use strict;
use warnings;
require 5.008_001; # just as DBI

package DBD::mysql;

use DBI;
use DynaLoader();
use Carp;
our @ISA = qw(DynaLoader);
our $VERSION = '4.026';

bootstrap DBD::mysql $VERSION;

our $err = 0;	    # holds error code for DBI::err
our $errstr = "";	# holds error string for DBI::errstr
our $drh = undef;	# holds driver handle once initialised

my $methods_are_installed = 0;
sub driver{
    return $drh if $drh;
    my($class, $attr) = @_;

    $class .= "::dr";

    # not a 'my' since we use it above to prevent multiple drivers
    $drh = DBI::_new_drh($class, { 'Name' => 'mysql',
				   'Version' => $VERSION,
				   'Err'    => \$DBD::mysql::err,
				   'Errstr' => \$DBD::mysql::errstr,
				   'Attribution' => 'DBD::mysql by Patrick Galbraith'

    if (!$methods_are_installed) {



sub CLONE {
  undef $drh;

sub _OdbcParse($$$) {
    my($class, $dsn, $hash, $args) = @_;
    my($var, $val);
    if (!defined($dsn)) {
    while (length($dsn)) {
	if ($dsn =~ /([^:;]*)[:;](.*)/) {
	    $val = $1;
	    $dsn = $2;
	} else {
	    $val = $dsn;
	    $dsn = '';
	if ($val =~ /([^=]*)=(.*)/) {
	    $var = $1;
	    $val = $2;
	    if ($var eq 'hostname'  ||  $var eq 'host') {
		$hash->{'host'} = $val;
	    } elsif ($var eq 'db'  ||  $var eq 'dbname') {
		$hash->{'database'} = $val;
	    } else {
		$hash->{$var} = $val;
	} else {
	    foreach $var (@$args) {
		if (!defined($hash->{$var})) {
		    $hash->{$var} = $val;

sub _OdbcParseHost ($$) {
    my($class, $dsn) = @_;
    my($hash) = {};
    $class->_OdbcParse($dsn, $hash, ['host', 'port']);
    ($hash->{'host'}, $hash->{'port'});

    my ($meth) = $DBD::mysql::AUTOLOAD;
    my ($smeth) = $meth;
    $smeth =~ s/(.*)\:\://;

    my $val = constant($smeth, @_ ? $_[0] : 0);
    if ($! == 0) { eval "sub $meth { $val }"; return $val; }

    Carp::croak "$meth: Not defined";


package DBD::mysql::dr; # ====== DRIVER ======
use strict;
use DBI qw(:sql_types);
use DBI::Const::GetInfoType;

sub connect {
    my($drh, $dsn, $username, $password, $attrhash) = @_;
    my $connect_ref= { 'Name' => $dsn };
    my $dbi_imp_data;

    # Avoid warnings for undefined values
    $username ||= '';
    $password ||= '';
    $attrhash ||= {};

    # create a 'blank' dbh
    my($this, $privateAttrHash) = (undef, $attrhash);
    $privateAttrHash = { %$privateAttrHash,
	'Name' => $dsn,
	'user' => $username,
	'password' => $password

    DBD::mysql->_OdbcParse($dsn, $privateAttrHash,
				    ['database', 'host', 'port']);

    if ($DBI::VERSION >= 1.49)
      $dbi_imp_data = delete $attrhash->{dbi_imp_data};
      $connect_ref->{'dbi_imp_data'} = $dbi_imp_data;

    if (!defined($this = DBI::_new_dbh($drh,
      return undef;

    DBD::mysql::db::_login($this, $dsn, $username, $password)
	  or $this = undef;

    if ($this && ($ENV{MOD_PERL} || $ENV{GATEWAY_INTERFACE})) {
        $this->{mysql_auto_reconnect} = 1;

sub data_sources {
    my($self) = shift;
    my($attributes) = shift;
    my($host, $port, $user, $password) = ('', '', '', '');
    if ($attributes) {
      $host = $attributes->{host} || '';
      $port = $attributes->{port} || '';
      $user = $attributes->{user} || '';
      $password = $attributes->{password} || '';
    my(@dsn) = $self->func($host, $port, $user, $password, '_ListDBs');
    for ($i = 0;  $i < @dsn;  $i++) {
	$dsn[$i] = "DBI:mysql:$dsn[$i]";

sub admin {
    my($drh) = shift;
    my($command) = shift;
    my($dbname) = ($command eq 'createdb'  ||  $command eq 'dropdb') ?
	shift : '';
    my($host, $port) = DBD::mysql->_OdbcParseHost(shift(@_) || '');
    my($user) = shift || '';
    my($password) = shift || '';

    $drh->func(undef, $command,
	       $dbname || '',
	       $host || '',
	       $port || '',
	       $user, $password, '_admin_internal');

package DBD::mysql::db; # ====== DATABASE ======
use strict;
use DBI qw(:sql_types);

%DBD::mysql::db::db2ANSI = (
    "INT"   =>  "INTEGER",
    "CHAR"  =>  "CHAR",
    "REAL"  =>  "REAL",
    "IDENT" =>  "DECIMAL"

### ANSI datatype mapping to MySQL datatypes
%DBD::mysql::db::ANSI2db = (
    "CHAR"          => "CHAR",
    "VARCHAR"       => "CHAR",
    "LONGVARCHAR"   => "CHAR",
    "NUMERIC"       => "INTEGER",
    "DECIMAL"       => "INTEGER",
    "BIT"           => "INTEGER",
    "TINYINT"       => "INTEGER",
    "SMALLINT"      => "INTEGER",
    "INTEGER"       => "INTEGER",
    "BIGINT"        => "INTEGER",
    "REAL"          => "REAL",
    "FLOAT"         => "REAL",
    "DOUBLE"        => "REAL",
    "BINARY"        => "CHAR",
    "VARBINARY"     => "CHAR",
    "DATE"          => "CHAR",
    "TIME"          => "CHAR",
    "TIMESTAMP"     => "CHAR"

sub prepare {
    my($dbh, $statement, $attribs)= @_;

    return unless $dbh->func('_async_check');

    # create a 'blank' dbh
    my $sth = DBI::_new_sth($dbh, {'Statement' => $statement});

    # Populate internal handle data.
    if (!DBD::mysql::st::_prepare($sth, $statement, $attribs)) {
	$sth = undef;


sub db2ANSI {
    my $self = shift;
    my $type = shift;
    return $DBD::mysql::db::db2ANSI{"$type"};

sub ANSI2db {
    my $self = shift;
    my $type = shift;
    return $DBD::mysql::db::ANSI2db{"$type"};

sub admin {
    my($dbh) = shift;
    my($command) = shift;
    my($dbname) = ($command eq 'createdb'  ||  $command eq 'dropdb') ?
	shift : '';
    $dbh->{'Driver'}->func($dbh, $command, $dbname, '', '', '',

sub _SelectDB ($$) {
    die "_SelectDB is removed from this module; use DBI->connect instead.";

sub table_info ($) {
  my ($dbh, $catalog, $schema, $table, $type, $attr) = @_;
  $dbh->{mysql_server_prepare}||= 0;
  my $mysql_server_prepare_save= $dbh->{mysql_server_prepare};
  $dbh->{mysql_server_prepare}= 0;
  my @rows;

  my $sponge = DBI->connect("DBI:Sponge:", '','')
    or return $dbh->DBI::set_err($DBI::err, "DBI::Sponge: $DBI::errstr");

