#================================================================================================= # Perl API of Curia, the extended API of QDBM # Copyright (C) 2000-2004 Mikio Hirabayashi # This file is part of QDBM, Quick Database Manager. # QDBM is free software; you can redistribute it and/or modify it under the terms of the GNU # Lesser General Public License as published by the Free Software Foundation; either version # 2.1 of the License or any later version. QDBM is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # You should have received a copy of the GNU Lesser General Public License along with QDBM; if # not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA # 02111-1307 USA. #================================================================================================= package Curia; use strict; use warnings; require Tie::Hash; require Exporter; require DynaLoader; our @ISA = qw(Tie::Hash Exporter DynaLoader); our $VERSION = '1.0'; bootstrap Curia $VERSION; use constant TRUE => 1; # boolean true use constant FALSE => 0; # boolean false use constant OREADER => 1 << 0; # open as a reader use constant OWRITER => 1 << 1; # open as a writer use constant OCREAT => 1 << 2; # a writer creating use constant OTRUNC => 1 << 3; # a writer truncating use constant ONOLCK => 1 << 4; # open without locking use constant DOVER => 0; # overwrite an existing value use constant DKEEP => 1; # keep an existing value use constant DCAT => 2; # concatenate values my(%handles) = (); # table of database names our($errmsg) = "no error"; # message of the last error #================================================================================================= # public objects #================================================================================================= ## # use Curia; # Module `Curia' should be included in application codes. # An instance of the class `Curia' is used as a database handle. # ## # $Curia::errmsg; # Global Variable: The message of the last happened error. # ## # $curia = new Curia($name, $omode, $bnum, $dnum); # Constructor: Get the database handle. # `$name' specifies the name of a database directory. # `$omode' specifies the connection mode: `Curia::OWRITER' as a writer, `Curia::OREADER' as a # reader. If the mode is `Curia::OWRITER', the following may be added by bitwise or: # `Curia::OCREAT', which means it creates a new database if not exist, `Curia::OTRUNC', which # means it creates a new database regardless if one exists. Both of `Curia::OREADER' and # `Curia::OWRITER' can be added to by bitwise or: `Curia::ONOLCK', which means it opens a # database directory without file locking. If it is undef, `Curia::OREADER' is specified. # `$bnum' specifies the number of elements of the bucket array. If it is undef or not more # than 0, the default value is specified. The size of a bucket array is determined on creating, # and can not be changed except for by optimization of the database. Suggested size of a # bucket array is about from 0.5 to 4 times of the number of all records to store. # `$dnum' specifies the number of division of the database. If it is undef or not more than 0, # the default value is specified. The number of division can not be changed from the initial # value. The max number of division is 512. # The return value is the database handle or undef if it is not successful. # While connecting as a writer, an exclusive lock is invoked to the database directory. # While connecting as a reader, a shared lock is invoked to the database directory. The thread # blocks until the lock is achieved. If `Curia::ONOLCK' is used, the application is responsible # for exclusion control. # sub new { my($class) = shift; my($name) = shift; my($omode) = shift; my($bnum) = shift; my($dnum) = shift; (defined($name) && length($name) > 0 && scalar(@_) == 0) || return undef(); (!