The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.

Name

Nasm::X86 - Generate X86 assembler code using Perl as a macro pre-processor.

Synopsis

Write and execute x64 Avx512 assembler code from perl using perl as a macro assembler. The generated code can be run under the Intel emulator to obtain execution trace and instruction counts.

Examples

Avx512 instructions

Use Avx512 instructions to perform 64 comparisons in parallel.

  my $P = "2F";                                                                 # Value to test for
  my $l = Rb 0;  Rb $_ for 1..RegisterSize zmm0;                                # 0..63
  Vmovdqu8 zmm0, "[$l]";                                                        # Load data to test
  PrintOutRegisterInHex zmm0;

  Mov rax, "0x$P";                                                              # Broadcast the value to be tested
  Vpbroadcastb zmm1, rax;
  PrintOutRegisterInHex zmm1;

  for my $c(0..7)                                                               # Each possible test
   {my $m = "k$c";
    Vpcmpub $m, zmm1, zmm0, $c;
    PrintOutRegisterInHex $m;
   }

  Kmovq rax, k0;                                                                # Count the number of trailing zeros in k0
  Tzcnt rax, rax;
  PrintOutRegisterInHex rax;

  is_deeply Assemble, <<END;                                                    # Assemble and test
  zmm0: 3F3E 3D3C 3B3A 3938   3736 3534 3332 3130   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100
  zmm1: 2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F   2F2F 2F2F 2F2F 2F2F
    k0: 0000 8000 0000 0000
    k1: FFFF 0000 0000 0000
    k2: FFFF 8000 0000 0000
    k3: 0000 0000 0000 0000
    k4: FFFF 7FFF FFFF FFFF
    k5: 0000 FFFF FFFF FFFF
    k6: 0000 7FFF FFFF FFFF
    k7: FFFF FFFF FFFF FFFF
   rax: 0000 0000 0000 002F
END

With the print statements removed, the Intel Emulator indicates that 26 instructions were executed:

  CALL_NEAR                                                              1
  ENTER                                                                  2
  JMP                                                                    1
  KMOVQ                                                                  1
  MOV                                                                    5
  POP                                                                    1
  PUSH                                                                   3
  SYSCALL                                                                1
  TZCNT                                                                  1
  VMOVDQU8                                                               1
  VPBROADCASTB                                                           1
  VPCMPUB                                                                8

  *total                                                                26

Process management

Start a child process and wait for it, printing out the process identifiers of each process involved:

   Fork;                                     # Fork

   Test rax,rax;
   IfNz                                      # Parent
   Then
    {Mov rbx, rax;
     WaitPid;
     GetPid;                                 # Pid of parent as seen in parent
     Mov rcx,rax;
     PrintOutRegisterInHex rax, rbx, rcx;
    },
   Else                                      # Child
    {Mov r8,rax;
     GetPid;                                 # Child pid as seen in child
     Mov r9,rax;
     GetPPid;                                # Parent pid as seen in child
     Mov r10,rax;
     PrintOutRegisterInHex r8, r9, r10;
    };

   my $r = Assemble;

 #    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
 #    r9: 0000 0000 0003 0C63   #2 Pid of child
 #   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
 #   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
 #   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
 #   rcx: 0000 0000 0003 0C60   #6 Pid of parent

Read a file

Read this file:

  ReadFile(V(file, Rs($0)), (my $s = V(size)), my $a = V(address));          # Read file
  $a->setReg(rax);                                                              # Address of file in memory
  $s->setReg(rdi);                                                              # Length  of file in memory
  PrintOutMemory;                                                               # Print contents of memory to stdout

  my $r = Assemble(1 => (my $f = temporaryFile));                               # Assemble and execute
  ok fileMd5Sum($f) eq fileMd5Sum($0);                                          # Output contains this file

Call functions in Libc

Call C functions by naming them as external and including their library:

  my $format = Rs "Hello %s\n";
  my $data   = Rs "World";

  Extern qw(printf exit malloc strcpy); Link 'c';

  CallC 'malloc', length($format)+1;
  Mov r15, rax;
  CallC 'strcpy', r15, $format;
  CallC 'printf', r15, $data;
  CallC 'exit', 0;

  ok Assemble(eq => <<END);
Hello World
END

Dynamic arena

Arenas are resizeable, relocatable blocks of memory that hold other dynamic data structures. Arenas can be transferred between processes and relocated as needed as all addressing is relative to the start of the block of memory containing each arena.

Create two dynamic arenas, add some content to them, write each arena to stdout:

  my $a = CreateArena;

  my $b = CreateArena;
  $a->q('aa');
  $b->q('bb');
  $a->q('AA');
  $b->q('BB');
  $a->q('aa');
  $b->q('bb');

  $a->out;
  $b->out;

  PrintOutNL;

  is_deeply Assemble, <<END;
aaAAaabbBBbb
END

Dynamic string held in an arena

Create a dynamic string within an arena and add some content to it:

  my $s = Rb(0..255);
  my $A = CreateArena;
  my $S = $A->CreateString;

  $S->append(V(source, $s), K(size, 256));
  $S->len->outNL;
  $S->clear;

  $S->append(V(source, $s), K(size,  16));
  $S->len->outNL;
  $S->dump;

  ok Assemble(debug => 0, eq => <<END);
size: 0000 0000 0000 0100
size: 0000 0000 0000 0010
string Dump
Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0010
 zmm31: 0000 0018 0000 0018   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 000F   0E0D 0C0B 0A09 0807   0605 0403 0201 0010

END

Dynamic array held in an arena

Create a dynamic array within an arena, push some content on to it then pop it off again:

  my $N = 15;
  my $A = CreateArena;
  my $a = $A->CreateArray;

  $a->push(V(element, $_)) for 1..$N;

  K(loop, $N)->for(sub
   {my ($start, $end, $next) = @_;
    my $l = $a->size;
    If $l == 0, Then {Jmp $end};
    $a->pop(my $e = V(element));
    $e->outNL;
   });

  ok Assemble(debug => 0, eq => <<END);
element: 0000 0000 0000 000F
element: 0000 0000 0000 000E
element: 0000 0000 0000 000D
element: 0000 0000 0000 000C
element: 0000 0000 0000 000B
element: 0000 0000 0000 000A
element: 0000 0000 0000 0009
element: 0000 0000 0000 0008
element: 0000 0000 0000 0007
element: 0000 0000 0000 0006
element: 0000 0000 0000 0005
element: 0000 0000 0000 0004
element: 0000 0000 0000 0003
element: 0000 0000 0000 0002
element: 0000 0000 0000 0001
END

Create a multi way tree in an arena using SIMD instructions

Create a multiway tree as in Tree::Multi using Avx512 instructions and iterate through it:

  my $N = 12;
  my $b = CreateArena;                   # Resizable memory block
  my $t = $b->CreateTree;        # Multi way tree in memory block

  K(count, $N)->for(sub                      # Add some entries to the tree
   {my ($index, $start, $next, $end) = @_;
    my $k = $index + 1;
    $t->insert($k,      $k + 0x100);
    $t->insert($k + $N, $k + 0x200);
   });

  $t->by(sub                                  # Iterate through the tree
   {my ($iter, $end) = @_;
    $iter->key ->out('key: ');
    $iter->data->out(' data: ');
    $iter->tree->depth($iter->node, my $D = V(depth));

    $t->find($iter->key);
    $t->found->out(' found: '); $t->data->out(' data: '); $D->outNL(' depth: ');
   });

