/*
 * This file was generated automatically by xsubpp version 1.9508 from the
 * contents of XS.xs. Do not edit this file, edit XS.xs instead.
 *
 *    ANY CHANGES MADE HERE WILL BE LOST!
 *
 */

#line 1 "XS.xs"
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#include <math.h>

#define PI      3.1415926535897932384626433832795

/*
 * Polynomial constants
 */
#define K1   .99435487
#define K2   .00336523
#define K3  -.00065596
#define K4   .00005606
#define K5  -.00000188

/*
 * spherical coordinates of eastern reference point
 * EX^2 + EY^2 + EZ^2 = 1
 */
#define EX   .40426992
#define EY   .68210848
#define EZ   .60933887

/* spherical coordinates of western reference point
 * WX^2 + WY^2 + WZ^2 = 1
 */
#define WX   .65517646
#define WY   .37733790
#define WZ   .65449210

/*
 * spherical coordinates of V-H coordinate system
 * PX^2 + PY^2 + PZ^2 = 1
 */
#define PX  -0.555977821730048699
#define PY  -0.345728488161089920
#define PZ   0.755883902605524030

/*
 * Rotation by 76.597497064 degrees
 * We use the cosine ROTC and sin ROTS values
 */
#define ROTC  0.2317903984757393
#define ROTS  0.9727657534959061

/*
 * orthogonal translation values
 */
#define TRANSV  6363.235
#define TRANSH  2250.700

/*
 * radius of earth in sqrt(0.1)-mile units, minus 0.3 percent
 */
#define RADIUS  12481.103


double radians (double degrees) {
    return degrees*PI/180.0;
}

double degrees (double radians) {
    return radians*180.0/PI;
}

/*
 * Return the distance in miles between 2 VH pairs.
 */
double distance(double v1, double h1, double v2, double h2) {
    double dv = v2 - v1;
    double dh = h2 - h1;
    return sqrt((dv*dv + dh*dh)/10.0);
}

/**
 * Computes Bellcore/AT&T V & H (vertical and horizontal)
 * coordinates from latitude and longitude.  Used primarily by
 * local exchange carriers (LEC's) to compute the V & H coordinates
 * for wire centers.
 *
 * This is an implementation of the Donald Elliptical Projection,
 * a Two-Point Equidistant projection developed by Jay K. Donald
 * of AT&T in 1956 to establish long-distance telephone rates.
 * (ref: "V-H Coordinate Rediscovered", Eric K. Grimmelmann, Bell
 * Labs Tech. Memo, 9/80.  (References Jay Donald notes of Jan 17, 1957.))
 * Ashok Ingle of Bellcore also wrote an internal memo on the subject.
 *
 * The projection is specially modified for the ellipsoid and
 * is confined to the United States and southern Canada.
 *
 * Derived from a program obtained from an anonymous author
 * within Bellcore by way of the National Exchange Carrier
 * Association.  Cleaned up and improved a bit by
 * Tom Libert (tom@comsol.com, libert@citi.umich.edu).
 */


/** lat and lon are in degrees, positive north and east. */
void toVH(double lat, double lon) {

    double lon1,latsq,lat1,cos_lat1,x,y,z,e,w,ht,vt,v,h;
    dXSARGS;
    sp = mark;

    lat = radians(lat);
    lon = radians(lon);

    /* Translate east by 52 degrees */
    lon1 = lon + radians(52.0);

    /* Convert latitude to geocentric latitude using Horner's rule */
    latsq = lat*lat;
    lat1 = lat*(K1 + (K2 + (K3 + (K4 + K5*latsq)*latsq)*latsq)*latsq);

    /* x, y, and z are the spherical coordinates corresponding to lat, lon. */
    cos_lat1 = cos(lat1);
    x = cos_lat1*sin(-lon1);
    y = cos_lat1*cos(-lon1);
    z = sin(lat1);

    /* e and w are the cosine of the angular distance (radians) between
     * our point and the east and west centers.
     */
    e = EX*x + EY*y + EZ*z;
    w = WX*x + WY*y + WZ*z;
    e = e > 1.0 ? 1.0 : e;
    w = w > 1.0 ? 1.0 : w;
    e = (PI/2.0) - atan(e/sqrt(1 - e*e));
    w = (PI/2.0) - atan(w/sqrt(1 - w*w));

    /* e and w are now in radians. */
    ht = (e*e - w*w + .16)/.8;
    vt = sqrt(fabs(e*e - ht*ht));
    vt = (PX*x + PY*y + PZ*z) < 0 ? -vt : vt;

    /* rotate and translate to get final v and h. */
    v = TRANSV +  RADIUS*ROTC*ht - RADIUS*ROTS*vt;
    h = TRANSH + RADIUS*ROTS*ht +  RADIUS*ROTC*vt;

    XPUSHs(sv_2mortal(newSVnv(v)));
    XPUSHs(sv_2mortal(newSVnv(h)));
    PUTBACK;

