, and removes the stream from its containing loop. If the write buffer still contains data, then this is deferred until the buffer is empty. This is intended for "write-then-close" one-shot streams.

 $stream->write( "Here is my final data\n" );
 $stream->close_when_empty;

Because of this deferred nature, it may not be suitable for error handling. See instead the close_now method.

$stream->close_now

This method immediately closes the underlying IO handles and removes the stream from the containing loop. It will not wait to flush the remaining data in the write buffer.

$stream->write( $data, %params )

This method adds data to the outgoing data queue, or writes it immediately, according to the autoflush parameter.

If the autoflush option is set, this method will try immediately to write the data to the underlying filehandle. If this completes successfully then it will have been written by the time this method returns. If it fails to write completely, then the data is queued as if autoflush were not set, and will be flushed as normal.

$data can either be a plain string, or a CODE reference. If it is a CODE reference, it will be invoked to generate data to be written. Each time the filehandle is ready to receive more data to it, the function is invoked, and what it returns written to the filehandle. Once the function has finished generating data it should return undef. The function is passed the Stream object as its first argument.

For example, to stream the contents of an existing opened filehandle:

 open my $fileh, "<", $path or die "Cannot open $path - $!";

 $stream->write( sub {
    my ( $stream ) = @_;

    sysread $fileh, my $buffer, 8192 or return;
    return $buffer;
 } );

Takes the following optional named parameters in %params:

on_flush => CODE

A CODE reference which will be invoked once the data queued by this write call has been flushed. This will be invoked even if the buffer itself is not yet empty; if more data has been queued since the call.

 $on_flush->( $stream )

UTILITY CONSTRUCTORS

$stream = IO::Async::Stream->new_for_stdin

$stream = IO::Async::Stream->new_for_stdout

$stream = IO::Async::Stream->new_for_stdio

Return a IO::Async::Stream object preconfigured with the correct read_handle, write_handle or both.

EXAMPLES

A line-based on_read() method

The following on_read() method accepts incoming \n-terminated lines and prints them to the program's STDOUT stream.

 sub on_read
 {
    my $self = shift;
    my ( $buffref, $handleclosed ) = @_;

    if( $$buffref =~ s/^(.*\n)// ) {
       print "Received a line: $1";
       return 1;
    }

    return 0;
 }

Because a reference to the buffer itself is passed, it is simple to use a s/// regular expression on the scalar it points at, to both check if data is ready (i.e. a whole line), and to remove it from the buffer. If no data is available then 0 is returned, to indicate it should not be tried again. If a line was successfully extracted, then 1 is returned, to indicate it should try again in case more lines exist in the buffer.

Dynamic replacement of on_read()

Consider the following protocol (inspired by IMAP), which consists of \n-terminated lines that may have an optional data block attached. The presence of such a data block, as well as its size, is indicated by the line prefix.

 sub on_read
 {
    my $self = shift;
    my ( $buffref, $handleclosed ) = @_;

    if( $$buffref =~ s/^DATA (\d+):(.*)\n// ) {
       my $length = $1;
       my $line   = $2;

       return sub {
          my $self = shift;
          my ( $buffref, $handleclosed ) = @_;

          return 0 unless length $$buffref >= $length;

          # Take and remove the data from the buffer
          my $data = substr( $$buffref, 0, $length, "" );

          print "Received a line $line with some data ($data)\n";

          return undef; # Restore the original method
       }
    }
    elsif( $$buffref =~ s/^LINE:(.*)\n// ) {
       my $line = $1;

       print "Received a line $line with no data\n";

       return 1;
    }
    else {
       print STDERR "Unrecognised input\n";
       # Handle it somehow
    }
 }

In the case where trailing data is supplied, a new temporary on_read() callback is provided in a closure. This closure captures the $length variable so it knows how much data to expect. It also captures the $line variable so it can use it in the event report. When this method has finished reading the data, it reports the event, then restores the original method by returning undef.

SEE ALSO

  • IO::Handle - Supply object methods for I/O handles

AUTHOR

Paul Evans <leonerd@leonerd.org.uk>