  $t->find(K(key, 0xffff));  $t->found->outNL('Found: ');  # Find some entries
  $t->find(K(key, 0xd));     $t->found->outNL('Found: ');

  If ($t->found,
  Then
   {$t->data->outNL("Data : ");
   });

  ok Assemble(debug => 0, eq => <<END);
key: 0000 0000 0000 0001 data: 0000 0000 0000 0101 found: 0000 0000 0000 0001 data: 0000 0000 0000 0101 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0002 data: 0000 0000 0000 0102 found: 0000 0000 0000 0001 data: 0000 0000 0000 0102 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0003 data: 0000 0000 0000 0103 found: 0000 0000 0000 0001 data: 0000 0000 0000 0103 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0004 data: 0000 0000 0000 0104 found: 0000 0000 0000 0001 data: 0000 0000 0000 0104 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0005 data: 0000 0000 0000 0105 found: 0000 0000 0000 0001 data: 0000 0000 0000 0105 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0006 data: 0000 0000 0000 0106 found: 0000 0000 0000 0001 data: 0000 0000 0000 0106 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0007 data: 0000 0000 0000 0107 found: 0000 0000 0000 0001 data: 0000 0000 0000 0107 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0008 data: 0000 0000 0000 0108 found: 0000 0000 0000 0001 data: 0000 0000 0000 0108 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0009 data: 0000 0000 0000 0109 found: 0000 0000 0000 0001 data: 0000 0000 0000 0109 depth: 0000 0000 0000 0002
key: 0000 0000 0000 000A data: 0000 0000 0000 010A found: 0000 0000 0000 0001 data: 0000 0000 0000 010A depth: 0000 0000 0000 0002
key: 0000 0000 0000 000B data: 0000 0000 0000 010B found: 0000 0000 0000 0001 data: 0000 0000 0000 010B depth: 0000 0000 0000 0002
key: 0000 0000 0000 000C data: 0000 0000 0000 010C found: 0000 0000 0000 0001 data: 0000 0000 0000 010C depth: 0000 0000 0000 0002
key: 0000 0000 0000 000D data: 0000 0000 0000 0201 found: 0000 0000 0000 0001 data: 0000 0000 0000 0201 depth: 0000 0000 0000 0001
key: 0000 0000 0000 000E data: 0000 0000 0000 0202 found: 0000 0000 0000 0001 data: 0000 0000 0000 0202 depth: 0000 0000 0000 0002
key: 0000 0000 0000 000F data: 0000 0000 0000 0203 found: 0000 0000 0000 0001 data: 0000 0000 0000 0203 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0010 data: 0000 0000 0000 0204 found: 0000 0000 0000 0001 data: 0000 0000 0000 0204 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0011 data: 0000 0000 0000 0205 found: 0000 0000 0000 0001 data: 0000 0000 0000 0205 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0012 data: 0000 0000 0000 0206 found: 0000 0000 0000 0001 data: 0000 0000 0000 0206 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0013 data: 0000 0000 0000 0207 found: 0000 0000 0000 0001 data: 0000 0000 0000 0207 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0014 data: 0000 0000 0000 0208 found: 0000 0000 0000 0001 data: 0000 0000 0000 0208 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0015 data: 0000 0000 0000 0209 found: 0000 0000 0000 0001 data: 0000 0000 0000 0209 depth: 0000 0000 0000 0002
key: 0000 0000 0000 0016 data: 0000 0000 0000 020A found: 0000 0000 0000 0001 data: 0000 0000 0000 020A depth: 0000 0000 0000 0002
key: 0000 0000 0000 0017 data: 0000 0000 0000 020B found: 0000 0000 0000 0001 data: 0000 0000 0000 020B depth: 0000 0000 0000 0002
key: 0000 0000 0000 0018 data: 0000 0000 0000 020C found: 0000 0000 0000 0001 data: 0000 0000 0000 020C depth: 0000 0000 0000 0002
Found: 0000 0000 0000 0000
Found: 0000 0000 0000 0001
Data : 0000 0000 0000 0201
END

Recursion with stack and parameter tracing

Call a subroutine recursively and get a trace back showing the procedure calls and parameters passed to each call. Parameters are passed by reference not value.

  my $d = V depth, 3;                           # Create a variable on the stack

  my $s = Subroutine
   {my ($p, $s) = @_;                           # Parameters, subroutine descriptor
    PrintOutTraceBack;

    my $d = $$p{depth}->copy($$p{depth} - 1);   # Modify the variable referenced by the parameter

    If ($d > 0,
    Then
     {$s->call($d);                             # Recurse
     });

    PrintOutTraceBack;
   } [qw(depth)], name => 'ref';

  $s->call($d);                                 # Call the subroutine

  ok Assemble(debug => 0, eq => <<END);

  Subroutine trace back, depth: 0000 0000 0000 0001
  0000 0000 0000 0003    ref


  Subroutine trace back, depth: 0000 0000 0000 0002
  0000 0000 0000 0002    ref
  0000 0000 0000 0002    ref


  Subroutine trace back, depth: 0000 0000 0000 0003
  0000 0000 0000 0001    ref
  0000 0000 0000 0001    ref
  0000 0000 0000 0001    ref


  Subroutine trace back, depth: 0000 0000 0000 0003
  0000 0000 0000 0000    ref
  0000 0000 0000 0000    ref
  0000 0000 0000 0000    ref


  Subroutine trace back, depth: 0000 0000 0000 0002
  0000 0000 0000 0000    ref
  0000 0000 0000 0000    ref


  Subroutine trace back, depth: 0000 0000 0000 0001
  0000 0000 0000 0000    ref

END

Installation

The Intel Software Development Emulator will be required if you do not have a computer with the avx512 instruction set and wish to execute code containing these instructions. For details see:

https://software.intel.com/content/dam/develop/external/us/en/documents/downloads/sde-external-8.63.0-2021-01-18-lin.tar.bz2

The Networkwide Assembler is required to assemble the code produced For full details see:

https://github.com/philiprbrenan/NasmX86/blob/main/.github/workflows/main.yml

Execution Options

The "Assemble(%)" function takes the keywords described below to control assembly and execution of the assembled code:

"Assemble(%)" runs the generated program after a successful assembly unless the keep option is specified. The output on stdout is captured in file zzzOut.txt and that on stderr is captured in file zzzErr.txt.

The amount of output displayed is controlled by the debug keyword.

The eq keyword can be used to test that the output by the run.

The output produced by the program execution is returned as the result of the "Assemble(%)" function.

Keep

To produce a named executable without running it, specify:

 keep=>"executable file name"

Emulator

To run the executable produced by "Assemble(%)" without the Intel emulator, which is used by default if it is present, specify:

 emulator=>0

eq

The eq keyword supplies the expected output from the execution of the assembled program. If the expected output is not obtained on stdout then we confess and stop further testing. Output on stderr is ignored for test purposes.

The point at which the wanted output diverges from the output actually got is displayed to assist debugging as in:

  Comparing wanted with got failed at line: 4, character: 22
  Start:
      k7: 0000 0000 0000 0001
      k6: 0000 0000 0000 0003
      k5: 0000 0000 0000 0007
      k4: 0000 0000 000
  Want ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  1 0002
      k3: 0000 0000 0000 0006
      k2: 0000 0000 0000 000E
      k1: 0000 0000
  Got  ________________________________________________________________________________
  0 0002
      k3: 0000 0000 0000 0006
      k2: 0000 0000 0000 000E
      k1: 0000 0000

Debug

The debug keyword controls how much output is printed after each assemble and run.

  debug => 0

produces no output unless the eq keyword was specified and the actual output fails to match the expected output. If such a test fails we Carp::confess.

  debug => 1

shows all the output produces and conducts the test specified by the eq is present. If the test fails we Carp::confess.

  debug => 2

shows all the output produces and conducts the test specified by the eq is present. If the test fails we continue rather than calling Carp::confess.