$handles{$name}) || return undef(); (defined($omode)) || ($omode = OREADER); (defined($bnum)) || ($bnum = -1); (defined($dnum)) || ($dnum = -1); my($curia) = plcropen($name, $omode, $bnum, $dnum); $errmsg = plcrerrmsg(); ($curia > 0) || return undef(); $handles{$name} = $curia; my $self = [$name, TRUE, undef(), undef(), undef(), undef()]; bless($self, $class); return $self; } ## # $bool = $curia->close(); # Method: Close the database handle. # If successful, the return value is true, else, it is false. # Because the region of a closed handle is released, it becomes impossible to use the handle. # Updating a database is assured to be written when the handle is closed. If a writer opens # a database but does not close it appropriately, the database will be broken. # sub close { my($self) = shift; ($$self[1]) || return FALSE; (scalar(@_) == 0) || return FALSE; $$self[1] = FALSE; my($curia) = $handles{$$self[0]}; my($rv) = plcrclose($curia); $errmsg = plcrerrmsg(); delete($handles{$$self[0]}); return $rv; } ## # $bool = $curia->put($key, $val, $dmode); # Method: Store a record. # `$key' specifies a key. If it is undef, this method has no effect. # `$val' specifies a value. If it is undef, this method has no effect. # `$dmode' specifies behavior when the key overlaps, by the following values: `Curia::DOVER', # which means the specified value overwrites the existing one, `Curia::DKEEP', which means the # existing value is kept, `Curia::DCAT', which means the specified value is concatenated at # the end of the existing value. If it is undef, `Curia::DOVER' is specified. # If successful, the return value is true, else, it is false. # sub put { my($self) = shift; ($$self[1]) || return FALSE; my($key) = shift; my($val) = shift; my($dmode) = shift; (scalar(@_) == 0) || return FALSE; (defined($key) && defined($val)) || return FALSE; (defined($dmode)) || ($dmode = DOVER); my($curia) = $handles{$$self[0]}; if($$self[2]){ local($_) = $key; $$self[2](); $key = $_; } if($$self[3]){ local($_) = $val; $$self[3](); $val = $_; } my($rv) = plcrput($curia, $key, length($key), $val, length($val), $dmode); $errmsg = plcrerrmsg(); return $rv; } ## # $bool = $curia->out($key); # Method: Delete a record. # `$key' specifies a key. If it is undef, this method has no effect. # If successful, the return value is true, else, it is false. False is returned when no # record corresponds to the specified key. # sub out { my($self) = shift; ($$self[1]) || return FALSE; my($key) = shift; (scalar(@_) == 0) || return FALSE; (defined($key)) || return FALSE; my($curia) = $handles{$$self[0]}; if($$self[2]){ local($_) = $key; $$self[2](); $key = $_; } my($rv) = plcrout($curia, $key, length($key)); $errmsg = plcrerrmsg(); return $rv; } ## # $str = $curia->get($key, $start, $max); # Method: Retrieve a record. # `$key' specifies a key. If it is undef, this method has no effect. # `$start' specifies the offset address of the beginning of the region of the value to be read. # If it is negative or undef, the offset is specified as 0. # `$max' specifies the max size to be read. If it is negative or undef, the size to read is # unlimited. # If successful, the return value is a scalar of the value of the corresponding record, else, it # is undef. undef is returned when no record corresponds to the specified key or the size of # the value of the corresponding record is less than `$start'. # sub get { my($self) = shift; ($$self[1]) || return undef(); my($key) = shift; my($start) = shift; my($max) = shift; (scalar(@_) == 0) || return undef(); (defined($key)) || return undef(); (defined($start) && $start >= 0) || ($start = 0); (defined($max) && $start >= 0) || ($max = -1); my($curia) = $handles{$$self[0]}; if($$self[2]){ local($_) = $key; $$self[2](); $key = $_; } my($rv) = plcrget($curia, $key, length($key), $start, $max); $errmsg = plcrerrmsg(); if($rv && $$self[5]){ local($_) = $rv; $$self[5](); $rv = $_; } return $rv; } ## # $num = $curia->vsiz($key); # Method: Get the size of the value of a record. # `$key' specifies a key. If it is undef, this method has no effect. # If successful, the return value is the size of the value of the corresponding record, else, # it is -1. # Because this method does not read the entity of a record, it is faster than `get'. # sub vsiz { my($self) = shift; ($$self[1]) || return -1; my($key) = shift; (scalar(@_) == 0) || return -1; (defined($key)) || return -1; my($curia) = $handles{$$self[0]}; if($$self[2]){ local($_) = $key; $$self[2](); $key = $_; } my($rv) = plcrvsiz($curia, $key, length($key)); $errmsg = plcrerrmsg(); return $rv; } ## # $bool = $curia->iterinit(); # Method: Initialize the iterator of the database handle. # If successful, the return value is true, else, it is false. # The iterator is used in order to access the key of every record stored in a database. # sub iterinit { my($self) = shift; ($$self[1]) || return FALSE; (scalar(@_) == 0) || return FALSE; my($curia) = $handles{$$self[0]}; my($rv) = plcriterinit($curia); $errmsg = plcrerrmsg(); return $rv; } ## # $str = $curia->iternext(); # Method: Get the next key of the iterator. # If successful, the return value is a scalar of the value of the next key, else, it is