#ifndef XXHASH_H
#define XXHASH_H
#include <linux/types.h>
#define XXH_API static inline __attribute__((unused))
XXH_API uint32_t xxh32(
const
void
*input,
size_t
length, uint32_t seed);
XXH_API uint64_t xxh64(
const
void
*input,
size_t
length, uint64_t seed);
static
inline
unsigned
long
xxhash(
const
void
*input,
size_t
length,
uint64_t seed)
{
if
(
sizeof
(
size_t
) == 8)
return
xxh64(input, length, seed);
else
return
xxh32(input, length, seed);
}
struct
xxh32_state {
uint32_t total_len_32;
uint32_t large_len;
uint32_t v1;
uint32_t v2;
uint32_t v3;
uint32_t v4;
uint32_t mem32[4];
uint32_t memsize;
};
struct
xxh64_state {
uint64_t total_len;
uint64_t v1;
uint64_t v2;
uint64_t v3;
uint64_t v4;
uint64_t mem64[4];
uint32_t memsize;
};
XXH_API
void
xxh32_reset(
struct
xxh32_state *state, uint32_t seed);
XXH_API
int
xxh32_update(
struct
xxh32_state *state,
const
void
*input,
size_t
length);
XXH_API uint32_t xxh32_digest(
const
struct
xxh32_state *state);
XXH_API
void
xxh64_reset(
struct
xxh64_state *state, uint64_t seed);
XXH_API
int
xxh64_update(
struct
xxh64_state *state,
const
void
*input,
size_t
length);
XXH_API uint64_t xxh64_digest(
const
struct
xxh64_state *state);
XXH_API
void
xxh32_copy_state(
struct
xxh32_state *dst,
const
struct
xxh32_state *src);
XXH_API
void
xxh64_copy_state(
struct
xxh64_state *dst,
const
struct
xxh64_state *src);
#include <asm/unaligned.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/xxhash.h>
#define xxh_rotl32(x, r) ((x << r) | (x >> (32 - r)))
#define xxh_rotl64(x, r) ((x << r) | (x >> (64 - r)))
#ifdef __LITTLE_ENDIAN
# define XXH_CPU_LITTLE_ENDIAN 1
#else
# define XXH_CPU_LITTLE_ENDIAN 0
#endif
static
const
uint32_t PRIME32_1 = 2654435761U;
static
const
uint32_t PRIME32_2 = 2246822519U;
static
const
uint32_t PRIME32_3 = 3266489917U;
static
const
uint32_t PRIME32_4 = 668265263U;
static
const
uint32_t PRIME32_5 = 374761393U;
static
const
uint64_t PRIME64_1 = 11400714785074694791ULL;
static
const
uint64_t PRIME64_2 = 14029467366897019727ULL;
static
const
uint64_t PRIME64_3 = 1609587929392839161ULL;
static
const
uint64_t PRIME64_4 = 9650029242287828579ULL;
static
const
uint64_t PRIME64_5 = 2870177450012600261ULL;
XXH_API
void
xxh32_copy_state(
struct
xxh32_state *dst,
const
struct
xxh32_state *src)
{
__builtin_memcpy(dst, src,
sizeof
(*dst));
}
XXH_API
void
xxh64_copy_state(
struct
xxh64_state *dst,
const
struct
xxh64_state *src)
{
__builtin_memcpy(dst, src,
sizeof
(*dst));
}
static
uint32_t xxh32_round(uint32_t seed,
const
uint32_t input)
{
seed += input * PRIME32_2;
seed = xxh_rotl32(seed, 13);
seed *= PRIME32_1;
return
seed;
}
XXH_API uint32_t xxh32(
const
void
*input,
const
size_t
len,
const
uint32_t seed)
{
const
uint8_t *p = (
const
uint8_t *)input;
const
uint8_t *b_end = p + len;
uint32_t h32;
if
(len >= 16) {
const
uint8_t *
const
limit = b_end - 16;
uint32_t v1 = seed + PRIME32_1 + PRIME32_2;
uint32_t v2 = seed + PRIME32_2;
uint32_t v3 = seed + 0;
uint32_t v4 = seed - PRIME32_1;
do
{
v1 = xxh32_round(v1, get_unaligned_le32(p));
p += 4;
v2 = xxh32_round(v2, get_unaligned_le32(p));
p += 4;
v3 = xxh32_round(v3, get_unaligned_le32(p));
p += 4;
v4 = xxh32_round(v4, get_unaligned_le32(p));
p += 4;
}
while
(p <= limit);
h32 = xxh_rotl32(v1, 1) + xxh_rotl32(v2, 7) +
xxh_rotl32(v3, 12) + xxh_rotl32(v4, 18);
}
else
{
h32 = seed + PRIME32_5;
}
h32 += (uint32_t)len;
while
(p + 4 <= b_end) {
h32 += get_unaligned_le32(p) * PRIME32_3;
h32 = xxh_rotl32(h32, 17) * PRIME32_4;
p += 4;
}
while
(p < b_end) {