# Return the list of catalogs
  if (defined $catalog && $catalog eq "%" &&
      (!defined($schema) || $schema eq "") &&
      (!defined($table) || $table eq ""))
    @rows = (); # Empty, because MySQL doesn't support catalogs (yet)
  # Return the list of schemas
  elsif (defined $schema && $schema eq "%" &&
      (!defined($catalog) || $catalog eq "") &&
      (!defined($table) || $table eq ""))
    my $sth = $dbh->prepare("SHOW DATABASES")
      or ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
          return undef);

      or ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
        return DBI::set_err($dbh, $sth->err(), $sth->errstr()));

    while (my $ref = $sth->fetchrow_arrayref())
      push(@rows, [ undef, $ref->[0], undef, undef, undef ]);
  # Return the list of table types
  elsif (defined $type && $type eq "%" &&
      (!defined($catalog) || $catalog eq "") &&
      (!defined($schema) || $schema eq "") &&
      (!defined($table) || $table eq ""))
    @rows = (
        [ undef, undef, undef, "TABLE", undef ],
        [ undef, undef, undef, "VIEW",  undef ],
  # Special case: a catalog other than undef, "", or "%"
  elsif (defined $catalog && $catalog ne "" && $catalog ne "%")
    @rows = (); # Nothing, because MySQL doesn't support catalogs yet.
  # Uh oh, we actually have a meaty table_info call. Work is required!
    my @schemas;
    # If no table was specified, we want them all
    $table ||= "%";

    # If something was given for the schema, we need to expand it to
    # a list of schemas, since it may be a wildcard.
    if (defined $schema && $schema ne "")
      my $sth = $dbh->prepare("SHOW DATABASES LIKE " .
        or ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
        return undef);
        or ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
        return DBI::set_err($dbh, $sth->err(), $sth->errstr()));

      while (my $ref = $sth->fetchrow_arrayref())
        push @schemas, $ref->[0];
    # Otherwise we want the current database
      push @schemas, $dbh->selectrow_array("SELECT DATABASE()");

    # Figure out which table types are desired
    my ($want_tables, $want_views);
    if (defined $type && $type ne "")
      $want_tables = ($type =~ m/table/i);
      $want_views  = ($type =~ m/view/i);
      $want_tables = $want_views = 1;

    for my $database (@schemas)
      my $sth = $dbh->prepare("SHOW /*!50002 FULL*/ TABLES FROM " .
          $dbh->quote_identifier($database) .
          " LIKE " .  $dbh->quote($table))
          or ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
          return undef);

      $sth->execute() or
          ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
          return DBI::set_err($dbh, $sth->err(), $sth->errstr()));

      while (my $ref = $sth->fetchrow_arrayref())
        my $type = (defined $ref->[1] &&
            $ref->[1] =~ /view/i) ? 'VIEW' : 'TABLE';
        next if $type eq 'TABLE' && not $want_tables;
        next if $type eq 'VIEW'  && not $want_views;
        push @rows, [ undef, $database, $ref->[0], $type, undef ];

  my $sth = $sponge->prepare("table_info",
    rows          => \@rows,
    NUM_OF_FIELDS => scalar @names,
    NAME          => \@names,
    or ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
      return $dbh->DBI::set_err($sponge->err(), $sponge->errstr()));

  $dbh->{mysql_server_prepare}= $mysql_server_prepare_save;
  return $sth;

sub _ListTables {
  my $dbh = shift;
  if (!$DBD::mysql::QUIET) {
    warn "_ListTables is deprecated, use \$dbh->tables()";
  return map { $_ =~ s/.*\.//; $_ } $dbh->tables();

sub column_info {
  my ($dbh, $catalog, $schema, $table, $column) = @_;

  return unless $dbh->func('_async_check');

  $dbh->{mysql_server_prepare}||= 0;
  my $mysql_server_prepare_save= $dbh->{mysql_server_prepare};
  $dbh->{mysql_server_prepare}= 0;

  # ODBC allows a NULL to mean all columns, so we'll accept undef
  $column = '%' unless defined $column;

  my $ER_NO_SUCH_TABLE= 1146;

  my $table_id = $dbh->quote_identifier($catalog, $schema, $table);

  my @names = qw(
      mysql_is_pri_key mysql_type_name mysql_values
  my %col_info;

  local $dbh->{FetchHashKeyName} = 'NAME_lc';
  # only ignore ER_NO_SUCH_TABLE in internal_execute if issued from here
  my $desc_sth = $dbh->prepare("DESCRIBE $table_id " . $dbh->quote($column));
  my $desc = $dbh->selectall_arrayref($desc_sth, { Columns=>{} });

  #return $desc_sth if $desc_sth->err();
  if (my $err = $desc_sth->err())
    # return the error, unless it is due to the table not
    # existing per DBI spec
    if ($err != $ER_NO_SUCH_TABLE)
      $dbh->{mysql_server_prepare}= $mysql_server_prepare_save;
      return undef;
    $desc = [];

  my $ordinal_pos = 0;
  my @fields;
  for my $row (@$desc)
    my $type = $row->{type};
    $type =~ m/^(\w+)(\((.+)\))?\s?(.*)?$/;
    my $basetype  = lc($1);
    my $typemod   = $3;
    my $attr      = $4;

    push @fields, $row->{field};
    my $info = $col_info{ $row->{field} }= {
	    TABLE_CAT               => $catalog,
	    TABLE_SCHEM             => $schema,
	    TABLE_NAME              => $table,
	    COLUMN_NAME             => $row->{field},
	    NULLABLE                => ($row->{null} eq 'YES') ? 1 : 0,
	    IS_NULLABLE             => ($row->{null} eq 'YES') ? "YES" : "NO",
	    TYPE_NAME               => uc($basetype),
	    COLUMN_DEF              => $row->{default},
	    ORDINAL_POSITION        => ++$ordinal_pos,
	    mysql_is_pri_key        => ($row->{key}  eq 'PRI'),
	    mysql_type_name         => $row->{type},
      mysql_is_auto_increment => ($row->{extra} =~ /auto_increment/i ? 1 : 0),
	  # This code won't deal with a pathological case where a value
	  # contains a single quote followed by a comma, and doesn't unescape
	  # any escaped values. But who would use those in an enum or set?
	  my @type_params= ($typemod && index($typemod,"'")>=0) ?
      ("$typemod," =~ /'(.*?)',/g)  # assume all are quoted
			: split /,/, $typemod||'';      # no quotes, plain list
	  s/''/'/g for @type_params;                # undo doubling of quotes

	  my @type_attr= split / /, $attr||'';

