%perlcode %{
use Scalar::Util 'blessed';
use Math::GSL::Errno qw/$GSL_SUCCESS gsl_strerror/;
use Data::Dumper;

use strict;
use warnings;
use Carp qw/croak/;
use Scalar::Util 'blessed';

use overload
    '*'      => \&_multiplication,
    '/'      => \&_division,
    '+'      => \&_addition,
    '-'      => \&_subtract,
    '=='     => \&_equal,
    '!='     => \&_not_equal,
    fallback => 1;

our @EXPORT_OK = qw(
    gsl_complex_arg gsl_complex_abs gsl_complex_rect gsl_complex_polar doubleArray_getitem
    gsl_complex_rect gsl_complex_polar gsl_complex_arg gsl_complex_abs gsl_complex_abs2
    gsl_complex_logabs gsl_complex_add gsl_complex_sub gsl_complex_mul gsl_complex_div
    gsl_complex_add_real gsl_complex_sub_real gsl_complex_mul_real gsl_complex_div_real
    gsl_complex_add_imag gsl_complex_sub_imag gsl_complex_mul_imag gsl_complex_div_imag
    gsl_complex_conjugate gsl_complex_inverse gsl_complex_negative gsl_complex_sqrt
    gsl_complex_sqrt_real gsl_complex_pow gsl_complex_pow_real gsl_complex_exp
    gsl_complex_log gsl_complex_log10 gsl_complex_log_b gsl_complex_sin
    gsl_complex_cos gsl_complex_sec gsl_complex_csc gsl_complex_tan
    gsl_complex_cot gsl_complex_arcsin gsl_complex_arcsin_real gsl_complex_arccos
    gsl_complex_arccos_real gsl_complex_arcsec gsl_complex_arcsec_real gsl_complex_arccsc
    gsl_complex_arccsc_real gsl_complex_arctan gsl_complex_arccot gsl_complex_sinh
    gsl_complex_cosh gsl_complex_sech gsl_complex_csch gsl_complex_tanh
    gsl_complex_coth gsl_complex_arcsinh gsl_complex_arccosh gsl_complex_arccosh_real
    gsl_complex_arcsech gsl_complex_arccsch gsl_complex_arctanh gsl_complex_arctanh_real
    gsl_complex_arccoth new_doubleArray delete_doubleArray doubleArray_setitem
    gsl_real gsl_imag gsl_parts
    gsl_complex_eq gsl_set_real gsl_set_imag gsl_set_complex
    $GSL_COMPLEX_ONE $GSL_COMPLEX_ZERO $GSL_COMPLEX_NEGONE
);
# macros to implement
# gsl_set_complex gsl_set_complex_packed
our ($GSL_COMPLEX_ONE, $GSL_COMPLEX_ZERO, $GSL_COMPLEX_NEGONE) = map { gsl_complex_rect($_, 0) } qw(1 0 -1);


our %EXPORT_TAGS = ( all => [ @EXPORT_OK ] );

=encoding utf8

=head2 copy()

Returns a copy of the Complex number, which resides at a different location in
memory.

    my $z    = Math::GSL::Complex->new([10,5]);
    my $copy = $z->copy;

=cut


sub copy {
    my $self = shift;
    my $copy = Math::GSL::Complex->new(
            gsl_real($self->raw), gsl_imag($self->raw)
    );

    return $copy;
}

sub _not_equal {
    my ($left, $right) = @_;
    return ! _equal($left, $right);
}

sub _equal {
    my ($left, $right) = @_;

    if ( blessed $right && $right->isa('Math::GSL::Complex') && blessed $left && $left->isa('Math::GSL::Complex') ) {
        return gsl_complex_eq($left->raw, $right->raw);
    } else {
        # If both are not Complex objects, they can't be the same
        return 0;
    }
}

sub _division {
    my ($left, $right) = @_;
    my $raw;

    if ( blessed $right && $right->isa('Math::GSL::Complex') && blessed $left && $left->isa('Math::GSL::Complex') ) {
        my $rcopy = $right->copy;
        $raw = gsl_complex_div($left->raw, $right->raw);
        $rcopy->set_raw( $raw );
        return $rcopy;
    } else {
        my $lcopy = $left->copy;
        $raw = gsl_complex_div_real($lcopy->raw, $right);
        $lcopy->set_raw($raw);
        return $lcopy;
    }
}

sub _multiplication {
    my ($left, $right) = @_;
    my $raw;

    if ( blessed $right && $right->isa('Math::GSL::Complex') && blessed $left && $left->isa('Math::GSL::Complex') ) {
        my $rcopy = $right->copy;
        $raw = gsl_complex_mul($left->raw, $right->raw);
        $rcopy->set_raw( $raw );
        return $rcopy;
    } else {
        my $lcopy = $left->copy;
        $raw = gsl_complex_mul_real($lcopy->raw, $right);
        $lcopy->set_raw($raw);
        return $lcopy;
    }
}

sub _subtract {
    my ($left, $right) = @_;
    my $rcopy = $right->copy;
    my $raw   = gsl_complex_negative($right->raw);