undef. # undef is returned when no record is to be get out of the iterator. # It is possible to access every record by iteration of calling this method. However, it is # not assured if updating the database is occurred while the iteration. Besides, the order of # this traversal access method is arbitrary, so it is not assured that the order of storing # matches the one of the traversal access. # sub iternext { my($self) = shift; ($$self[1]) || return undef(); (scalar(@_) == 0) || return undef(); my($curia) = $handles{$$self[0]}; my($rv) = plcriternext($curia); $errmsg = plcrerrmsg(); if($rv && $$self[4]){ local($_) = $rv; $$self[4](); $rv = $_; } return $rv; } ## # $bool = $curia->setalign($align); # Method: Set alignment of the database handle. # `$align' specifies the basic size of alignment. If it is undef, alignment is cleared. # If successful, the return value is true, else, it is false. # If alignment is set to a database, the efficiency of overwriting values are improved. # The size of alignment is suggested to be average size of the values of the records to be # stored. If alignment is positive, padding whose size is multiple number of the alignment # is placed. If alignment is negative, as `vsiz' is the size of a value, the size of padding # is calculated with `(vsiz / pow(2, abs(align) - 1))'. Because alignment setting is not # saved in a database, you should specify alignment every opening a database. # sub setalign { my($self) = shift; ($$self[1]) || return FALSE; my($align) = shift; (defined($align)) || ($align = 0); (scalar(@_) == 0) || return FALSE; my($curia) = $handles{$$self[0]}; my($rv) = plcrsetalign($curia, $align); $errmsg = plcrerrmsg(); return $rv; } ## # $bool = $curia->sync(); # Method: Synchronize updating contents with the files and the devices. # If successful, the return value is true, else, it is false. # This method is useful when another process uses the connected database directory. # sub sync { my($self) = shift; ($$self[1]) || return FALSE; (scalar(@_) == 0) || return FALSE; my($curia) = $handles{$$self[0]}; my($rv) = plcrsync($curia); $errmsg = plcrerrmsg(); return $rv; } ## # $bool = $curia->optimize($bnum); # Method: Optimize the database. # `$bnum' specifies the number of the elements of the bucket array. If it is undef or not more # than 0, the default value is specified. # If successful, the return value is true, else, it is false. # In an alternating succession of deleting and storing with overwrite or concatenate, # dispensable regions accumulate. This method is useful to do away with them. # sub optimize { my($self) = shift; ($$self[1]) || return FALSE; my($bnum) = shift; (defined($bnum)) || ($bnum = -1); (scalar(@_) == 0) || return FALSE; my($curia) = $handles{$$self[0]}; my($rv) = plcroptimize($curia, $bnum); $errmsg = plcrerrmsg(); return $rv; } ## # $num = $curia->fsiz(); # Method: Get the total size of the database files. # If successful, the return value is the total size of the database files, else, it is -1. # If the total size is more than 2GB, the return value overflows. # sub fsiz { my($self) = shift; ($$self[1]) || return -1; (scalar(@_) == 0) || return -1; my($curia) = $handles{$$self[0]}; my($rv) = plcrfsiz($curia); $errmsg = plcrerrmsg(); return $rv; } ## # $num = $curia->bnum(); # Method: Get the total number of the elements of each bucket array. # If successful, the return value is the total number of the elements of each bucket array, # else, it is -1. # sub bnum { my($self) = shift; ($$self[1]) || return -1; (scalar(@_) == 0) || return -1; my($curia) = $handles{$$self[0]}; my($rv) = plcrbnum($curia); $errmsg = plcrerrmsg(); return $rv; } ## # $num = $curia->rnum(); # Method: Get the number of the records stored in the database. # If successful, the return value is the number of the records stored in the database, else, # it is -1. # sub rnum { my($self) = shift; ($$self[1]) || return -1; (scalar(@_) == 0) || return -1; my($curia) = $handles{$$self[0]}; my($rv) = plcrrnum($curia); $errmsg = plcrerrmsg(); return $rv; } ## # $bool = $curia->writable(); # Method: Check whether the database handle is a writer or not. # The return value is true if the handle is a writer, false if not. # sub writable { my($self) = shift; ($$self[1]) || return FALSE; (scalar(@_) == 0) || return FALSE; my($curia) = $handles{$$self[0]}; my($rv) = plcrwritable($curia); $errmsg = plcrerrmsg(); return $rv; } ## # $bool = $curia->fatalerror(); # Method: Check whether the database has a fatal error or not. # The return value