  	$info->{DATA_TYPE}= SQL_VARCHAR();
    if ($basetype =~ /^(char|varchar|\w*text|\w*blob)/)
      $info->{DATA_TYPE}= SQL_CHAR() if $basetype eq 'char';
      if ($type_params[0])
        $info->{COLUMN_SIZE} = $type_params[0];
        $info->{COLUMN_SIZE} = 65535;
        $info->{COLUMN_SIZE} = 255        if $basetype =~ /^tiny/;
        $info->{COLUMN_SIZE} = 16777215   if $basetype =~ /^medium/;
        $info->{COLUMN_SIZE} = 4294967295 if $basetype =~ /^long/;
	  elsif ($basetype =~ /^(binary|varbinary)/)
      $info->{COLUMN_SIZE} = $type_params[0];
	    # SQL_BINARY & SQL_VARBINARY are tempting here but don't match the
	    # semantics for mysql (not hex). SQL_CHAR &  SQL_VARCHAR are correct here.
	    $info->{DATA_TYPE} = ($basetype eq 'binary') ? SQL_CHAR() : SQL_VARCHAR();
    elsif ($basetype =~ /^(enum|set)/)
	    if ($basetype eq 'set')
		    $info->{COLUMN_SIZE} = length(join ",", @type_params);
        my $max_len = 0;
        length($_) > $max_len and $max_len = length($_) for @type_params;
        $info->{COLUMN_SIZE} = $max_len;
	    $info->{"mysql_values"} = \@type_params;
    elsif ($basetype =~ /int/)
      # big/medium/small/tiny etc + unsigned?
	    $info->{DATA_TYPE} = SQL_INTEGER();
	    $info->{NUM_PREC_RADIX} = 10;
	    $info->{COLUMN_SIZE} = $type_params[0];
    elsif ($basetype =~ /^decimal/)
      $info->{DATA_TYPE} = SQL_DECIMAL();
      $info->{NUM_PREC_RADIX} = 10;
      $info->{COLUMN_SIZE}    = $type_params[0];
      $info->{DECIMAL_DIGITS} = $type_params[1];
    elsif ($basetype =~ /^(float|double)/)
	    $info->{DATA_TYPE} = ($basetype eq 'float') ? SQL_FLOAT() : SQL_DOUBLE();
	    $info->{NUM_PREC_RADIX} = 2;
	    $info->{COLUMN_SIZE} = ($basetype eq 'float') ? 32 : 64;
    elsif ($basetype =~ /date|time/)
      # date/datetime/time/timestamp
	    if ($basetype eq 'time' or $basetype eq 'date')
		    #$info->{DATA_TYPE}   = ($basetype eq 'time') ? SQL_TYPE_TIME() : SQL_TYPE_DATE();
        $info->{DATA_TYPE}   = ($basetype eq 'time') ? SQL_TIME() : SQL_DATE();
        $info->{COLUMN_SIZE} = ($basetype eq 'time') ? 8 : 10;
        # datetime/timestamp
        #$info->{DATA_TYPE}     = SQL_TYPE_TIMESTAMP();
		    $info->{DATA_TYPE}        = SQL_TIMESTAMP();
		    $info->{SQL_DATA_TYPE}    = SQL_DATETIME();
        $info->{SQL_DATETIME_SUB} = $info->{DATA_TYPE} - ($info->{SQL_DATA_TYPE} * 10);
        $info->{COLUMN_SIZE}      = ($basetype eq 'datetime') ? 19 : $type_params[0] || 14;
	    $info->{DECIMAL_DIGITS}= 0; # no fractional seconds
    elsif ($basetype eq 'year')
      # no close standard so treat as int
	    $info->{DATA_TYPE}      = SQL_INTEGER();
	    $info->{NUM_PREC_RADIX} = 10;
	    $info->{COLUMN_SIZE}    = 4;
	    Carp::carp("column_info: unrecognized column type '$basetype' of $table_id.$row->{field} treated as varchar");
    $info->{SQL_DATA_TYPE} ||= $info->{DATA_TYPE};
    #warn Dumper($info);

  my $sponge = DBI->connect("DBI:Sponge:", '','')
    or (  $dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
          return $dbh->DBI::set_err($DBI::err, "DBI::Sponge: $DBI::errstr"));

  my $sth = $sponge->prepare("column_info $table", {
      rows          => [ map { [ @{$_}{@names} ] } map { $col_info{$_} } @fields ],
      NUM_OF_FIELDS => scalar @names,
      NAME          => \@names,
      }) or
  return ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
          $dbh->DBI::set_err($sponge->err(), $sponge->errstr()));

  $dbh->{mysql_server_prepare}= $mysql_server_prepare_save;
  return $sth;

sub primary_key_info {
  my ($dbh, $catalog, $schema, $table) = @_;

  return unless $dbh->func('_async_check');

  $dbh->{mysql_server_prepare}||= 0;
  my $mysql_server_prepare_save= $dbh->{mysql_server_prepare};

  my $table_id = $dbh->quote_identifier($catalog, $schema, $table);

  my @names = qw(
  my %col_info;

  local $dbh->{FetchHashKeyName} = 'NAME_lc';
  my $desc_sth = $dbh->prepare("SHOW KEYS FROM $table_id");
  my $desc= $dbh->selectall_arrayref($desc_sth, { Columns=>{} });
  my $ordinal_pos = 0;
  for my $row (grep { $_->{key_name} eq 'PRIMARY'} @$desc)
    $col_info{ $row->{column_name} }= {
      TABLE_CAT   => $catalog,
      TABLE_SCHEM => $schema,
      TABLE_NAME  => $table,
      COLUMN_NAME => $row->{column_name},
      KEY_SEQ     => $row->{seq_in_index},
      PK_NAME     => $row->{key_name},

  my $sponge = DBI->connect("DBI:Sponge:", '','')
     ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
      return $dbh->DBI::set_err($DBI::err, "DBI::Sponge: $DBI::errstr"));

  my $sth= $sponge->prepare("primary_key_info $table", {
      rows          => [
        map { [ @{$_}{@names} ] }
        sort { $a->{KEY_SEQ} <=> $b->{KEY_SEQ} }
        values %col_info
      NUM_OF_FIELDS => scalar @names,
      NAME          => \@names,
      }) or
       ($dbh->{mysql_server_prepare}= $mysql_server_prepare_save &&
        return $dbh->DBI::set_err($sponge->err(), $sponge->errstr()));

  $dbh->{mysql_server_prepare}= $mysql_server_prepare_save;

  return $sth;

sub foreign_key_info {
    my ($dbh,
        $pk_catalog, $pk_schema, $pk_table,
        $fk_catalog, $fk_schema, $fk_table,
       ) = @_;

    return unless $dbh->func('_async_check');

    # no one is going to be running 5.0.6, taking out the check for $point > .6
    my ($maj, $min, $point) = _version($dbh);
    return if $maj < 5 ;

    my $sql = <<'EOF';

    my @where;
    my @bind;

    # catalogs are not yet supported by MySQL

#    if (defined $pk_catalog) {
#        push @where, 'A.REFERENCED_TABLE_CATALOG = ?';
#        push @bind, $pk_catalog;
#    }

    if (defined $pk_schema) {
        push @where, 'A.REFERENCED_TABLE_SCHEMA = ?';
        push @bind, $pk_schema;

    if (defined $pk_table) {
        push @where, 'A.REFERENCED_TABLE_NAME = ?';
        push @bind, $pk_table;

#    if (defined $fk_catalog) {
#        push @where, 'A.TABLE_CATALOG = ?';
#        push @bind,  $fk_schema;
#    }

    if (defined $fk_schema) {
        push @where, 'A.TABLE_SCHEMA = ?';
        push @bind,  $fk_schema;

    if (defined $fk_table) {
        push @where, 'A.TABLE_NAME = ?';
        push @bind,  $fk_table;

    if (@where) {
        $sql .= ' AND ';
        $sql .= join ' AND ', @where;

    local $dbh->{FetchHashKeyName} = 'NAME_uc';
    my $sth = $dbh->prepare($sql);

    return $sth;

sub _version {
    my $dbh = shift;

            =~ /(\d+)\.(\d+)\.(\d+)/;