Description

Generate X86 assembler code using Perl as a macro pre-processor.

Version "20210828".

The following sections describe the methods in each functional area of this module. For an alphabetic listing of all methods by name see Index.

Data

Layout data

SetLabel($l)

Create (if necessary) and set a label in the code section returning the label so set.

     Parameter  Description
  1  $l         Label

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
  
    SetLabel $l;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

Ds(@d)

Layout bytes in memory and return their label.

     Parameter  Description
  1  @d         Data to be laid out

Example:

    my $q = Rs('a'..'z');
  
    Mov rax, Ds('0'x64);                                                          # Output area  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Vmovdqu32(xmm0, "[$q]");                                                      # Load
    Vprolq   (xmm0,   xmm0, 32);                                                  # Rotate double words in quad words
    Vmovdqu32("[rax]", xmm0);                                                     # Save
    Mov rdi, 16;
    PrintOutMemory;
  
    ok Assemble =~ m(efghabcdmnopijkl)s;
  

Rs(@d)

Layout bytes in read only memory and return their label.

     Parameter  Description
  1  @d         Data to be laid out

Example:

    Comment "Print a string from memory";
    my $s = "Hello World";
  
    Mov rax, Rs($s);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rdi, length $s;
    PrintOutMemory;
    Exit(0);
  
    ok Assemble =~ m(Hello World);
  
  
    my $q = Rs('abababab');  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov(rax, 1);
    Mov(rbx, 2);
    Mov(rcx, 3);
    Mov(rdx, 4);
    Mov(r8,  5);
    Lea r9,  "[rax+rbx]";
    PrintOutRegistersInHex;
  
    my $r = Assemble;
    ok $r =~ m( r8: 0000 0000 0000 0005.* r9: 0000 0000 0000 0003.*rax: 0000 0000 0000 0001)s;
    ok $r =~ m(rbx: 0000 0000 0000 0002.*rcx: 0000 0000 0000 0003.*rdx: 0000 0000 0000 0004)s;
  

Rutf8(@d)

Layout a utf8 encoded string as bytes in read only memory and return their label.

     Parameter  Description
  1  @d         Data to be laid out

Db(@bytes)

Layout bytes in the data segment and return their label.

     Parameter  Description
  1  @bytes     Bytes to layout

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;
  
    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));
    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  

Dw(@words)

Layout words in the data segment and return their label.

     Parameter  Description
  1  @words     Words to layout

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;
  
    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));
    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  

Dd(@dwords)

Layout double words in the data segment and return their label.

     Parameter  Description
  1  @dwords    Double words to layout

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;
  
    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));
    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  

Dq(@qwords)

Layout quad words in the data segment and return their label.

     Parameter  Description
  1  @qwords    Quad words to layout

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;
  
    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));
    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  

Rb(@bytes)

Layout bytes in the data segment and return their label.

     Parameter  Description
  1  @bytes     Bytes to layout

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;
  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));
    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  

Rw(@words)

Layout words in the data segment and return their label.

     Parameter  Description
  1  @words     Words to layout

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;
  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));
    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  

Rd(@dwords)

Layout double words in the data segment and return their label.

     Parameter  Description
  1  @dwords    Double words to layout

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;
  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));
    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  

Rq(@qwords)

Layout quad words in the data segment and return their label.

     Parameter  Description
  1  @qwords    Quad words to layout

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;
  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));
    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  

Registers

Operations on registers

xmm(@r)

Add xmm to the front of a list of register expressions.

     Parameter  Description
  1  @r         Register numbers

ymm(@r)

Add ymm to the front of a list of register expressions.

     Parameter  Description
  1  @r         Register numbers

zmm(@r)

Add zmm to the front of a list of register expressions.

     Parameter  Description
  1  @r         Register numbers

Example:

    LoadZmm 0, 0..63;
  
    PrintOutRegisterInHex zmm 0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    is_deeply Assemble, <<END;
    zmm0: 3F3E 3D3C 3B3A 3938   3736 3534 3332 3130   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100
  END
  

ChooseRegisters($number, @registers)

Choose the specified numbers of registers excluding those on the specified list.

     Parameter   Description
  1  $number     Number of registers needed
  2  @registers  Registers not to choose

RegistersAvailable(@reg)

Add a new set of registers that are available.

     Parameter  Description
  1  @reg       Registers known to be available at the moment

RegistersFree()

Remove the current set of registers known to be free.

CheckGeneralPurposeRegister($reg)

Check that a register is in fact a general purpose register.

     Parameter  Description
  1  $reg       Mask register to check

CheckNumberedGeneralPurposeRegister($reg)

Check that a register is in fact a numbered general purpose register.

     Parameter  Description
  1  $reg       Mask register to check

InsertZeroIntoRegisterAtPoint($point, $in)

Insert a zero into the specified register at the point indicated by another register.

     Parameter  Description
  1  $point     Register with a single 1 at the insertion point
  2  $in        Register to be inserted into.

Example:

    Mov r15, 0x100;                                                               # Given a register with a single one in it indicating the desired position,
    Mov r14, 0xFFDC;                                                              # Insert a zero into the register at that position shifting the bits above that position up left one to make space for the new zero.
    Mov r13, 0xF03F;
    PrintOutRegisterInHex         r14, r15;
  
    InsertZeroIntoRegisterAtPoint r15, r14;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex r14;
    Or r14, r15;                                                                  # Replace the inserted zero with a one
    PrintOutRegisterInHex r14;
    InsertOneIntoRegisterAtPoint r15, r13;
    PrintOutRegisterInHex r13;
    ok Assemble(debug => 0, eq => <<END);
     r14: 0000 0000 0000 FFDC
     r15: 0000 0000 0000 0100
     r14: 0000 0000 0001 FEDC
     r14: 0000 0000 0001 FFDC
     r13: 0000 0000 0001 E13F
  END
  

InsertOneIntoRegisterAtPoint($point, $in)

Insert a one into the specified register at the point indicated by another register.

     Parameter  Description
  1  $point     Register with a single 1 at the insertion point
  2  $in        Register to be inserted into.

Example:

    Mov r15, 0x100;                                                               # Given a register with a single one in it indicating the desired position,
    Mov r14, 0xFFDC;                                                              # Insert a zero into the register at that position shifting the bits above that position up left one to make space for the new zero.
    Mov r13, 0xF03F;
    PrintOutRegisterInHex         r14, r15;
    InsertZeroIntoRegisterAtPoint r15, r14;
    PrintOutRegisterInHex r14;
    Or r14, r15;                                                                  # Replace the inserted zero with a one
    PrintOutRegisterInHex r14;
  
    InsertOneIntoRegisterAtPoint r15, r13;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex r13;
    ok Assemble(debug => 0, eq => <<END);
     r14: 0000 0000 0000 FFDC
     r15: 0000 0000 0000 0100
     r14: 0000 0000 0001 FEDC
     r14: 0000 0000 0001 FFDC
     r13: 0000 0000 0001 E13F
  END
  

LoadZmm($zmm, @bytes)

Load a numbered zmm with the specified bytes.