}

/**
 *      V&H is a system of coordinates (V and H) for describing
 *      locations of rate centers in the United States.  The
 *      projection, devised by J. K. Donald, is an "elliptical,"
 *      or "doubly equidistant" projection, scaled down by a factor
 *      of 0.003 to balance errors.
 *
 *      The foci of the projection, from which distances are
 *      measured accurately (except for the scale correction),
 *      are at 37d 42m 14.69s N, 82d 39m 15.27s W (in Floyd Co.,
 *      Ky.) and 41d 02m 55.53s N, 112d 03m 39.35 W (in Webster
 *      Co., Utah).  They are just 0.4 radians apart.
 *
 *      Here is the transformation from latitude and longitude to V&H:
 *      First project the earth from its ellipsoidal surface
 *      to a sphere.  This alters the latitude; the coefficients
 *      bi in the program are the coefficients of the polynomial
 *      approximation for the inverse transformation.  (The
 *      function is odd, so the coefficients are for the linear
 *      term, the cubic term, and so on.)  Also subtract 52 degrees
 *      from the longitude.
 *
 *      For the rest, compute the arc distances of the given point
 *      to the reference points, and transform them to the coordinate
 *      system in which the line through the reference points is the
 *      X-axis and the origin is the eastern reference point.
 *      The solution is
 *              h = (square of distance to E - square of distance to W
 *                      + square of distance between E and W) /
 *                      twice distance between E and W;
 *              v = square root of absolute value of (square of
 *                      distance to E - square of h).
 *      Reduce by three-tenths of a percent, rotate by 76.597497
 *      degrees, and add 6363.235 to V and 2250.7 to H.
 *
 *      To go the other way, as this program does, undo the final translation,
 *      rotation, and scaling.  The z-value Pz of the point on the x-y-z sphere
 *      satisfies the quadratic Azz+Bz+c=0, where
 *              A = (ExWz-EzWx)^2 + (EyWzx-EzWy)^2 + (ExWy-EyWx)^2;
 *              B = -2[(Ex cos(arc to W) - Wx cos(arc to E))(ExWz-EzWx) -
 *                      (Ey cos(arc to W) -Wy cos(arc to E))(EyWz-EzWy)];
 *              C = (Ex cos(arc to W) - Wx cos(arc to E))^2 +
 *                      (Ey cos(arc to W) - Wy cos(arc to E))^2 -
 *                      (ExWy - EyWx)^2.
 *      Solve with the quadratic formula.  The latitude is simply the
 *      arc sine of Pz.  Px and Py satisfy
 *              ExPx + EyPy + EzPz = cos(arc to E);
 *              WxPx + WyPy + WzPz = cos(arc to W).
 *      Substitute Pz's value, and solve linearly to get Px and Py.
 *      The longitude is the arc tangent of Px/Py.
 *      Finally, this latitude and longitude are spherical; use the
 *      inverse polynomial approximation on the latitude to get the
 *      ellipsoidal earth latitude, and add 52 degrees to the longitude.
 */

void toLatLon (double v, double h) {

    double GX,GY,A,Q,Q2,EPSILON,t1,t2,vhat,hhat,e,w,fx,fy,b,c,disc,x,y,z;
    double delta,lat,lat2,earthlat,lon,earthlon;
    /*
     *  Use polynomial approximation for inverse mapping (sphere to spheroid)
     */
    double bi[] = {
        1.00567724920722457,
        -0.00344230425560210245,
        0.000713971534527667990,
        -0.0000777240053499279217,
        0.00000673180367053244284,
        -0.000000742595338885741395,
        0.0000000905058919926194134
    };
    dXSARGS;
    sp = mark;

    /* GX = ExWz - EzWx; GY = EyWz - EzWy */
    GX =  0.216507961908834992;
    GY = -0.134633014879368199;
    /* A = (ExWz-EzWx)^2 + (EyWz-EzWy)^2 + (ExWy-EyWx)^2 */
    A =   0.151646645621077297;
    /* Q = ExWy-EyWx; Q2 = Q*Q */
    Q =  -0.294355056616412800;
    Q2=   0.0866448993556515751;
    EPSILON = .0000001;

    t1 = (v - TRANSV) / RADIUS;
    t2 = (h - TRANSH) / RADIUS;
    vhat = ROTC*t2 - ROTS*t1;
    hhat = ROTS*t2 + ROTC*t1;
    e = cos(sqrt(vhat*vhat + hhat*hhat));
    w = cos(sqrt(vhat*vhat + (hhat-0.4)*(hhat-0.4)));
    fx = EY*w - WY*e;
    fy = EX*w - WX*e;
    b = fx*GX + fy*GY;
    c = fx*fx + fy*fy - Q2;
    disc = b*b - A*c;               /* discriminant */
    x, y, z, delta;
    if (fabs(disc) < EPSILON) {
        z = b/A;
        x = (GX*z - fx)/Q;
        y = (fy - GY*z)/Q;
    } else {
        delta = sqrt(disc);
        z = (b + delta)/A;
        x = (GX*z - fx)/Q;
        y = (fy - GY*z)/Q;
        if (vhat * (PX*x + PY*y + PZ*z) < 0) {  /* wrong direction */
            z = (b - delta)/A;
            x = (GX*z - fx)/Q;
        y = (fy - GY*z)/Q;
        }
    }
    lat = asin(z);
    lat2 = lat*lat;
    earthlat = lat*(bi[0] + lat2*(bi[1] + lat2*(bi[2] + lat2*(bi[3] + \
               lat2*(bi[4] + lat2*(bi[5] + lat2*(bi[6])))))));
    earthlat = degrees(earthlat);