# get_info()
# Generated by DBI::DBD::Metadata

sub get_info {
    my($dbh, $info_type) = @_;

    return unless $dbh->func('_async_check');
    require DBD::mysql::GetInfo;
    my $v = $DBD::mysql::GetInfo::info{int($info_type)};
    $v = $v->($dbh) if ref $v eq 'CODE';
    return $v;

    my @needs_async_check = qw/data_sources statistics_info quote_identifier begin_work/;

    foreach my $method (@needs_async_check) {
        no strict 'refs';

        my $super = "SUPER::$method";
        *$method  = sub {
            my $h = shift;
            return unless $h->func('_async_check');
            return $h->$super(@_);

package DBD::mysql::st; # ====== STATEMENT ======
use strict;

    my @needs_async_result = qw/fetchrow_hashref fetchall_hashref/;
    my @needs_async_check = qw/bind_param_array bind_col bind_columns execute_for_fetch/;

    foreach my $method (@needs_async_result) {
        no strict 'refs';

        my $super = "SUPER::$method";
        *$method = sub {
            my $sth = shift;
            if(defined $sth->mysql_async_ready) {
                return unless $sth->mysql_async_result;
            return $sth->$super(@_);

    foreach my $method (@needs_async_check) {
        no strict 'refs';

        my $super = "SUPER::$method";
        *$method = sub {
            my $h = shift;
            return unless $h->func('_async_check');
            return $h->$super(@_);




=encoding utf8

=head1 NAME

DBD::mysql - MySQL driver for the Perl5 Database Interface (DBI)


    use DBI;

    $dsn = "DBI:mysql:database=$database;host=$hostname;port=$port";

    $dbh = DBI->connect($dsn, $user, $password);

    $drh = DBI->install_driver("mysql");
    @databases = DBI->data_sources("mysql");
    @databases = DBI->data_sources("mysql",
      {"host" => $host, "port" => $port, "user" => $user, password => $pass});

    $sth = $dbh->prepare("SELECT * FROM foo WHERE bla");
    $sth = $dbh->prepare("LISTFIELDS $table");
    $sth = $dbh->prepare("LISTINDEX $table $index");
    $numRows = $sth->rows;
    $numFields = $sth->{'NUM_OF_FIELDS'};

    $rc = $drh->func('createdb', $database, $host, $user, $password, 'admin');
    $rc = $drh->func('dropdb', $database, $host, $user, $password, 'admin');
    $rc = $drh->func('shutdown', $host, $user, $password, 'admin');
    $rc = $drh->func('reload', $host, $user, $password, 'admin');

    $rc = $dbh->func('createdb', $database, 'admin');
    $rc = $dbh->func('dropdb', $database, 'admin');
    $rc = $dbh->func('shutdown', 'admin');
    $rc = $dbh->func('reload', 'admin');

=head1 EXAMPLE


  use strict;
  use DBI();

  # Connect to the database.
  my $dbh = DBI->connect("DBI:mysql:database=test;host=localhost",
                         "joe", "joe's password",
                         {'RaiseError' => 1});

  # Drop table 'foo'. This may fail, if 'foo' doesn't exist.
  # Thus we put an eval around it.
  eval { $dbh->do("DROP TABLE foo") };
  print "Dropping foo failed: $@\n" if $@;

  # Create a new table 'foo'. This must not fail, thus we don't
  # catch errors.
  $dbh->do("CREATE TABLE foo (id INTEGER, name VARCHAR(20))");

  # INSERT some data into 'foo'. We are using $dbh->quote() for
  # quoting the name.
  $dbh->do("INSERT INTO foo VALUES (1, " . $dbh->quote("Tim") . ")");

  # Same thing, but using placeholders
  $dbh->do("INSERT INTO foo VALUES (?, ?)", undef, 2, "Jochen");

  # Now retrieve data from the table.
  my $sth = $dbh->prepare("SELECT * FROM foo");
  while (my $ref = $sth->fetchrow_hashref()) {
    print "Found a row: id = $ref->{'id'}, name = $ref->{'name'}\n";

  # Disconnect from the database.


B<DBD::mysql> is the Perl5 Database Interface driver for the MySQL
database. In other words: DBD::mysql is an interface between the Perl
programming language and the MySQL programming API that comes with
the MySQL relational database management system. Most functions
provided by this programming API are supported. Some rarely used
functions are missing, mainly because no-one ever requested
them. :-)

In what follows we first discuss the use of DBD::mysql,
because this is what you will need the most. For installation, see the
below. See L<EXAMPLE> for a simple example above.

From perl you activate the interface with the statement

    use DBI;

After that you can connect to multiple MySQL database servers
and send multiple queries to any of them via a simple object oriented
interface. Two types of objects are available: database handles and
statement handles. Perl returns a database handle to the connect
method like so:

  $dbh = DBI->connect("DBI:mysql:database=$db;host=$host",
		      $user, $password, {RaiseError => 1});

Once you have connected to a database, you can execute SQL
statements with:

  my $query = sprintf("INSERT INTO foo VALUES (%d, %s)",
		      $number, $dbh->quote("name"));

See L<DBI> for details on the quote and do methods. An alternative
approach is

  $dbh->do("INSERT INTO foo VALUES (?, ?)", undef,
	   $number, $name);

in which case the quote method is executed automatically. See also
the bind_param method in L<DBI>. See L<DATABASE HANDLES> below
for more details on database handles.

If you want to retrieve results, you need to create a so-called
statement handle with:

  $sth = $dbh->prepare("SELECT * FROM $table");

This statement handle can be used for multiple things. First of all
you can retrieve a row of data:

  my $row = $sth->fetchrow_hashref();

If your table has columns ID and NAME, then $row will be hash ref with
keys ID and NAME. See L<STATEMENT HANDLES> below for more details on
statement handles.

But now for a more formal approach:

=head2 Class Methods


=item B<connect>

    use DBI;

    $dsn = "DBI:mysql:$database";
    $dsn = "DBI:mysql:database=$database;host=$hostname";
    $dsn = "DBI:mysql:database=$database;host=$hostname;port=$port";

    $dbh = DBI->connect($dsn, $user, $password);

A C<database> must always be specified.


=item host

=item port

The hostname, if not specified or specified as '' or 'localhost', will
default to a MySQL server running on the local machine using the default for
the UNIX socket. To connect to a MySQL server on the local machine via TCP,
you must specify the loopback IP address ( as the host.

Should the MySQL server be running on a non-standard port number,
you may explicitly state the port number to connect to in the C<hostname>
argument, by concatenating the I<hostname> and I<port number> together
separated by a colon ( C<:> ) character or by using the  C<port> argument.

To connect to a MySQL server on localhost using TCP/IP, you must specify the
hostname as (with the optional port).

=item mysql_client_found_rows

Enables (TRUE value) or disables (FALSE value) the flag CLIENT_FOUND_ROWS
while connecting to the MySQL server. This has a somewhat funny effect:
Without mysql_client_found_rows, if you perform a query like

  UPDATE $table SET id = 1 WHERE id = 1

then the MySQL engine will always return 0, because no rows have changed.
With mysql_client_found_rows however, it will return the number of rows
that have an id 1, as some people are expecting. (At least for compatibility
to other engines.)

=item mysql_compression

As of MySQL 3.22.3, a new feature is supported: If your DSN contains
the option "mysql_compression=1", then the communication between client
and server will be compressed.