     Parameter  Description
  1  $zmm       Numbered zmm
  2  @bytes     Bytes

Example:

    LoadZmm 0, 0..63;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex zmm 0;
  
    is_deeply Assemble, <<END;
    zmm0: 3F3E 3D3C 3B3A 3938   3736 3534 3332 3130   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100
  END
  

Save and Restore

Saving and restoring registers via the stack

SaveFirstFour(@keep)

Save the first 4 parameter registers making any parameter registers read only.

     Parameter  Description
  1  @keep      Registers to mark as read only

Example:

    Mov rax, 1;
    Mov rdi, 1;
  
    SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
  
    SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
  
    SaveFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

RestoreFirstFour()

Restore the first 4 parameter registers.

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
  
    RestoreFirstFour;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

RestoreFirstFourExceptRax()

Restore the first 4 parameter registers except rax so it can return its value.

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    RestoreFirstFourExceptRax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

RestoreFirstFourExceptRaxAndRdi()

Restore the first 4 parameter registers except rax and rdi so we can return a pair of values.

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    RestoreFirstFourExceptRaxAndRdi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

SaveFirstSeven()

Save the first 7 parameter registers.

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
  
    SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
  
    SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
  
    SaveFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

RestoreFirstSeven()

Restore the first 7 parameter registers.

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
  
    RestoreFirstSeven;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

RestoreFirstSevenExceptRax()

Restore the first 7 parameter registers except rax which is being used to return the result.

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
  
    RestoreFirstSevenExceptRax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

RestoreFirstSevenExceptRaxAndRdi()

Restore the first 7 parameter registers except rax and rdi which are being used to return the results.

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
  
    RestoreFirstSevenExceptRaxAndRdi;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
    ok 8 == RegisterSize rax;
  

ReorderSyscallRegisters(@registers)

Map the list of registers provided to the 64 bit system call sequence.

     Parameter   Description
  1  @registers  Registers

Example:

    Mov rax, 1;  Mov rdi, 2;  Mov rsi,  3;  Mov rdx,  4;
    Mov r8,  8;  Mov r9,  9;  Mov r10, 10;  Mov r11, 11;
  
  
    ReorderSyscallRegisters   r8,r9;                                              # Reorder the registers for syscall  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rdi;
  
    UnReorderSyscallRegisters r8,r9;                                              # Unreorder the registers to recover their original values
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rdi;
  
    ok Assemble =~ m(rax:.*08.*rdi:.*9.*rax:.*1.*rdi:.*2.*)s;
  

UnReorderSyscallRegisters(@registers)

Recover the initial values in registers that were reordered.

     Parameter   Description
  1  @registers  Registers

Example:

    Mov rax, 1;  Mov rdi, 2;  Mov rsi,  3;  Mov rdx,  4;
    Mov r8,  8;  Mov r9,  9;  Mov r10, 10;  Mov r11, 11;
  
    ReorderSyscallRegisters   r8,r9;                                              # Reorder the registers for syscall
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rdi;
  
  
    UnReorderSyscallRegisters r8,r9;                                              # Unreorder the registers to recover their original values  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rdi;
  
    ok Assemble =~ m(rax:.*08.*rdi:.*9.*rax:.*1.*rdi:.*2.*)s;
  

RegisterSize($r)

Return the size of a register.

     Parameter  Description
  1  $r         Register

Example:

    Mov rax, 1;
    Mov rdi, 1;
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSeven;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFour;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRax;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRax;
    PrintOutRegisterInHex rax, rdi;
  
    SaveFirstFour;
    Mov rax, 2;
    Mov rdi, 2;
    SaveFirstSeven;
    Mov rax, 3;
    Mov rdi, 4;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstSevenExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
    RestoreFirstFourExceptRaxAndRdi;
    PrintOutRegisterInHex rax, rdi;
  
    Bswap rax;
    PrintOutRegisterInHex rax;
  
    my $l = Label;
    Jmp $l;
    SetLabel $l;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0002
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0001
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0001
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0000 0000 0000 0003
     rdi: 0000 0000 0000 0004
     rax: 0300 0000 0000 0000
  END
  
  
    ok 8 == RegisterSize rax;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  

ClearRegisters(@registers)

Clear registers by setting them to zero.

     Parameter   Description
  1  @registers  Registers

Example:

    Mov rax,1;
    Kmovq k0,  rax;
    Kaddb k0,  k0, k0;
    Kaddb k0,  k0, k0;
    Kaddb k0,  k0, k0;
    Kmovq rax, k0;
    PushR k0;
  
    ClearRegisters k0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Kmovq k1, k0;
    PopR  k0;
    PrintOutRegisterInHex k0;
    PrintOutRegisterInHex k1;
  
    ok Assemble =~ m(k0: 0000 0000 0000 0008.*k1: 0000 0000 0000 0000)s;
  

SetMaskRegister($mask, $start, $length)

Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere.

     Parameter  Description
  1  $mask      Mask register to set
  2  $start     Register containing start position or 0 for position 0
  3  $length    Register containing end position

Example:

    Mov rax, 8;
    Mov rsi, -1;
  
    Inc rsi; SetMaskRegister(k0, rax, rsi); PrintOutRegisterInHex k0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Inc rsi; SetMaskRegister(k1, rax, rsi); PrintOutRegisterInHex k1;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Inc rsi; SetMaskRegister(k2, rax, rsi); PrintOutRegisterInHex k2;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Inc rsi; SetMaskRegister(k3, rax, rsi); PrintOutRegisterInHex k3;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Inc rsi; SetMaskRegister(k4, rax, rsi); PrintOutRegisterInHex k4;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Inc rsi; SetMaskRegister(k5, rax, rsi); PrintOutRegisterInHex k5;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Inc rsi; SetMaskRegister(k6, rax, rsi); PrintOutRegisterInHex k6;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Inc rsi; SetMaskRegister(k7, rax, rsi); PrintOutRegisterInHex k7;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    is_deeply Assemble, <<END;
      k0: 0000 0000 0000 0000
      k1: 0000 0000 0000 0100
      k2: 0000 0000 0000 0300
      k3: 0000 0000 0000 0700
      k4: 0000 0000 0000 0F00
      k5: 0000 0000 0000 1F00
      k6: 0000 0000 0000 3F00
      k7: 0000 0000 0000 7F00
  END
  

SetZF()

Set the zero flag.

Example:

    SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutZF;
    ClearZF;
    PrintOutZF;
  
    SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutZF;
  
    SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutZF;
    ClearZF;
    PrintOutZF;
  
  
    SetZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    IfZ  Then {PrintOutStringNL "Zero"},     Else {PrintOutStringNL "NOT zero"};
    ClearZF;
    IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
  
    Mov r15, 5;
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
  
    ok Assemble(debug=>0, eq => <<END);
  ZF=1
  ZF=0
  ZF=1
  ZF=1
  ZF=0
  Zero
  NOT zero
  Carry
  NO carry
  Carry
  NO carry
  END
  

ClearZF()

Clear the zero flag.

Example:

    SetZF;
    PrintOutZF;
  
    ClearZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutZF;
    SetZF;
    PrintOutZF;
    SetZF;
    PrintOutZF;
  
    ClearZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutZF;
  
    SetZF;
    IfZ  Then {PrintOutStringNL "Zero"},     Else {PrintOutStringNL "NOT zero"};
  
    ClearZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
  
    Mov r15, 5;
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
  
    ok Assemble(debug=>0, eq => <<END);
  ZF=1
  ZF=0
  ZF=1
  ZF=1
  ZF=0
  Zero
  NOT zero
  Carry
  NO carry
  Carry
  NO carry
  END
  

Mask

Operations on mask registers

CheckMaskRegister($mask)

Check that a register is in fact a mask register.