    /* Adjust longitude by 52 degrees */
    lon = degrees(atan2(x, y));
    earthlon = lon + 52.0;

    XPUSHs(sv_2mortal(newSVnv(earthlat)));
    XPUSHs(sv_2mortal(newSVnv(earthlon)));
    PUTBACK;
}


#line 284 "XS.c"
XS(XS_Geo__Coordinates__VandH__XS_radians)
{
    dXSARGS;
    if (items != 1)
    Perl_croak(aTHX_ "Usage: Geo::Coordinates::VandH::XS::radians(degrees)");
    {
    double    degrees = (double)SvNV(ST(0));
    double    RETVAL;
    dXSTARG;

    RETVAL = radians(degrees);
    XSprePUSH; PUSHn((double)RETVAL);
    }
    XSRETURN(1);
}

XS(XS_Geo__Coordinates__VandH__XS_degrees)
{
    dXSARGS;
    if (items != 1)
    Perl_croak(aTHX_ "Usage: Geo::Coordinates::VandH::XS::degrees(radians)");
    {
    double    radians = (double)SvNV(ST(0));
    double    RETVAL;
    dXSTARG;

    RETVAL = degrees(radians);
    XSprePUSH; PUSHn((double)RETVAL);
    }
    XSRETURN(1);
}

XS(XS_Geo__Coordinates__VandH__XS_distance)
{
    dXSARGS;
    if (items != 4)
    Perl_croak(aTHX_ "Usage: Geo::Coordinates::VandH::XS::distance(v1, h1, v2, h2)");
    {
    double    v1 = (double)SvNV(ST(0));
    double    h1 = (double)SvNV(ST(1));
    double    v2 = (double)SvNV(ST(2));
    double    h2 = (double)SvNV(ST(3));
    double    RETVAL;
    dXSTARG;

    RETVAL = distance(v1, h1, v2, h2);
    XSprePUSH; PUSHn((double)RETVAL);
    }
    XSRETURN(1);
}

XS(XS_Geo__Coordinates__VandH__XS_toVH)
{
    dXSARGS;
    if (items != 2)
    Perl_croak(aTHX_ "Usage: Geo::Coordinates::VandH::XS::toVH(lat, lon)");
    SP -= items;
    {
    double    lat = (double)SvNV(ST(0));
    double    lon = (double)SvNV(ST(1));
#line 298 "XS.xs"
    I32* temp;
#line 347 "XS.c"
#line 300 "XS.xs"
    temp = PL_markstack_ptr++;
    toVH(lat, lon);
    if (PL_markstack_ptr != temp) {
      /* truly void, because dXSARGS not invoked */
      PL_markstack_ptr = temp;
      XSRETURN_EMPTY; /* return empty stack */
    }
    /* must have used dXSARGS; list context implied */
    return; /* assume stack size is correct */
#line 358 "XS.c"
    PUTBACK;
    return;
    }
}

XS(XS_Geo__Coordinates__VandH__XS_toLatLon)
{
    dXSARGS;
    if (items != 2)
    Perl_croak(aTHX_ "Usage: Geo::Coordinates::VandH::XS::toLatLon(v, h)");
    SP -= items;
    {
    double    v = (double)SvNV(ST(0));
    double    h = (double)SvNV(ST(1));
#line 315 "XS.xs"
    I32* temp;
#line 375 "XS.c"
#line 317 "XS.xs"
    temp = PL_markstack_ptr++;
    toLatLon(v, h);
    if (PL_markstack_ptr != temp) {
      /* truly void, because dXSARGS not invoked */
      PL_markstack_ptr = temp;
      XSRETURN_EMPTY; /* return empty stack */
    }
    /* must have used dXSARGS; list context implied */
    return; /* assume stack size is correct */
#line 386 "XS.c"
    PUTBACK;
    return;
    }
}

#ifdef __cplusplus
extern "C"
#endif
XS(boot_Geo__Coordinates__VandH__XS)
{
    dXSARGS;
    char* file = __FILE__;

    XS_VERSION_BOOTCHECK ;

        newXS("Geo::Coordinates::VandH::XS::radians", XS_Geo__Coordinates__VandH__XS_radians, file);
        newXS("Geo::Coordinates::VandH::XS::degrees", XS_Geo__Coordinates__VandH__XS_degrees, file);
        newXS("Geo::Coordinates::VandH::XS::distance", XS_Geo__Coordinates__VandH__XS_distance, file);
        newXS("Geo::Coordinates::VandH::XS::toVH", XS_Geo__Coordinates__VandH__XS_toVH, file);
        newXS("Geo::Coordinates::VandH::XS::toLatLon", XS_Geo__Coordinates__VandH__XS_toLatLon, file);
    XSRETURN_YES;
}