=item mysql_connect_timeout

If your DSN contains the option "mysql_connect_timeout=##", the connect
request to the server will timeout if it has not been successful after
the given number of seconds.

=item mysql_write_timeout

If your DSN contains the option "mysql_write_timeout=##", the write
operation to the server will timeout if it has not been successful after
the given number of seconds.

=item mysql_read_timeout

If your DSN contains the option "mysql_read_timeout=##", the read
operation to the server will timeout if it has not been successful after
the given number of seconds.

=item mysql_init_command

If your DSN contains the option "mysql_init_command=##", then
this SQL statement is executed when connecting to the MySQL server.
It is automatically re-executed if reconnection occurs.

=item mysql_skip_secure_auth

This option is for older mysql databases that don't have secure auth set

=item mysql_read_default_file

=item mysql_read_default_group

These options can be used to read a config file like /etc/my.cnf or
~/.my.cnf. By default MySQL's C client library doesn't use any config
files unlike the client programs (mysql, mysqladmin, ...) that do, but
outside of the C client library. Thus you need to explicitly request
reading a config file, as in

    $dsn = "DBI:mysql:test;mysql_read_default_file=/home/joe/my.cnf";
    $dbh = DBI->connect($dsn, $user, $password)

The option mysql_read_default_group can be used to specify the default
group in the config file: Usually this is the I<client> group, but
see the following example:



(Note the order of the entries! The example won't work, if you reverse
the [client] and [perl] sections!)

If you read this config file, then you'll be typically connected to
I<localhost>. However, by using

    $dsn = "DBI:mysql:test;mysql_read_default_group=perl;"
        . "mysql_read_default_file=/home/joe/my.cnf";
    $dbh = DBI->connect($dsn, $user, $password);

you'll be connected to I<perlhost>. Note that if you specify a
default group and do not specify a file, then the default config
files will all be read.  See the documentation of
the C function mysql_options() for details.

=item mysql_socket

As of MySQL 3.21.15, it is possible to choose the Unix socket that is
used for connecting to the server. This is done, for example, with


Usually there's no need for this option, unless you are using another
location for the socket than that built into the client.

=item mysql_ssl

A true value turns on the CLIENT_SSL flag when connecting to the MySQL


This means that your communication with the server will be encrypted.

If you turn mysql_ssl on, you might also wish to use the following

=item mysql_ssl_client_key

=item mysql_ssl_client_cert

=item mysql_ssl_ca_file

=item mysql_ssl_ca_path

=item mysql_ssl_cipher

These are used to specify the respective parameters of a call
to mysql_ssl_set, if mysql_ssl is turned on.

=item mysql_local_infile

As of MySQL 3.23.49, the LOCAL capability for LOAD DATA may be disabled
in the MySQL client library by default. If your DSN contains the option
"mysql_local_infile=1", LOAD DATA LOCAL will be enabled.  (However,
this option is *ineffective* if the server has also been configured to
disallow LOCAL.)

=item mysql_multi_statements

As of MySQL 4.1, support for multiple statements separated by a semicolon
(;) may be enabled by using this option. Enabling this option may cause
problems if server-side prepared statements are also enabled.

=item Prepared statement support (server side prepare)

As of 3.0002_1, server side prepare statements were on by default (if your
server was >= 4.1.3). As of 3.0009, they were off by default again due to
issues with the prepared statement API (all other mysql connectors are
set this way until C API issues are resolved). The requirement to use
prepared statements still remains that you have a server >= 4.1.3

To use server side prepared statements, all you need to do is set the variable
mysql_server_prepare in the connect:

$dbh = DBI->connect(
                    { RaiseError => 1, AutoCommit => 1 }

* Note: delimiter for this param is ';'

There are many benefits to using server side prepare statements, mostly if you are
performing many inserts because of that fact that a single statement is prepared
to accept multiple insert values.

To make sure that the 'make test' step tests whether server prepare works, you just
need to export the env variable MYSQL_SERVER_PREPARE:


=item mysql_embedded_options

The option <mysql_embedded_options> can be used to pass 'command-line'
options to embedded server.


use DBI;
$dbh = DBI->connect($testdsn,"a","b");

This would cause the command line help to the embedded MySQL server library
to be printed.

=item mysql_embedded_groups

The option <mysql_embedded_groups> can be used to specify the groups in the
config file(I<my.cnf>) which will be used to get options for embedded server.
If not specified [server] and [embedded] groups will be used.





=head2 Private MetaData Methods


=item B<ListDBs>

    my $drh = DBI->install_driver("mysql");
    @dbs = $drh->func("$hostname:$port", '_ListDBs');
    @dbs = $drh->func($hostname, $port, '_ListDBs');
    @dbs = $dbh->func('_ListDBs');

Returns a list of all databases managed by the MySQL server
running on C<$hostname>, port C<$port>. This is a legacy
method.  Instead, you should use the portable method

    @dbs = DBI->data_sources("mysql");


=head2 Server Administration


=item admin

    $rc = $drh->func("createdb", $dbname, [host, user, password,], 'admin');
    $rc = $drh->func("dropdb", $dbname, [host, user, password,], 'admin');
    $rc = $drh->func("shutdown", [host, user, password,], 'admin');
    $rc = $drh->func("reload", [host, user, password,], 'admin');


    $rc = $dbh->func("createdb", $dbname, 'admin');
    $rc = $dbh->func("dropdb", $dbname, 'admin');
    $rc = $dbh->func("shutdown", 'admin');
    $rc = $dbh->func("reload", 'admin');

For server administration you need a server connection. For obtaining
this connection you have two options: Either use a driver handle (drh)
and supply the appropriate arguments (host, defaults localhost, user,
defaults to '' and password, defaults to ''). A driver handle can be
obtained with

    $drh = DBI->install_driver('mysql');

Otherwise reuse the existing connection of a database handle (dbh).

There's only one function available for administrative purposes, comparable
to the mysqladmin programs. The command being execute depends on the
first argument:


=item createdb

Creates the database $dbname. Equivalent to "mysqladmin create $dbname".

=item dropdb

Drops the database $dbname. Equivalent to "mysqladmin drop $dbname".

It should be noted that database deletion is
I<not prompted for> in any way.  Nor is it undo-able from DBI.

    Once you issue the dropDB() method, the database will be gone!

These method should be used at your own risk.

=item shutdown

Silently shuts down the database engine. (Without prompting!)
Equivalent to "mysqladmin shutdown".

=item reload

Reloads the servers configuration files and/or tables. This can be particularly
important if you modify access privileges or create new users.




The DBD::mysql driver supports the following attributes of database
handles (read only):

  $errno = $dbh->{'mysql_errno'};
  $error = $dbh->{'mysql_error'};
  $info = $dbh->{'mysql_hostinfo'};
  $info = $dbh->{'mysql_info'};
  $insertid = $dbh->{'mysql_insertid'};
  $info = $dbh->{'mysql_protoinfo'};
  $info = $dbh->{'mysql_serverinfo'};
  $info = $dbh->{'mysql_stat'};
  $threadId = $dbh->{'mysql_thread_id'};

These correspond to mysql_errno(), mysql_error(), mysql_get_host_info(),
mysql_info(), mysql_insert_id(), mysql_get_proto_info(),
mysql_get_server_info(), mysql_stat() and mysql_thread_id(),

 $info_hashref = $dhb->{mysql_dbd_stats}

DBD::mysql keeps track of some statistics in the mysql_dbd_stats attribute.
The following stats are being maintained:


=item auto_reconnects_ok

The number of times that DBD::mysql successfully reconnected to the mysql

=item auto_reconnects_failed

The number of times that DBD::mysql tried to reconnect to mysql but failed.