     Parameter  Description
  1  $mask      Mask register to check

LoadConstantIntoMaskRegister($mask, $transfer, $value)

Set a mask register equal to a constant.

     Parameter  Description
  1  $mask      Mask register to load
  2  $transfer  Transfer register
  3  $value     Constant to load

Example:

    Mov r14, 0;
    Kmovq k0, r14;
    Ktestq k0, k0;
    IfZ Then {PrintOutStringNL "0 & 0 == 0"};
    PrintOutZF;
  
  
    LoadConstantIntoMaskRegister k1, r13, 1;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Ktestq k1, k1;
    IfNz Then {PrintOutStringNL "1 & 1 != 0"};
    PrintOutZF;
  
  
    LoadConstantIntoMaskRegister k2, r13, eval "0b".(('1'x4).('0'x4))x2;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    PrintOutRegisterInHex k0, k1, k2;
  
    Mov  r15, 0x89abcdef;
    Mov  r14, 0x01234567;
    Shl  r14, 32;
    Or r15, r14;
    Push r15;
    Push r15;
    PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL;
  
    my $a = V('aaaa');
    $a->pop;
    $a->push;
    $a->outNL;
  
    PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL;
  
    ok Assemble(debug => 0, eq => <<END);
  0 & 0 == 0
  ZF=1
  1 & 1 != 0
  ZF=0
      k0: 0000 0000 0000 0000
      k1: 0000 0000 0000 0001
      k2: 0000 0000 0000 F0F0
  89AB CDEF
  aaaa: 89AB CDEF 0123 4567
  0123 4567
  END
  

LoadBitsIntoMaskRegister($mask, $transfer, $prefix, @values)

Load a bit string specification into a mask register.

     Parameter  Description
  1  $mask      Mask register to load
  2  $transfer  Transfer register
  3  $prefix    Prefix bits
  4  @values    +n 1 bits -n 0 bits

Example:

    for (0..7)
     {ClearRegisters "k$_";
      K($_,$_)->setMaskBit("k$_");
      PrintOutRegisterInHex "k$_";
     }
  
    ClearRegisters k7;
  
    LoadBitsIntoMaskRegister(k7, r15, '1010', -4, +4, -2, +2, -1, +1, -1, +1);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex "k7";
  
    ok Assemble(debug => 0, eq => <<END);
      k0: 0000 0000 0000 0001
      k1: 0000 0000 0000 0002
      k2: 0000 0000 0000 0004
      k3: 0000 0000 0000 0008
      k4: 0000 0000 0000 0010
      k5: 0000 0000 0000 0020
      k6: 0000 0000 0000 0040
      k7: 0000 0000 0000 0080
      k7: 0000 0000 000A 0F35
  END
  

Structured Programming

Structured programming constructs

If($jump, $then, $else)

If.

     Parameter  Description
  1  $jump      Jump op code of variable
  2  $then      Then - required
  3  $else      Else - optional

Example:

    my $c = K(one,1);
  
    If ($c == 0,  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Then
     {PrintOutStringNL "1 == 0";
     },
    Else
     {PrintOutStringNL "1 != 0";
     });
  
    ok Assemble(debug => 0, eq => <<END);
  1 != 0
  END
  

Then($body)

Then body for an If statement.

     Parameter  Description
  1  $body      Then body

Example:

    my $a = V(a, 3);  $a->outNL;
    my $b = K(b, 2);  $b->outNL;
    my $c = $a +  $b; $c->outNL;
    my $d = $c -  $a; $d->outNL;
    my $g = $a *  $b; $g->outNL;
    my $h = $g /  $b; $h->outNL;
    my $i = $a %  $b; $i->outNL;
  
    If ($a == 3,
  
    Then  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {PrintOutStringNL "a == 3"
     },
    Else
     {PrintOutStringNL "a != 3"
     });
  
    ++$a; $a->outNL;
    --$a; $a->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  a: 0000 0000 0000 0003
  b: 0000 0000 0000 0002
  (a add b): 0000 0000 0000 0005
  ((a add b) sub a): 0000 0000 0000 0002
  (a times b): 0000 0000 0000 0006
  ((a times b) / b): 0000 0000 0000 0003
  (a % b): 0000 0000 0000 0001
  a == 3
  a: 0000 0000 0000 0004
  a: 0000 0000 0000 0003
  END
  

Else($body)

Else body for an If statement.

     Parameter  Description
  1  $body      Else body

Example:

    my $a = V(a, 3);  $a->outNL;
    my $b = K(b, 2);  $b->outNL;
    my $c = $a +  $b; $c->outNL;
    my $d = $c -  $a; $d->outNL;
    my $g = $a *  $b; $g->outNL;
    my $h = $g /  $b; $h->outNL;
    my $i = $a %  $b; $i->outNL;
  
    If ($a == 3,
    Then
     {PrintOutStringNL "a == 3"
     },
  
    Else  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {PrintOutStringNL "a != 3"
     });
  
    ++$a; $a->outNL;
    --$a; $a->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  a: 0000 0000 0000 0003
  b: 0000 0000 0000 0002
  (a add b): 0000 0000 0000 0005
  ((a add b) sub a): 0000 0000 0000 0002
  (a times b): 0000 0000 0000 0006
  ((a times b) / b): 0000 0000 0000 0003
  (a % b): 0000 0000 0000 0001
  a == 3
  a: 0000 0000 0000 0004
  a: 0000 0000 0000 0003
  END
  

IfEq($then, $else)

If equal execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    my $cmp = sub
     {my ($a, $b) = @_;
  
      for my $op(qw(eq ne lt le gt ge))
       {Mov rax, $a;
        Cmp rax, $b;
        my $Op = ucfirst $op;
        eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
        $@ and confess $@;
       }
     };
    &$cmp(1,1);
    &$cmp(1,2);
    &$cmp(3,2);
    Assemble(debug => 0, eq => <<END);
  1 eq 1
  1 NOT ne 1
  1 NOT lt 1
  1 le 1
  1 NOT gt 1
  1 ge 1
  1 NOT eq 2
  1 ne 2
  1 lt 2
  1 le 2
  1 NOT gt 2
  1 NOT ge 2
  3 NOT eq 2
  3 ne 2
  3 NOT lt 2
  3 NOT le 2
  3 gt 2
  3 ge 2
  END
  

IfNe($then, $else)

If not equal execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    my $cmp = sub
     {my ($a, $b) = @_;
  
      for my $op(qw(eq ne lt le gt ge))
       {Mov rax, $a;
        Cmp rax, $b;
        my $Op = ucfirst $op;
        eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
        $@ and confess $@;
       }
     };
    &$cmp(1,1);
    &$cmp(1,2);
    &$cmp(3,2);
    Assemble(debug => 0, eq => <<END);
  1 eq 1
  1 NOT ne 1
  1 NOT lt 1
  1 le 1
  1 NOT gt 1
  1 ge 1
  1 NOT eq 2
  1 ne 2
  1 lt 2
  1 le 2
  1 NOT gt 2
  1 NOT ge 2
  3 NOT eq 2
  3 ne 2
  3 NOT lt 2
  3 NOT le 2
  3 gt 2
  3 ge 2
  END
  

IfNz($then, $else)

If the zero flag is not set then execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    Mov rax, 0;
    Test rax,rax;
  
    IfNz  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Then
     {PrintOutRegisterInHex rax;
     },
    Else
     {PrintOutRegisterInHex rbx;
     };
    Mov rax, 1;
    Test rax,rax;
  