h32 += (*p) * PRIME32_5;
h32 = xxh_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return
h32;
}
static
uint64_t xxh64_round(uint64_t acc,
const
uint64_t input)
{
acc += input * PRIME64_2;
acc = xxh_rotl64(acc, 31);
acc *= PRIME64_1;
return
acc;
}
static
uint64_t xxh64_merge_round(uint64_t acc, uint64_t val)
{
val = xxh64_round(0, val);
acc ^= val;
acc = acc * PRIME64_1 + PRIME64_4;
return
acc;
}
XXH_API uint64_t xxh64(
const
void
*input,
const
size_t
len,
const
uint64_t seed)
{
const
uint8_t *p = (
const
uint8_t *)input;
const
uint8_t *
const
b_end = p + len;
uint64_t h64;
if
(len >= 32) {
const
uint8_t *
const
limit = b_end - 32;
uint64_t v1 = seed + PRIME64_1 + PRIME64_2;
uint64_t v2 = seed + PRIME64_2;
uint64_t v3 = seed + 0;
uint64_t v4 = seed - PRIME64_1;
do
{
v1 = xxh64_round(v1, get_unaligned_le64(p));
p += 8;
v2 = xxh64_round(v2, get_unaligned_le64(p));
p += 8;
v3 = xxh64_round(v3, get_unaligned_le64(p));
p += 8;
v4 = xxh64_round(v4, get_unaligned_le64(p));
p += 8;
}
while
(p <= limit);
h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
h64 = xxh64_merge_round(h64, v1);
h64 = xxh64_merge_round(h64, v2);
h64 = xxh64_merge_round(h64, v3);
h64 = xxh64_merge_round(h64, v4);
}
else
{
h64 = seed + PRIME64_5;
}
h64 += (uint64_t)len;
while
(p + 8 <= b_end) {
const
uint64_t k1 = xxh64_round(0, get_unaligned_le64(p));
h64 ^= k1;
h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
p += 8;
}
if
(p + 4 <= b_end) {
h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1;
h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p += 4;
}
while
(p < b_end) {
h64 ^= (*p) * PRIME64_5;
h64 = xxh_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return
h64;
}
XXH_API
void
xxh32_reset(
struct
xxh32_state *statePtr,
const
uint32_t seed)
{
struct
xxh32_state state;
__builtin_memset(&state, 0,
sizeof
(state));
state.v1 = seed + PRIME32_1 + PRIME32_2;
state.v2 = seed + PRIME32_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME32_1;
__builtin_memcpy(statePtr, &state,
sizeof
(state));
}
XXH_API
void
xxh64_reset(
struct
xxh64_state *statePtr,
const
uint64_t seed)
{
struct
xxh64_state state;
__builtin_memset(&state, 0,
sizeof
(state));
state.v1 = seed + PRIME64_1 + PRIME64_2;
state.v2 = seed + PRIME64_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME64_1;
__builtin_memcpy(statePtr, &state,
sizeof
(state));
}
XXH_API
int
xxh32_update(
struct
xxh32_state *state,
const
void
*input,
const
size_t
len)
{
const
uint8_t *p = (
const
uint8_t *)input;
const
uint8_t *
const
b_end = p + len;
if
(input == NULL)
return
-EINVAL;
state->total_len_32 += (uint32_t)len;
state->large_len |= (len >= 16) | (state->total_len_32 >= 16);
if
(state->memsize + len < 16) {
__builtin_memcpy((uint8_t *)(state->mem32) + state->memsize, input, len);
state->memsize += (uint32_t)len;
return
0;
}
if
(state->memsize) {
const
uint32_t *p32 = state->mem32;
__builtin_memcpy((uint8_t *)(state->mem32) + state->memsize, input,
16 - state->memsize);
state->v1 = xxh32_round(state->v1, get_unaligned_le32(p32));
p32++;
state->v2 = xxh32_round(state->v2, get_unaligned_le32(p32));
p32++;
state->v3 = xxh32_round(state->v3, get_unaligned_le32(p32));
p32++;
state->v4 = xxh32_round(state->v4, get_unaligned_le32(p32));
p32++;
p += 16-state->memsize;
state->memsize = 0;
}
if
(p <= b_end - 16) {
const
uint8_t *
const
limit = b_end - 16;
uint32_t v1 = state->v1;
uint32_t v2 = state->v2;
uint32_t v3 = state->v3;
uint32_t v4 = state->v4;
do
{
v1 = xxh32_round(v1, get_unaligned_le32(p));
p += 4;