    $rcopy->set_raw($raw);

    return _addition($left, $rcopy);
}

sub _addition {
    my ($left, $right) = @_;

    my $lcopy = $left->copy;
    my $raw;

    if ( blessed $right && $right->isa('Math::GSL::Complex') && blessed $left && $left->isa('Math::GSL::Complex') ) {
        $raw = gsl_complex_add($lcopy->raw, $right->raw);
    } else {
        $raw = gsl_complex_add_constant($lcopy->raw, $right);
    }
    $lcopy->set_raw($raw);
    return $lcopy;
}

sub set_raw {
    my ($self, $raw) = @_;
    $self->{_complex} = $raw;
    return $self;
}

sub new {
    my ($class, @values) = @_;
    my $this = {};
    $this->{_complex} = gsl_complex_rect($values[0], $values[1]);
    bless $this, $class;
}
sub real {
    my ($self) = @_;
    gsl_real($self->raw);
}

sub imag {
    my ($self) = @_;
    gsl_imag($self->raw);
}

sub parts {
    my ($self) = @_;
    gsl_parts($self->raw);
}

sub raw  { (shift)->{_complex} }


### some important macros that are in gsl_complex.h
sub gsl_complex_eq {
    my ($z,$w) = @_;
    gsl_real($z) == gsl_real($w) && gsl_imag($z) == gsl_imag($w) ? 1 : 0;
}

sub gsl_set_real {
    my ($z,$r) = @_;
    doubleArray_setitem($z->{dat}, 0, $r);
}

sub gsl_set_imag {
    my ($z,$i) = @_;
    doubleArray_setitem($z->{dat}, 1, $i);
}

sub gsl_real {
    my $z = shift;
    return doubleArray_getitem($z->{dat}, 0 );
}

sub gsl_imag {
    my $z = shift;
    return doubleArray_getitem($z->{dat}, 1 );
}

sub gsl_parts {
    my $z = shift;
    return (gsl_real($z), gsl_imag($z));
}

sub gsl_set_complex {
    my ($z, $r, $i) = @_;
    gsl_set_real($z, $r);
    gsl_set_imag($z, $i);
}

=head1 NAME

Math::GSL::Complex - Complex Numbers

=head1 SYNOPSIS

    use Math::GSL::Complex qw/:all/;
    my $complex = Math::GSL::Complex->new([3,2]); # creates a complex number 3+2*i
    my $real = $complex->real;                    # returns the real part
    my $imag = $complex->imag;                    # returns the imaginary part
    $complex->gsl_set_real(5);                    # changes the real part to 5
    $complex->gsl_set_imag(4);                    # changes the imaginary part to 4
    $complex->gsl_set_complex(7,6);               # changes it to 7 + 6*i
    ($real, $imag) = $complex->parts;             # get both at once

=head1 DESCRIPTION

Here is a list of all the functions included in this module :

=over 1

=item C<gsl_complex_arg($z)>

Return the argument of the complex number $z

=item C<gsl_complex_abs($z)>

Return |$z|, the magnitude of the complex number $z

=item C<gsl_complex_rect($x,$y)>

Create a complex number in cartesian form $x + $y*i

=item C<gsl_complex_polar($r,$theta)>

Create a complex number in polar form $r*exp(i*$theta)

=item C<gsl_complex_abs2($z)>

Return |$z|^2, the squared magnitude of the complex number $z

=item C<gsl_complex_logabs($z)>

Return log(|$z|), the natural logarithm of the magnitude of the complex number $z

=item C<gsl_complex_add($c1, $c2)>

Return a complex number which is the sum of the complex numbers $c1 and $c2

=item C<gsl_complex_sub($c1, $c2)>

Return a complex number which is the difference between $c1 and $c2 ($c1 - $c2)

=item C<gsl_complex_mul($c1, $c2)>

Return a complex number which is the product of the complex numbers $c1 and $c2

=item C<gsl_complex_div($c1, $c2)>

Return a complex number which is the quotient of the complex numbers $c1 and $c2 ($c1 / $c2)

=item C<gsl_complex_add_real($c, $x)>

Return the sum of the complex number $c and the real number $x

=item C<gsl_complex_sub_real($c, $x)>

Return the difference of the complex number $c and the real number $x

=item C<gsl_complex_mul_real($c, $x)>

Return the product of the complex number $c and the real number $x

=item C<gsl_complex_div_real($c, $x)>

Return the quotient of the complex number $c and the real number $x

=item C<gsl_complex_add_imag($c, $y)>

Return sum of the complex number $c and the imaginary number i*$x

=item C<gsl_complex_sub_imag($c, $y)>

Return the diffrence of the complex number $c and the imaginary number i*$x

=item C<gsl_complex_mul_imag($c, $y)>

Return the product of the complex number $c and the imaginary number i*$x

=item C<gsl_complex_div_imag($c, $y)>

Return the quotient of the complex number $c and the imaginary number i*$x

=item C<gsl_complex_conjugate($c)>

Return the conjugate of the of the complex number $c (x - i*y)

=item C<gsl_complex_inverse($c)>

Return the inverse, or reciprocal of the complex number $c (1/$c)