    IfNz  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Then
     {PrintOutRegisterInHex rcx;
     },
    Else
     {PrintOutRegisterInHex rdx;
     };
  
    ok Assemble =~ m(rbx.*rcx)s;
  

IfZ($then, $else)

If the zero flag is set then execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    SetZF;
    PrintOutZF;
    ClearZF;
    PrintOutZF;
    SetZF;
    PrintOutZF;
    SetZF;
    PrintOutZF;
    ClearZF;
    PrintOutZF;
  
    SetZF;
  
    IfZ  Then {PrintOutStringNL "Zero"},     Else {PrintOutStringNL "NOT zero"};  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    ClearZF;
    IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
  
    Mov r15, 5;
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
  
    ok Assemble(debug=>0, eq => <<END);
  ZF=1
  ZF=0
  ZF=1
  ZF=1
  ZF=0
  Zero
  NOT zero
  Carry
  NO carry
  Carry
  NO carry
  END
  

IfC($then, $else)

If the carry flag is set then execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    SetZF;
    PrintOutZF;
    ClearZF;
    PrintOutZF;
    SetZF;
    PrintOutZF;
    SetZF;
    PrintOutZF;
    ClearZF;
    PrintOutZF;
  
    SetZF;
    IfZ  Then {PrintOutStringNL "Zero"},     Else {PrintOutStringNL "NOT zero"};
    ClearZF;
    IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
  
    Mov r15, 5;
  
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
  
    ok Assemble(debug=>0, eq => <<END);
  ZF=1
  ZF=0
  ZF=1
  ZF=1
  ZF=0
  Zero
  NOT zero
  Carry
  NO carry
  Carry
  NO carry
  END
  

IfNc($then, $else)

If the carry flag is not set then execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    SetZF;
    PrintOutZF;
    ClearZF;
    PrintOutZF;
    SetZF;
    PrintOutZF;
    SetZF;
    PrintOutZF;
    ClearZF;
    PrintOutZF;
  
    SetZF;
    IfZ  Then {PrintOutStringNL "Zero"},     Else {PrintOutStringNL "NOT zero"};
    ClearZF;
    IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
  
    Mov r15, 5;
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
  
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble(debug=>0, eq => <<END);
  ZF=1
  ZF=0
  ZF=1
  ZF=1
  ZF=0
  Zero
  NOT zero
  Carry
  NO carry
  Carry
  NO carry
  END
  

IfLt($then, $else)

If less than execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    my $cmp = sub
     {my ($a, $b) = @_;
  
      for my $op(qw(eq ne lt le gt ge))
       {Mov rax, $a;
        Cmp rax, $b;
        my $Op = ucfirst $op;
        eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
        $@ and confess $@;
       }
     };
    &$cmp(1,1);
    &$cmp(1,2);
    &$cmp(3,2);
    Assemble(debug => 0, eq => <<END);
  1 eq 1
  1 NOT ne 1
  1 NOT lt 1
  1 le 1
  1 NOT gt 1
  1 ge 1
  1 NOT eq 2
  1 ne 2
  1 lt 2
  1 le 2
  1 NOT gt 2
  1 NOT ge 2
  3 NOT eq 2
  3 ne 2
  3 NOT lt 2
  3 NOT le 2
  3 gt 2
  3 ge 2
  END
  

IfLe($then, $else)

If less than or equal execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    my $cmp = sub
     {my ($a, $b) = @_;
  
      for my $op(qw(eq ne lt le gt ge))
       {Mov rax, $a;
        Cmp rax, $b;
        my $Op = ucfirst $op;
        eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
        $@ and confess $@;
       }
     };
    &$cmp(1,1);
    &$cmp(1,2);
    &$cmp(3,2);
    Assemble(debug => 0, eq => <<END);
  1 eq 1
  1 NOT ne 1
  1 NOT lt 1
  1 le 1
  1 NOT gt 1
  1 ge 1
  1 NOT eq 2
  1 ne 2
  1 lt 2
  1 le 2
  1 NOT gt 2
  1 NOT ge 2
  3 NOT eq 2
  3 ne 2
  3 NOT lt 2
  3 NOT le 2
  3 gt 2
  3 ge 2
  END
  

IfGt($then, $else)

If greater than execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    my $cmp = sub
     {my ($a, $b) = @_;
  
      for my $op(qw(eq ne lt le gt ge))
       {Mov rax, $a;
        Cmp rax, $b;
        my $Op = ucfirst $op;
        eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
        $@ and confess $@;
       }
     };
    &$cmp(1,1);
    &$cmp(1,2);
    &$cmp(3,2);
    Assemble(debug => 0, eq => <<END);
  1 eq 1
  1 NOT ne 1
  1 NOT lt 1
  1 le 1
  1 NOT gt 1
  1 ge 1
  1 NOT eq 2
  1 ne 2
  1 lt 2
  1 le 2
  1 NOT gt 2
  1 NOT ge 2
  3 NOT eq 2
  3 ne 2
  3 NOT lt 2
  3 NOT le 2
  3 gt 2
  3 ge 2
  END
  

IfGe($then, $else)

If greater than or equal execute the then body else the else body.

     Parameter  Description
  1  $then      Then - required
  2  $else      Else - optional

Example:

    my $cmp = sub
     {my ($a, $b) = @_;
  
      for my $op(qw(eq ne lt le gt ge))
       {Mov rax, $a;
        Cmp rax, $b;
        my $Op = ucfirst $op;
        eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
        $@ and confess $@;
       }
     };
    &$cmp(1,1);
    &$cmp(1,2);
    &$cmp(3,2);
    Assemble(debug => 0, eq => <<END);
  1 eq 1
  1 NOT ne 1
  1 NOT lt 1
  1 le 1
  1 NOT gt 1
  1 ge 1
  1 NOT eq 2
  1 ne 2
  1 lt 2
  1 le 2
  1 NOT gt 2
  1 NOT ge 2
  3 NOT eq 2
  3 ne 2
  3 NOT lt 2
  3 NOT le 2
  3 gt 2
  3 ge 2
  END
  

AndBlock($body)

Execute a block of code one with the option of jumping out of the block or restarting the block via the supplied labels. Terminating early is what we want for constructing a concatenation of ands.

     Parameter  Description
  1  $body      Body

Example:

    Mov rax, 0;
  
    AndBlock  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($end, $start) = @_;
      PrintOutRegisterInHex rax;
      Cmp rax, 3;
      Jge $end;
      Inc rax;
      PrintOutRegisterInHex rax
      Jmp $start;
     };
  
    ok Assemble(debug => 0, eq => <<END);
     rax: 0000 0000 0000 0000
     rax: 0000 0000 0000 0001
     rax: 0000 0000 0000 0002
     rax: 0000 0000 0000 0003
  END
  

OrBlock($testBlock, $execBlock)

Execute a block of code one with the option of jumping out of the block or restarting the block via the supplied labels. Executing early is what we want for constructing a concatenation of ors.

     Parameter   Description
  1  $testBlock  Tests block
  2  $execBlock  Exec block

Example:

    Mov rax, 1;
  
    OrBlock  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($exec, $end, $start) = @_;
      Cmp rax, 1;
      Je  $exec;
      Cmp rax, 2;
      Je  $exec;
      PrintOutStringNL "NO Match";
     } sub
     {my ($end, $start) = @_;
      PrintOutStringNL "Matched";
     };
  
    ok Assemble(debug => 0, eq => <<END);
  Matched
  END
  

For($body, $register, $limit, $increment)

For - iterate the body as long as register is less than limit incrementing by increment each time. Nota Bene: The register is not explicitly set to zero as you might want to start at some other number.