v2 = xxh32_round(v2, get_unaligned_le32(p));
p += 4;
v3 = xxh32_round(v3, get_unaligned_le32(p));
p += 4;
v4 = xxh32_round(v4, get_unaligned_le32(p));
p += 4;
}
while
(p <= limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if
(p < b_end) {
__builtin_memcpy(state->mem32, p, (
size_t
)(b_end-p));
state->memsize = (uint32_t)(b_end-p);
}
return
0;
}
XXH_API uint32_t xxh32_digest(
const
struct
xxh32_state *state)
{
const
uint8_t *p = (
const
uint8_t *)state->mem32;
const
uint8_t *
const
b_end = (
const
uint8_t *)(state->mem32) +
state->memsize;
uint32_t h32;
if
(state->large_len) {
h32 = xxh_rotl32(state->v1, 1) + xxh_rotl32(state->v2, 7) +
xxh_rotl32(state->v3, 12) + xxh_rotl32(state->v4, 18);
}
else
{
h32 = state->v3
+ PRIME32_5;
}
h32 += state->total_len_32;
while
(p + 4 <= b_end) {
h32 += get_unaligned_le32(p) * PRIME32_3;
h32 = xxh_rotl32(h32, 17) * PRIME32_4;
p += 4;
}
while
(p < b_end) {
h32 += (*p) * PRIME32_5;
h32 = xxh_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return
h32;
}
XXH_API
int
xxh64_update(
struct
xxh64_state *state,
const
void
*input,
const
size_t
len)
{
const
uint8_t *p = (
const
uint8_t *)input;
const
uint8_t *
const
b_end = p + len;
if
(input == NULL)
return
-EINVAL;
state->total_len += len;
if
(state->memsize + len < 32) {
__builtin_memcpy(((uint8_t *)state->mem64) + state->memsize, input, len);
state->memsize += (uint32_t)len;
return
0;
}
if
(state->memsize) {
uint64_t *p64 = state->mem64;
__builtin_memcpy(((uint8_t *)p64) + state->memsize, input,
32 - state->memsize);
state->v1 = xxh64_round(state->v1, get_unaligned_le64(p64));
p64++;
state->v2 = xxh64_round(state->v2, get_unaligned_le64(p64));
p64++;
state->v3 = xxh64_round(state->v3, get_unaligned_le64(p64));
p64++;
state->v4 = xxh64_round(state->v4, get_unaligned_le64(p64));
p += 32 - state->memsize;
state->memsize = 0;
}
if
(p + 32 <= b_end) {
const
uint8_t *
const
limit = b_end - 32;
uint64_t v1 = state->v1;
uint64_t v2 = state->v2;
uint64_t v3 = state->v3;
uint64_t v4 = state->v4;
do
{
v1 = xxh64_round(v1, get_unaligned_le64(p));
p += 8;
v2 = xxh64_round(v2, get_unaligned_le64(p));
p += 8;
v3 = xxh64_round(v3, get_unaligned_le64(p));
p += 8;
v4 = xxh64_round(v4, get_unaligned_le64(p));
p += 8;
}
while
(p <= limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if
(p < b_end) {
__builtin_memcpy(state->mem64, p, (
size_t
)(b_end-p));
state->memsize = (uint32_t)(b_end - p);
}
return
0;
}
XXH_API uint64_t xxh64_digest(
const
struct
xxh64_state *state)
{
const
uint8_t *p = (
const
uint8_t *)state->mem64;
const
uint8_t *
const
b_end = (
const
uint8_t *)state->mem64 +
state->memsize;
uint64_t h64;
if
(state->total_len >= 32) {
const
uint64_t v1 = state->v1;
const
uint64_t v2 = state->v2;
const
uint64_t v3 = state->v3;
const
uint64_t v4 = state->v4;
h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
h64 = xxh64_merge_round(h64, v1);
h64 = xxh64_merge_round(h64, v2);
h64 = xxh64_merge_round(h64, v3);
h64 = xxh64_merge_round(h64, v4);
}
else
{
h64 = state->v3 + PRIME64_5;
}
h64 += (uint64_t)state->total_len;
while
(p + 8 <= b_end) {
const
uint64_t k1 = xxh64_round(0, get_unaligned_le64(p));
h64 ^= k1;
h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
p += 8;
}
if
(p + 4 <= b_end) {
h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1;
h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p += 4;
}
while
(p < b_end) {
h64 ^= (*p) * PRIME64_5;
h64 = xxh_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return
h64;
}
#endif /* XXHASH_H */