The DBD::mysql driver also supports the following attribute(s) of database
handles (read/write):

 $bool_value = $dbh->{mysql_auto_reconnect};
 $dbh->{mysql_auto_reconnect} = $AutoReconnect ? 1 : 0;


=item mysql_auto_reconnect

This attribute determines whether DBD::mysql will automatically reconnect
to mysql if the connection be lost. This feature defaults to off; however,
if either the GATEWAY_INTERFACE or MOD_PERL environment variable is set,
DBD::mysql will turn mysql_auto_reconnect on.  Setting mysql_auto_reconnect
to on is not advised if 'lock tables' is used because if DBD::mysql reconnect
to mysql all table locks will be lost.  This attribute is ignored when
AutoCommit is turned off, and when AutoCommit is turned off, DBD::mysql will
not automatically reconnect to the server.

It is also possible to set the default value of the C<mysql_auto_reconnect>
attribute for the $dbh by passing it in the C<\%attr> hash for C<DBI->connect>.

Note that if you are using a module or framework that performs reconnections
for you (for example L<DBIx::Connector> in fixup mode), this value must be set
to 0.

=item mysql_use_result

This attribute forces the driver to use mysql_use_result rather than
mysql_store_result. The former is faster and less memory consuming, but
tends to block other processes. mysql_store_result is the default due to that
fact storing the result is expected behavior with most applications.

It is possible to set the default value of the C<mysql_use_result> attribute
for the $dbh using several ways:

 - through DSN

   $dbh= DBI->connect("DBI:mysql:test;mysql_use_result=1", "root", "");

 - after creation of database handle

   $dbh->{'mysql_use_result'}=0; #disable
   $dbh->{'mysql_use_result'}=1; #enable

It is possible to set/unset the C<mysql_use_result> attribute after
creation of the statement handle. See below.

=item mysql_enable_utf8

This attribute determines whether DBD::mysql should assume strings
stored in the database are utf8.  This feature defaults to off.

When set, a data retrieved from a textual column type (char, varchar,
etc) will have the UTF-8 flag turned on if necessary.  This enables
character semantics on that string.  You will also need to ensure that
your database / table / column is configured to use UTF8.  See Chapter
10 of the mysql manual for details.

Additionally, turning on this flag tells MySQL that incoming data should
be treated as UTF-8.  This will only take effect if used as part of the
call to connect().  If you turn the flag on after connecting, you will
need to issue the command C<SET NAMES utf8> to get the same effect.

This option is experimental and may change in future versions.

=item mysql_bind_type_guessing

This attribute causes the driver (emulated prepare statements)
to attempt to guess if a value being bound is a numeric value,
and if so, doesn't quote the value.  This was created by
Dragonchild and is one way to deal with the performance issue
of using quotes in a statement that is inserting or updating a
large numeric value. This was previously called
C<unsafe_bind_type_guessing> because it is experimental. I have
successfully run the full test suite with this option turned on,
the name can now be simply C<mysql_bind_type_guessing>.

CAVEAT: Even though you can insert an integer value into a
character column, if this column is indexed, if you query that
column with the integer value not being quoted, it will not
use the index:

MariaDB [test]> explain select * from test where value0 = '3' \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: test
         type: ref
possible_keys: value0
          key: value0
      key_len: 13
          ref: const
         rows: 1
        Extra: Using index condition
1 row in set (0.00 sec)

MariaDB [test]> explain select * from test where value0 = 3
    -> \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: test
         type: ALL
possible_keys: value0
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 6
        Extra: Using where
1 row in set (0.00 sec)

See bug: https://rt.cpan.org/Ticket/Display.html?id=43822

C<mysql_bind_type_guessing> can be turned on via

 - through DSN

  my $dbh= DBI->connect('DBI:mysql:test', 'username', 'pass',
  { mysql_bind_type_guessing => 1})

  - OR after handle creation

  $dbh->{mysql_bind_type_guessing} = 1;

=item mysql_bind_comment_placeholders

This attribute causes the driver (emulated prepare statements)
will cause any placeholders in comments to be bound. This is
not correct prepared statement behavior, but some developers
have come to depend on this behavior, so I have made it available
in 4.015

=item mysql_no_autocommit_cmd

This attribute causes the driver to not issue 'set autocommit'
either through explicit or using mysql_autocommit(). This is
particularly useful in the case of using MySQL Proxy.

See the bug report:


C<mysql_no_autocommit_cmd> can be turned on via

 - through DSN

  my $dbh= DBI->connect('DBI:mysql:test', 'username', 'pass',
  { mysql_no_autocommit_cmd => 1})

  - OR after handle creation

  $dbh->{mysql_no_autocommit_cmd} = 1;



The statement handles of DBD::mysql support a number
of attributes. You access these by using, for example,

  my $numFields = $sth->{'NUM_OF_FIELDS'};

Note, that most attributes are valid only after a successful I<execute>.
An C<undef> value will returned in that case. The most important exception
is the C<mysql_use_result> attribute: This forces the driver to use
mysql_use_result rather than mysql_store_result. The former is faster
and less memory consuming, but tends to block other processes. (That's why
mysql_store_result is the default.)

To set the C<mysql_use_result> attribute, use either of the following:

  my $sth = $dbh->prepare("QUERY", { "mysql_use_result" => 1});


  my $sth = $dbh->prepare("QUERY");
  $sth->{"mysql_use_result"} = 1;

Column dependent attributes, for example I<NAME>, the column names,
are returned as a reference to an array. The array indices are
corresponding to the indices of the arrays returned by I<fetchrow>
and similar methods. For example the following code will print a
header of table names together with all rows:

  my $sth = $dbh->prepare("SELECT * FROM $table");
  if (!$sth) {
      die "Error:" . $dbh->errstr . "\n";
  if (!$sth->execute) {
      die "Error:" . $sth->errstr . "\n";
  my $names = $sth->{'NAME'};
  my $numFields = $sth->{'NUM_OF_FIELDS'} - 1;
  for my $i ( 0..$numFields ) {
      printf("%s%s", $i ? "," : "", $$names[$i]);
  print "\n";
  while (my $ref = $sth->fetchrow_arrayref) {
      for my $i ( 0..$numFields ) {
	  printf("%s%s", $i ? "," : "", $$ref[$i]);
      print "\n";

For portable applications you should restrict yourself to attributes with
capitalized or mixed case names. Lower case attribute names are private
to DBD::mysql. The attribute list includes:


=item ChopBlanks

this attribute determines whether a I<fetchrow> will chop preceding
and trailing blanks off the column values. Chopping blanks does not
have impact on the I<max_length> attribute.

=item mysql_insertid

MySQL has the ability to choose unique key values automatically. If this
happened, the new ID will be stored in this attribute. An alternative
way for accessing this attribute is via $dbh->{'mysql_insertid'}.
(Note we are using the $dbh in this case!)

=item mysql_is_blob

Reference to an array of boolean values; TRUE indicates, that the
respective column is a blob. This attribute is valid for MySQL only.

=item mysql_is_key

Reference to an array of boolean values; TRUE indicates, that the
respective column is a key. This is valid for MySQL only.

=item mysql_is_num

Reference to an array of boolean values; TRUE indicates, that the
respective column contains numeric values.