     Parameter   Description
  1  $body       Body
  2  $register   Register
  3  $limit      Limit on loop
  4  $increment  Increment on each iteration

Example:

    For  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($start, $end, $next) = @_;
      Cmp rax, 3;
      Jge $end;
      PrintOutRegisterInHex rax;
     } rax, 16, 1;
  
    ok Assemble(debug => 0, eq => <<END);
     rax: 0000 0000 0000 0000
     rax: 0000 0000 0000 0001
     rax: 0000 0000 0000 0002
  END
  

ForIn($full, $last, $register, $limit, $increment)

For - iterate the full body as long as register plus increment is less than than limit incrementing by increment each time then increment the last body for the last non full block.

     Parameter   Description
  1  $full       Body for full block
  2  $last       Body for last block
  3  $register   Register
  4  $limit      Limit on loop
  5  $increment  Increment on each iteration

ForEver($body)

Iterate for ever.

     Parameter  Description
  1  $body      Body to iterate

Macro($body, %options)

Create a sub with optional parameters name=> the name of the subroutine so it can be reused rather than regenerated, comment=> a comment describing the sub.

     Parameter  Description
  1  $body      Body
  2  %options   Options.

Call

Call a subroutine

SubroutineStartStack()

Initialize a new stack frame. The first quad of each frame has the address of the name of the sub in the low dword, and the parameter count in the upper byte of the quad. This field is all zeroes in the initial frame.

Subroutine($body, $parameters, %options)

Create a subroutine that can be called in assembler code.

     Parameter    Description
  1  $body        Body
  2  $parameters  [parameters  names]
  3  %options     Options.

Example:

    my $g = G g, 3;
  
    my $s = Subroutine  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($p, $s) = @_;
      $g->copy($g - 1);
      $g->outNL;
      If ($g > 0,
      Then
       {$s->call;
       });
     } [], name => 'ref';
  
    $s->call;
  
    ok Assemble(debug => 0, eq => <<END);
  g: 0000 0000 0000 0002
  g: 0000 0000 0000 0001
  g: 0000 0000 0000 0000
  END
  
    my $g = G g, 2;
  
    my $u = Subroutine  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($p, $s) = @_;
      PrintOutTraceBack;
      $$p{g}->copy(K gg, 1);
      PrintOutTraceBack;
     } [qw(g)], name => 'uuuu';
  
    my $t = Subroutine  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($p, $s) = @_;
      $u->call($$p{g});
     } [qw(g)], name => 'tttt';
  
    my $s = Subroutine  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($p, $s) = @_;
      $t->call($$p{g});
     } [qw(g)], name => 'ssss';
  
    $g->outNL;
    $s->call($g);
    $g->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  g: 0000 0000 0000 0002
  
  
  Subroutine trace back, depth: 0000 0000 0000 0003  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  0000 0000 0000 0002    uuuu
  0000 0000 0000 0002    tttt
  0000 0000 0000 0002    ssss
  
  
  
  Subroutine trace back, depth: 0000 0000 0000 0003  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  0000 0000 0000 0001    uuuu
  0000 0000 0000 0001    tttt
  0000 0000 0000 0001    ssss
  
  g: 0000 0000 0000 0001
  END
  
    my $r = G r, 2;
  
  
    my $u = Subroutine  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($p, $s) = @_;
      PrintOutTraceBack;
      $$p{u}->copy(K gg, 1);
      PrintOutTraceBack;
     } [qw(u)], name => 'uuuu';
  
  
    my $t = Subroutine  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($p, $s) = @_;
      $u->call(u => $$p{t});
     } [qw(t)], name => 'tttt';
  
  
    my $s = Subroutine  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my ($p, $s) = @_;
     $t->call(t => $$p{s});
     } [qw(s)], name => 'ssss';
  
    $r->outNL;
    $s->call(s=>$r);
    $r->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  r: 0000 0000 0000 0002
  
  
  Subroutine trace back, depth: 0000 0000 0000 0003  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  0000 0000 0000 0002    uuuu
  0000 0000 0000 0002    tttt
  0000 0000 0000 0002    ssss
  
  
  
  Subroutine trace back, depth: 0000 0000 0000 0003  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  0000 0000 0000 0001    uuuu
  0000 0000 0000 0001    tttt
  0000 0000 0000 0001    ssss
  
  r: 0000 0000 0000 0001
  END
  

Nasm::X86::Sub::call($sub, @parameters)

Call a sub passing it some parameters.

     Parameter    Description
  1  $sub         Subroutine descriptor
  2  @parameters  Parameter variables

Nasm::X86::Sub::via($sub, $ref, @parameters)

Call a sub by reference passing it some parameters.

     Parameter    Description
  1  $sub         Subroutine descriptor
  2  $ref         Label of sub
  3  @parameters  Parameter variables

Nasm::X86::Sub::V($sub)

Put the address of a subroutine into a stack variable so that it can be passed as a parameter.

     Parameter  Description
  1  $sub       Subroutine descriptor

PrintTraceBack($channel)

Trace the call stack.

     Parameter  Description
  1  $channel   Channel to write on

PrintErrTraceBack()

Print sub routine track back on stderr.

PrintOutTraceBack()

Print sub routine track back on stdout.

Example:

    my $d = V depth, 3;                                                           # Create a variable on the stack
  
    my $s = Subroutine
     {my ($p, $s) = @_;                                                           # Parameters, subroutine descriptor
  
      PrintOutTraceBack;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
      my $d = $$p{depth}->copy($$p{depth} - 1);                                   # Modify the variable referenced by the parameter
  
      If ($d > 0,
      Then
       {$s->call($d);                                                             # Recurse
       });
  
  
      PrintOutTraceBack;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     } [qw(depth)], name => 'ref';
  
    $s->call($d);                                                                 # Call the subroutine
  
    ok Assemble(debug => 0, eq => <<END);
  
  Subroutine trace back, depth: 0000 0000 0000 0001
  0000 0000 0000 0003    ref
  
  
  Subroutine trace back, depth: 0000 0000 0000 0002
  0000 0000 0000 0002    ref
  0000 0000 0000 0002    ref
  
  
  Subroutine trace back, depth: 0000 0000 0000 0003
  0000 0000 0000 0001    ref
  0000 0000 0000 0001    ref
  0000 0000 0000 0001    ref
  
  
  Subroutine trace back, depth: 0000 0000 0000 0003
  0000 0000 0000 0000    ref
  0000 0000 0000 0000    ref
  0000 0000 0000 0000    ref
  
  
  Subroutine trace back, depth: 0000 0000 0000 0002
  0000 0000 0000 0000    ref
  0000 0000 0000 0000    ref
  
  
  Subroutine trace back, depth: 0000 0000 0000 0001
  0000 0000 0000 0000    ref
  
  END
  

OnSegv()

Request a trace back followed by exit on a segv signal.

Example:

    OnSegv();                                                                     # Request a trace back followed by exit on a segv signal.  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    my $t = Subroutine                                                            # Subroutine that will cause an error to occur to force a trace back to be printed
     {Mov r15, 0;
      Mov r15, "[r15]";                                                           # Try to read an unmapped memory location
     } [qw(in)], name => 'sub that causes a segv';                                # The name that will appear in the trace back
  
    $t->call(K(in, 42));
  
    ok Assemble(debug => 0, keep2 => 'signal', emulator=>0, eq => <<END);         # Cannot use the emulator because it does not understand signals
  
  Subroutine trace back, depth: 0000 0000 0000 0001
  0000 0000 0000 002A    sub that causes a segv
  
  END
  

cr($body, @registers)

Call a subroutine with a reordering of the registers.

