#========================================================================
# Math::Bezier
#
# Module for the solution of Bezier curves based on the algorithm
# presented by Robert D. Miller in Graphics Gems V, "Quick and Simple
# Bezier Curve Drawing".
#
# Andy Wardley <abw@kfs.org>
#
# Copyright (C) 2000 Andy Wardley. All Rights Reserved.
#
# This module is free software; you can redistribute it and/or
# modify it under the same terms as Perl itself.
#
#========================================================================
package Math::Bezier;
use strict;
use vars qw( $VERSION );
$VERSION = '0.01';
use constant X => 0;
use constant Y => 1;
use constant CX => 2;
use constant CY => 3;
#------------------------------------------------------------------------
# new($x1, $y1, $x2, $y2, ..., $xn, $yn)
#
# Constructor method to create a new Bezier curve form.
#------------------------------------------------------------------------
sub new {
my $class = shift;
my @points = ref $_[0] eq 'ARRAY' ? @{$_[0]} : @_;
my $size = scalar @points;
my @ctrl;
die "invalid control points, expects (x1, y1, x2, y2, ..., xn, yn)\n"
if $size % 2;
while (@points) {
push(@ctrl, [ splice(@points, 0, 2) ]);
}
$size = scalar @ctrl;
my $n = $size - 1;
my $choose;
for (my $k = 0; $k <= $n; $k++) {
if ($k == 0) {
$choose = 1;
}
elsif ($k == 1) {
$choose = $n;
}
else {
$choose *= ($n - $k + 1) / $k;
}
$ctrl[$k]->[CX] = $ctrl[$k]->[X] * $choose;
$ctrl[$k]->[CY] = $ctrl[$k]->[Y] * $choose;
}
bless \@ctrl, $class;
}
#------------------------------------------------------------------------
# point($theta)
#
# Calculate (x, y) point on curve at position $theta (in the range 0 - 1)
# along the curve. Returns a list ($x, $y) or reference to a list
# [$x, $y] when called in list or scalar context respectively.
#------------------------------------------------------------------------
sub point {
my ($self, $t) = @_;
my $size = scalar @$self;
my (@points, $point);
my $n = $size - 1;
my $u = $t;
push(@points, [ $self->[0]->[CX], $self->[0]->[CY] ]);
for (my $k = 1; $k <= $n; $k++) {
push(@points, [ $self->[$k]->[CX] * $u, $self->[$k]->[CY] * $u ]);
$u *= $t;
}
$point = [ @{ $points[$n] } ];
my $t1 = 1 - $t;
my $tt = $t1;
for (my $k = $n - 1; $k >= 0; $k--) {
$point->[X] += $points[$k]->[X] * $tt;
$point->[Y] += $points[$k]->[Y] * $tt;
$tt = $tt * $t1;
}
return wantarray ? (@$point) : $point;
}
#------------------------------------------------------------------------
# curve($npoints)
#
# Sample curve at $npoints points. Returns a list or reference to a list
# of (x, y) points along the curve, when called in list or scalar context
# respectively.
#------------------------------------------------------------------------
sub curve {
my ($self, $npoints) = @_;
$npoints = 20 unless defined $npoints;
my @points;
$npoints--;
foreach (my $t = 0; $t <= $npoints; $t++) {
push(@points, ($self->point($t / $npoints)));
}
return wantarray ? (@points) : \@points;
}
1;
__END__
=head1 NAME
Math::Bezier - solution of Bezier Curves
=head1 SYNOPSIS
use Math::Bezier;
# create curve passing list of (x, y) control points
my $bezier = Math::Bezier->new($x1, $y1, $x2, $y2, ..., $xn, $yn);
# or pass reference to list of control points
my $bezier = Math::Bezier->new([ $x1, $y1, $x2, $y2, ..., $xn, $yn]);
# determine (x, y) at point along curve, range 0 -> 1
my ($x, $y) = $bezier->point(0.5);
# returns list ref in scalar context
my $xy = $bezier->point(0.5);
# return list of 20 (x, y) points along curve
my @curve = $bezier->curve(20);
# returns list ref in scalar context
my $curve = $bezier->curve(20);
=head1 DESCRIPTION
This module implements the algorithm for the solution of Bezier curves
as presented by Robert D. Miller in Graphics Gems V, "Quick and Simple
Bezier Curve Drawing".
A new Bezier curve is created using the new() constructor, passing a list
of (x, y) control points.
use Math::Bezier;
my @control = ( 0, 0, 10, 20, 30, -20, 40, 0 );
my $bezier = Math::Bezier->new(@control);
Alternately, a reference to a list of control points may be passed.
my $bezier = Math::Bezier->new(\@control);
The point($theta) method can then be called on the object, passing a
value in the range 0 to 1 which represents the distance along the
curve. When called in list context, the method returns the x and y
coordinates of that point on the Bezier curve.
my ($x, $y) = $bezier->point(0.5);
print "x: $x y: $y\n
When called in scalar context, it returns a reference to a list containing
the x and y coordinates.
my $point = $bezier->point(0.5);
print "x: $point->[0] y: $point->[1]\n";
The curve($n) method can be used to return a set of points sampled
along the length of the curve (i.e. in the range 0 <= $theta <= 1).
The parameter indicates the number of sample points required,
defaulting to 20 if undefined. The method returns a list of ($x1,
$y1, $x2, $y2, ..., $xn, $yn) points when called in list context, or
a reference to such an array when called in scalar context.
my @points = $bezier->curve(10);
while (@points) {
my ($x, $y) = splice(@points, 0, 2);
print "x: $x y: $y\n";
}
my $points = $bezier->curve(10);
while (@$points) {
my ($x, $y) = splice(@$points, 0, 2);
print "x: $x y: $y\n";
}
=head1 AUTHOR
Andy Wardley E<lt>abw@kfs.orgE<gt>
=head1 SEE ALSO
Graphics Gems 5, edited by Alan W. Paeth, Academic Press, 1995,
ISBN 0-12-543455-3. Section IV.8, 'Quick and Simple Bezier Curve
Drawing' by Robert D. Miller, pages 206-209.
=cut