=item mysql_is_pri_key

Reference to an array of boolean values; TRUE indicates, that the
respective column is a primary key.

=item mysql_is_auto_increment

Reference to an array of boolean values; TRUE indicates that the
respective column is an AUTO_INCREMENT column.  This is only valid
for MySQL.

=item mysql_length

=item mysql_max_length

A reference to an array of maximum column sizes. The I<max_length> is
the maximum physically present in the result table, I<length> gives
the theoretically possible maximum. I<max_length> is valid for MySQL

=item mysql_clientinfo

List information of the MySQL client library that DBD::mysql was built

print "$dbh->{mysql_clientinfo}\n";


=item mysql_clientversion

print "$dbh->{mysql_clientversion}\n";


=item mysql_serverversion

print "$dbh->{mysql_serverversion}\n";


=item NAME

A reference to an array of column names.


A reference to an array of boolean values; TRUE indicates that this column
may contain NULL's.


Number of fields returned by a I<SELECT> or I<LISTFIELDS> statement.
You may use this for checking whether a statement returned a result:
A zero value indicates a non-SELECT statement like I<INSERT>,

=item mysql_table

A reference to an array of table names, useful in a I<JOIN> result.

=item TYPE

A reference to an array of column types. The engine's native column
types are mapped to portable types like DBI::SQL_INTEGER() or
DBI::SQL_VARCHAR(), as good as possible. Not all native types have
a meaningful equivalent, for example DBD::mysql::FIELD_TYPE_INTERVAL
is mapped to DBI::SQL_VARCHAR().
If you need the native column types, use I<mysql_type>. See below.

=item mysql_type

A reference to an array of MySQL's native column types, for example
Use the I<TYPE> attribute, if you want portable types like

=item mysql_type_name

Similar to mysql, but type names and not numbers are returned.
Whenever possible, the ANSI SQL name is preferred.

=item mysql_warning_count

The number of warnings generated during execution of the SQL statement.
This attribute is available on both statement handles and database handles.



Beginning with DBD::mysql 2.0416, transactions are supported.
The transaction support works as follows:


=item *

By default AutoCommit mode is on, following the DBI specifications.

=item *

If you execute

    $dbh->{'AutoCommit'} = 0;


    $dbh->{'AutoCommit'} = 1;

then the driver will set the MySQL server variable autocommit to 0 or
1, respectively. Switching from 0 to 1 will also issue a COMMIT,
following the DBI specifications.

=item *

The methods


will issue the commands COMMIT and ROLLBACK, respectively. A
ROLLBACK will also be issued if AutoCommit mode is off and the
database handles DESTROY method is called. Again, this is following
the DBI specifications.


Given the above, you should note the following:


=item *

You should never change the server variable autocommit manually,
unless you are ignoring DBI's transaction support.

=item *

Switching AutoCommit mode from on to off or vice versa may fail.
You should always check for errors, when changing AutoCommit mode.
The suggested way of doing so is using the DBI flag RaiseError.
If you don't like RaiseError, you have to use code like the

  $dbh->{'AutoCommit'} = 0;
  if ($dbh->{'AutoCommit'}) {
    # An error occurred!

=item *

If you detect an error while changing the AutoCommit mode, you
should no longer use the database handle. In other words, you
should disconnect and reconnect again, because the transaction
mode is unpredictable. Alternatively you may verify the transaction
mode by checking the value of the server variable autocommit.
However, such behaviour isn't portable.

=item *

DBD::mysql has a "reconnect" feature that handles the so-called
MySQL "morning bug": If the server has disconnected, most probably
due to a timeout, then by default the driver will reconnect and
attempt to execute the same SQL statement again. However, this
behaviour is disabled when AutoCommit is off: Otherwise the
transaction state would be completely unpredictable after a

=item *

The "reconnect" feature of DBD::mysql can be toggled by using the
L<mysql_auto_reconnect> attribute. This behaviour should be turned off
in code that uses LOCK TABLE because if the database server time out
and DBD::mysql reconnect, table locks will be lost without any
indication of such loss.



As of version 3.0002_5, DBD::mysql supports multiple result sets (Thanks
to Guy Harrison!). This is the first release of this functionality, so
there may be issues. Please report bugs if you run into them!

The basic usage of multiple result sets is

    while (@row= $sth->fetchrow_array())
      do stuff;
  } while ($sth->more_results)

An example would be:

  $dbh->do("drop procedure if exists someproc") or print $DBI::errstr;

  $dbh->do("create procedure someproc() deterministic
   declare a,b,c,d int;
   set a=1;
   set b=2;
   set c=3;
   set d=4;
   select a, b, c, d;
   select d, c, b, a;
   select b, a, c, d;
   select c, b, d, a;
  end") or print $DBI::errstr;

  $sth=$dbh->prepare('call someproc()') ||
  die $DBI::err.": ".$DBI::errstr;

  $sth->execute || die DBI::err.": ".$DBI::errstr; $rowset=0;
  do {
    print "\nRowset ".++$i."\n---------------------------------------\n\n";
    foreach $colno (0..$sth->{NUM_OF_FIELDS}-1) {
      print $sth->{NAME}->[$colno]."\t";
    print "\n";
    while (@row= $sth->fetchrow_array())  {
      foreach $field (0..$#row) {
        print $row[$field]."\t";
      print "\n";
  } until (!$sth->more_results)

For more examples, please see the eg/ directory. This is where helpful
DBD::mysql code snippets will be added in the future.

=head2 Issues with Multiple result sets

So far, the main issue is if your result sets are "jagged", meaning, the
number of columns of your results vary. Varying numbers of columns could
result in your script crashing. This is something that will be fixed soon.


The multithreading capabilities of DBD::mysql depend completely
on the underlying C libraries: The modules are working with handle data
only, no global variables are accessed or (to the best of my knowledge)
thread unsafe functions are called. Thus DBD::mysql is believed
to be completely thread safe, if the C libraries are thread safe
and you don't share handles among threads.

The obvious question is: Are the C libraries thread safe?
In the case of MySQL the answer is "mostly" and, in theory, you should
be able to get a "yes", if the C library is compiled for being thread
safe (By default it isn't.) by passing the option -with-thread-safe-client
to configure. See the section on I<How to make a threadsafe client> in
the manual.


You can make a single asynchronous query per MySQL connection; this allows
you to submit a long-running query to the server and have an event loop
inform you when it's ready.  An asynchronous query is started by either
setting the 'async' attribute to a true value in the L<DBI/do> method,
or in the L<DBI/prepare> method.  Statements created with 'async' set to
true in prepare always run their queries asynchronously when L<DBI/execute>
is called.  The driver also offers three additional methods:
C<mysql_async_result>, C<mysql_async_ready>, and C<mysql_fd>.
C<mysql_async_result> returns what do or execute would have; that is, the
number of rows affected.  C<mysql_async_ready> returns true if
C<mysql_async_result> will not block, and zero otherwise.  They both return
C<undef> if that handle is not currently running an asynchronous query.
C<mysql_fd> returns the file descriptor number for the MySQL connection; you
can use this in an event loop.

Here's an example of how to use the asynchronous query interface:

  use feature 'say';
  $dbh->do('SELECT SLEEP(10)', { async => 1 });
  until($dbh->mysql_async_ready) {
    say 'not ready yet!';
    sleep 1;
  my $rows = $dbh->mysql_async_result;


Windows users may skip this section and pass over to L<WIN32
INSTALLATION> below. Others, go on reading.