is true if the database has a fatal error, false if not. # sub fatalerror { my($self) = shift; ($$self[1]) || return FALSE; (scalar(@_) == 0) || return FALSE; my($curia) = $handles{$$self[0]}; my($rv) = plcrfatalerror($curia); $errmsg = plcrerrmsg(); return $rv; } ## #: Called automatically by the garbage collector. # Destructor: DESTROY: Release the resources. # If the database handle is not closed yet, it is closed. # sub DESTROY { my($self) = shift; $self->close(); } ## # $curia = tie(%hash, "Curia", $name, $omode, $bnum, $dnum); # Tying Function: TIEHASH: Get the database handle. # sub TIEHASH { my($class, $name, $omode, $bnum, $dnum) = @_; (defined($name)) || return undef(); (defined($omode)) || ($omode = OWRITER | OCREAT); (defined($bnum)) || ($bnum = -1); (defined($dnum)) || ($dnum = -1); return $class->new($name, $omode, $bnum, $dnum); } ## # $bool = ($hash{$key} = $val); # Tying Function: STORE: Store a record with overwrite. # sub STORE { my($self, $key, $val) = @_; ($$self[1]) || return FALSE; (defined($key) && defined($val)) || return FALSE; my($curia) = $handles{$$self[0]}; if($$self[2]){ local($_) = $key; $$self[2](); $key = $_; } if($$self[3]){ local($_) = $val; $$self[3](); $val = $_; } my($rv) = plcrput($curia, $key, length($key), $val, length($val), DOVER); ($rv == 0) && ($errmsg = plcrerrmsg()); return $rv; } ## # $bool = delete($hash{$key}); # Tying Function: DELETE: Delete a record. # sub DELETE { my($self, $key) = @_; ($$self[1]) || return FALSE; (defined($key)) || return FALSE; my($curia) = $handles{$$self[0]}; if($$self[2]){ local($_) = $key; $$self[2](); $key = $_; } my($rv) = plcrout($curia, $key, length($key)); $errmsg = plcrerrmsg(); return $rv; } ## # $bool = (%hash = ()); # Tying Function: CLEAR: Delete all records. # sub CLEAR { my($self) = shift; ($self->iterinit()) || return FALSE; my($key); while(defined($key = $self->iternext())){ ($self->out($key)) || return FALSE; } return TRUE; } ## # $str = $hash{$key}; # Tying Function: FETCH: Retrieve whole value of a record. # sub FETCH { my($self, $key) = @_; ($$self[1]) || return undef(); (defined($key)) || return undef(); my($curia) = $handles{$$self[0]}; if($$self[2]){ local($_) = $key; $$self[2](); $key = $_; } my($rv) = plcrget($curia, $key, length($key), 0, -1); $errmsg = plcrerrmsg(); if($rv && $$self[5]){ local($_) = $rv; $$self[5](); $rv = $_; } return $rv; } ## # $bool = exists($hash{$val}); # Tying Function: EXISTS: Check whether a record exists or not. # sub EXISTS { my($self) = shift; my($key) = shift; return $self->vsiz($key) >= 0 ? TRUE : FALSE; } ## #: Called automatically by keys(), each(), and so on. # Tying Function: FIRSTKEY: Get the first key. # sub FIRSTKEY { my($self) = shift; ($self->iterinit()) || return undef(); return $self->iternext(); } ## #: Called automatically by keys(), each(), and so on. # Tying Function: NEXTKEY: Get the next key. # sub NEXTKEY { my($self) = shift; return $self->iternext(); } ## # $func = $curia->filter_store_key(\&nf); # Method: set a filter invoked when writing a key. # `\&nf' specifies the reference of a filter function proofing `$_'. If it is undef, the # current filter function is cleared. # The return value is the old filter function. # sub filter_store_key { my($self) = shift; my($nf) = shift; my($of) = $$self[2]; $$self[2] = $nf; return $of; } ## # $func = $curia->filter_store_value(\&nf); # Method: set a filter invoked when writing a value. # `\&nf' specifies the reference of a filter function proofing `$_'. If it is undef, the # current filter function is cleared. # The return value is the old filter function. # sub filter_store_value { my($self) = shift; my($nf) = shift; my($of) = $$self[3]; $$self[3] = $nf; return $of; } ## # $func = $curia->filter_fetch_key(\&nf); # Method: set a filter invoked when reading a key. # `\&nf' specifies the reference of a filter function proofing `$_'. If it is undef, the # current filter function is cleared. # The return value is the old filter function. # sub filter_fetch_key { my($self) = shift; my($nf) = shift; my($of) = $$self[4]; $$self[4] = $nf; return $of; } ## # $func = $curia->filter_fetch_value(\&nf); # Method: set a filter invoked when reading a value. # `\&nf' specifies the reference a filter function proofing `$_'. If it is undef, the # current filter function is cleared. # The return value is the old filter function. # sub filter_fetch_value { my($self) = shift; my($nf) = shift; my($of) = $$self[5]; $$self[5] = $nf; return $of; } TRUE; # return success code # END OF FILE