=item C<gsl_complex_negative($c)>

Return the negative of the complex number $c (-x -i*y)

=item C<gsl_complex_sqrt($c)>

Return the square root of the complex number $c

=item C<gsl_complex_sqrt_real($x)>

Return the complex square root of the real number $x, where $x may be negative

=item C<gsl_complex_pow($c1, $c2)>

Return the complex number $c1 raised to the complex power $c2

=item C<gsl_complex_pow_real($c, $x)>

Return the complex number raised to the real power $x

=item C<gsl_complex_exp($c)>

Return the complex exponential of the complex number $c

=item C<gsl_complex_log($c)>

Return the complex natural logarithm (base e) of the complex number $c

=item C<gsl_complex_log10($c)>

Return the complex base-10 logarithm of the complex number $c

=item C<gsl_complex_log_b($c, $b)>

Return the complex base-$b of the complex number $c

=item C<gsl_complex_sin($c)>

Return the complex sine of the complex number $c

=item C<gsl_complex_cos($c)>

Return the complex cosine of the complex number $c

=item C<gsl_complex_sec($c)>

Return the complex secant of the complex number $c

=item C<gsl_complex_csc($c)>

Return the complex cosecant of the complex number $c

=item C<gsl_complex_tan($c)>

Return the complex tangent of the complex number $c

=item C<gsl_complex_cot($c)>

Return the complex cotangent of the complex number $c

=item C<gsl_complex_arcsin($c)>

Return the complex arcsine of the complex number $c

=item C<gsl_complex_arcsin_real($x)>

Return the complex arcsine of the real number $x

=item C<gsl_complex_arccos($c)>

Return the complex arccosine of the complex number $c

=item C<gsl_complex_arccos_real($x)>

Return the complex arccosine of the real number $x

=item C<gsl_complex_arcsec($c)>

Return the complex arcsecant of the complex number $c

=item C<gsl_complex_arcsec_real($x)>

Return the complex arcsecant of the real number $x

=item C<gsl_complex_arccsc($c)>

Return the complex arccosecant of the complex number $c

=item C<gsl_complex_arccsc_real($x)>

Return the complex arccosecant of the real number $x

=item C<gsl_complex_arctan($c)>

Return the complex arctangent of the complex number $c

=item C<gsl_complex_arccot($c)>

Return the complex arccotangent of the complex number $c

=item C<gsl_complex_sinh($c)>

Return the complex hyperbolic sine of the complex number $c

=item C<gsl_complex_cosh($c)>

Return the complex hyperbolic cosine of the complex number $cy

=item C<gsl_complex_sech($c)>

Return the complex hyperbolic secant of the complex number $c

=item C<gsl_complex_csch($c)>

Return the complex hyperbolic cosecant of the complex number $c

=item C<gsl_complex_tanh($c)>

Return the complex hyperbolic tangent of the complex number $c

=item C<gsl_complex_coth($c)>

Return the complex hyperbolic cotangent of the complex number $c

=item C<gsl_complex_arcsinh($c)>

Return the complex hyperbolic arcsine of the complex number $c

=item C<gsl_complex_arccosh($c)>

Return the complex hyperbolic arccosine of the complex number $c

=item C<gsl_complex_arccosh_real($x)>

Return the complex hyperbolic arccosine of the real number $x

=item C<gsl_complex_arcsech($c)>

Return the complex hyperbolic arcsecant of the complex number $c

=item C<gsl_complex_arccsch($c)>

Return the complex hyperbolic arccosecant of the complex number $c

=item C<gsl_complex_arctanh($c)>

Return the complex hyperbolic arctangent of the complex number $c

=item C<gsl_complex_arctanh_real($x)>

Return the complex hyperbolic arctangent of the real number $x

=item C<gsl_complex_arccoth($c)>

Return the complex hyperbolic arccotangent of the complex number $c

=item C<gsl_real($z)>

Return the real part of $z

=item C<gsl_imag($z)>

Return the imaginary part of $z

=item C<gsl_parts($z)>

Return a list of the real and imaginary parts of $z

=item C<gsl_set_real($z, $x)>

Sets the real part of $z to $x

=item C<gsl_set_imag($z, $y)>

Sets the imaginary part of $z to $y

=item C<gsl_set_complex($z, $x, $h)>

Sets the real part of $z to $x and the imaginary part to $y

=back

=head1 EXAMPLES

This code defines $z as 6 + 4*i, takes the complex conjugate of that number, then prints it out.

=over 1

    my $z = gsl_complex_rect(6,4);
    my $y = gsl_complex_conjugate($z);
    my ($real, $imag) = gsl_parts($y);
    print "z = $real + $imag*i\n";

=back

This code defines $z as 5 + 3*i, multiplies it by 2 and then prints it out.

=over 1

    my $x = gsl_complex_rect(5,3);
    my $z = gsl_complex_mul_real($x, 2);
    my $real = gsl_real($z);
    my $imag = gsl_imag($z);
    print "Re(\$z) = $real\n";

=back

=head1 AUTHORS

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2008-2014 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut
%}