=head2 Environment Variables

For ease of use, you can now set environment variables for
DBD::mysql installation. You can set any or all of the options, and
export them by putting them in your .bashrc or the like:

    export DBD_MYSQL_CFLAGS=-I/usr/local/mysql/include/mysql
    export DBD_MYSQL_LIBS="-L/usr/local/mysql/lib/mysql -lmysqlclient"
    export DBD_MYSQL_CONFIG=mysql_config
    export DBD_MYSQL_SSL=
    export DBD_MYSQL_TESTDB=test
    export DBD_MYSQL_TESTHOST=localhost
    export DBD_MYSQL_TESTPASSWORD=s3kr1+
    export DBD_MYSQL_TESTPORT=3306
    export DBD_MYSQL_TESTUSER=me

The most useful may be the host, database, port, socket, user, and password.

Installation will first look to your mysql_config, and then your
environment variables, and then it will guess with intelligent defaults.

=head2 Installing with CPAN

First of all, you do not need an installed MySQL server for installing
DBD::mysql. However, you need at least the client
libraries and possibly the header files, if you are compiling DBD::mysql
from source. In the case of MySQL you can create a
client-only version by using the configure option --without-server.
If you are using precompiled binaries, then it may be possible to
use just selected RPM's like MySQL-client and MySQL-devel or something
similar, depending on the distribution.

I recommend trying automatic installation via the CPAN module. Try


If you are using the CPAN module for the first time, it will prompt
you a lot of questions. If you finally receive the CPAN prompt, enter

  install DBD::mysql

=head2 Manual Installation

If this fails (which may be the case for a number of reasons, for
example because you are behind a firewall or don't have network
access), you need to do a manual installation. First of all you
need to fetch the modules from CPAN


The following modules are required


Then enter the following commands (note - versions are just examples):

  gzip -cd DBI-(version).tar.gz | tar xf -
  cd DBI-(version)
  perl Makefile.PL
  make test
  make install

  cd ..
  gzip -cd DBD-mysql-(version)-tar.gz | tar xf -
  cd DBD-mysql-(version)
  perl Makefile.PL
  make test
  make install

During "perl Makefile.PL" you will be prompted some questions.
Other questions are the directories with header files and libraries.
For example, of your file F<mysql.h> is in F</usr/include/mysql/mysql.h>,
then enter the header directory F</usr>, likewise for
F</usr/lib/mysql/libmysqlclient.a> or F</usr/lib/libmysqlclient.so>.


The MariaDB native client is another option for connecting to a MySQL 
database licensed LGPL 2.1. To build DBD::mysql against this client, you
will first need to build the client. Generally, this is done with
the following:

  cd path/to/src/mariadb-native-client
  cmake -G "Unix Makefiles'
  sudo make install

Once the client is built and installed, you can build DBD::mysql against

  perl Makefile.PL --testuser=xxx --testpassword=xxx --testsocket=/path/to//mysqld.sock --mysql_config=/usr/local/bin/mariadb_config 
  make test
  make install


If you are using ActivePerl, you may use ppm to install DBD-mysql.

  ppm install DBI
  ppm install DBD::mysql

If you need an HTTP proxy, you might need to set the environment
variable http_proxy, for example like this:

  set http_proxy=http://myproxy.com:8080/

I recommend using the win32clients package for installing DBD::mysql
under Win32, available for download on www.tcx.se. The following steps
have been required for me:


=item -

Extract sources into F<C:\>. This will create a directory F<C:\mysql>
with subdirectories include and lib.

IMPORTANT: Make sure this subdirectory is not shared by other TCX
files! In particular do *not* store the MySQL server in the same
directory. If the server is already installed in F<C:\mysql>,
choose a location like F<C:\tmp>, extract the win32clients there.
Note that you can remove this directory entirely once you have
installed DBD::mysql.

=item -

Extract the DBD::mysql sources into another directory, for
example F<C:\src\siteperl>

=item -

Open a CMD.exe shell and change directory to F<C:\src\siteperl>.

=item -

The next step is only required if you repeat building the modules: Make
sure that you have a clean build tree by running

  nmake realclean

If you don't have VC++, replace nmake with your flavor of make. If
error messages are reported in this step, you may safely ignore them.

=item -


  perl Makefile.PL

which will prompt you for some settings. The really important ones are:

  Which DBMS do you want to use?

enter a 1 here (MySQL only), and

  Where is your mysql installed? Please tell me the directory that
  contains the subdir include.

where you have to enter the win32clients directory, for example
F<C:\mysql> or F<C:\tmp\mysql>.

=item -

Continued in the usual way:

  nmake install


=head1 AUTHORS

Originally, there was a non-DBI driver, Mysql, which was much like
PHP drivers such as mysql and mysqli. The B<Mysql> module was
originally written by Andreas König <koenig@kulturbox.de> who still, to this
day, contributes patches to DBD::mysql. An emulated version of Mysql was
provided to DBD::mysql from Jochen Wiedmann, but eventually deprecated as it
was another bundle of code to maintain.

The first incarnation of DBD::mysql was developed by Alligator Descartes,
who was also aided and abetted by Gary Shea, Andreas König and
Tim Bunce.

The current incarnation of B<DBD::mysql> was written by Jochen Wiedmann,
then numerous changes and bug-fixes were added by Rudy Lippan. Next,
prepared statement support was added by Patrick Galbraith and
Alexy Stroganov (who also solely added embedded server

For the past nine years DBD::mysql has been maintained by
Patrick Galbraith (I<patg@patg.net>), and recently with the great help of
Michiel Beijen (I<michiel.beijen@gmail.com>),  along with the entire community
of Perl developers who keep sending patches to help continue improving DBD::mysql 


Anyone who desires to contribute to this project is encouraged to do so.
Currently, the source code for this project can be found at Github:


Either fork this repository and produce a branch with your changeset that
the maintainer can merge to his tree, or create a diff with git. The maintainer
is more than glad to take contributions from the community as
many features and fixes from DBD::mysql have come from the community.


This module is


=item *

Large Portions Copyright (c) 2004-2013 Patrick Galbraith

=item *

Large Portions Copyright (c) 2004-2006 Alexey Stroganov

=item *

Large Portions Copyright (c) 2003-2005 Rudolf Lippan

=item *

Large Portions Copyright (c) 1997-2003 Jochen Wiedmann, with code portions

=item *

Copyright (c)1994-1997 their original authors


=head1 LICENSE

This module is released under the same license as Perl itself. See
L<http://www.perl.com/perl/misc/Artistic.html> for details.


This module is maintained and supported on a mailing list, dbi-users.

To subscribe to this list, send an email to


Mailing list archives are at



Additional information on the DBI project can be found on the World
Wide Web at the following URL:


where documentation, pointers to the mailing lists and mailing list
archives and pointers to the most current versions of the modules can
be used.

Information on the DBI interface itself can be gained by typing:

    perldoc DBI

Information on DBD::mysql specifically can be gained by typing:

    perldoc DBD::mysql

(this will display the document you're currently reading)


Please report bugs, including all the information needed
such as DBD::mysql version, MySQL version, OS type/version, etc
to this link:


Note: until recently, MySQL/Sun/Oracle responded to bugs and assisted in
fixing bugs which many thanks should be given for their help!
This driver is outside the realm of the numerous components they support, and the
maintainer and community solely support DBD::mysql