     Parameter   Description
  1  $body       Code to execute with reordered registers
  2  @registers  Registers to reorder

Comments

Inserts comments into the generated assember code.

CommentWithTraceBack(@comment)

Insert a comment into the assembly code with a traceback showing how it was generated.

     Parameter  Description
  1  @comment   Text of comment

Comment(@comment)

Insert a comment into the assembly code.

     Parameter  Description
  1  @comment   Text of comment

Example:

    Comment "Print a string from memory";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $s = "Hello World";
    Mov rax, Rs($s);
    Mov rdi, length $s;
    PrintOutMemory;
    Exit(0);
  
    ok Assemble =~ m(Hello World);
  

DComment(@comment)

Insert a comment into the data segment.

     Parameter  Description
  1  @comment   Text of comment

RComment(@comment)

Insert a comment into the read only data segment.

     Parameter  Description
  1  @comment   Text of comment

Print

Print

PrintNL($channel)

Print a new line to stdout or stderr.

     Parameter  Description
  1  $channel   Channel to write on

PrintErrNL()

Print a new line to stderr.

PrintOutNL()

Print a new line to stderr.

Example:

    my $q = Rs('abababab');
    Mov(rax, "[$q]");
    PrintOutString "rax: ";
    PrintOutRaxInHex;
  
    PrintOutNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Xor rax, rax;
    PrintOutString "rax: ";
    PrintOutRaxInHex;
  
    PrintOutNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble =~ m(rax: 6261 6261 6261 6261.*rax: 0000 0000 0000 0000)s;
  

PrintString($channel, @string)

Print a constant string to the specified channel.

     Parameter  Description
  1  $channel   Channel
  2  @string    Strings

PrintStringNL($channel, @string)

Print a constant string to the specified channel followed by a new line.

     Parameter  Description
  1  $channel   Channel
  2  @string    Strings

PrintErrString(@string)

Print a constant string to stderr.

     Parameter  Description
  1  @string    String

PrintOutString(@string)

Print a constant string to stdout.

     Parameter  Description
  1  @string    String

Example:

    my $q = Rs('abababab');
    Mov(rax, "[$q]");
  
    PrintOutString "rax: ";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRaxInHex;
    PrintOutNL;
    Xor rax, rax;
  
    PrintOutString "rax: ";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRaxInHex;
    PrintOutNL;
  
    ok Assemble =~ m(rax: 6261 6261 6261 6261.*rax: 0000 0000 0000 0000)s;
  

PrintSpace($channel, $spaces)

Print one or more spaces to the specified channel.

     Parameter  Description
  1  $channel   Channel
  2  $spaces    Number of spaces if not one.

PrintErrSpace($spaces)

Print one or more spaces to stderr.

     Parameter  Description
  1  $spaces    Number of spaces if not one.

PrintOutSpace($spaces)

Print one or more spaces to stdout.

     Parameter  Description
  1  $spaces    Number of spaces if not one.

PrintErrStringNL(@string)

Print a constant string followed by a new line to stderr.

     Parameter  Description
  1  @string    Strings

Example:

    PrintOutStringNL "Hello World";
    PrintOutStringNL "Hello
World";
  
    PrintErrStringNL "Hello World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble(debug => 0, eq => <<END);
  Hello World
  Hello
  World
  END
  

PrintOutStringNL(@string)

Print a constant string followed by a new line to stdout.

     Parameter  Description
  1  @string    Strings

Example:

    PrintOutStringNL "Hello World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    PrintOutStringNL "Hello
World";  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintErrStringNL "Hello World";
  
    ok Assemble(debug => 0, eq => <<END);
  Hello World
  Hello
  World
  END
  

PrintRaxInHex($channel, $end)

Write the content of register rax in hexadecimal in big endian notation to the specified channel.

     Parameter  Description
  1  $channel   Channel
  2  $end       Optional end byte

PrintErrRaxInHex()

Write the content of register rax in hexadecimal in big endian notation to stderr.

PrintOutRaxInHex()

Write the content of register rax in hexadecimal in big endian notation to stderr.

Example:

    my $q = Rs('abababab');
    Mov(rax, "[$q]");
    PrintOutString "rax: ";
  
    PrintOutRaxInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutNL;
    Xor rax, rax;
    PrintOutString "rax: ";
  
    PrintOutRaxInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutNL;
  
    ok Assemble =~ m(rax: 6261 6261 6261 6261.*rax: 0000 0000 0000 0000)s;
  

PrintOutRaxInReverseInHex()

Write the content of register rax to stderr in hexadecimal in little endian notation.

Example:

    Mov rax, 0x07654321;
    Shl rax, 32;
    Or  rax, 0x07654321;
    PushR rax;
  
    PrintOutRaxInHex;
    PrintOutNL;
  
    PrintOutRaxInReverseInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutNL;
  
    Mov rax, rsp;
    Mov rdi, 8;
    PrintOutMemoryInHex;
    PrintOutNL;
    PopR rax;
  
    Mov rax, 4096;
    PushR rax;
    Mov rax, rsp;
    Mov rdi, 8;
    PrintOutMemoryInHex;
    PrintOutNL;
    PopR rax;
  
    is_deeply Assemble, <<END;
  0765 4321 0765 4321
  2143 6507 2143 6507
  2143 6507 2143 6507
  0010 0000 0000 0000
  END
  

PrintOneRegisterInHex($channel, $r)

Print the named register as a hex strings.

     Parameter  Description
  1  $channel   Channel to print on
  2  $r         Register to print

PrintRegisterInHex($channel, @r)

Print the named registers as hex strings.

     Parameter  Description
  1  $channel   Channel to print on
  2  @r         Names of the registers to print

PrintErrRegisterInHex(@r)

Print the named registers as hex strings on stderr.

     Parameter  Description
  1  @r         Names of the registers to print

PrintOutRegisterInHex(@r)

Print the named registers as hex strings on stdout.

     Parameter  Description
  1  @r         Names of the registers to print

Example:

    my $q = Rs(('a'..'p')x4);
    Mov r8,"[$q]";
  
    PrintOutRegisterInHex r8;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble(debug=>0, eq => <<END);
      r8: 6867 6665 6463 6261
  END
  

PrintOutRegistersInHex()

Print the general purpose registers in hex.

Example:

    my $q = Rs('abababab');
    Mov(rax, 1);
    Mov(rbx, 2);
    Mov(rcx, 3);
    Mov(rdx, 4);
    Mov(r8,  5);
    Lea r9,  "[rax+rbx]";
  
    PrintOutRegistersInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    my $r = Assemble;
    ok $r =~ m( r8: 0000 0000 0000 0005.* r9: 0000 0000 0000 0003.*rax: 0000 0000 0000 0001)s;
    ok $r =~ m(rbx: 0000 0000 0000 0002.*rcx: 0000 0000 0000 0003.*rdx: 0000 0000 0000 0004)s;
  

PrintErrZF()

Print the zero flag without disturbing it on stderr.

PrintOutZF()

Print the zero flag without disturbing it on stdout.

Example:

    SetZF;
  
    PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    ClearZF;
  
    PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    SetZF;
  
    PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    SetZF;
  
    PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    ClearZF;
  
    PrintOutZF;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    SetZF;
    IfZ  Then {PrintOutStringNL "Zero"},     Else {PrintOutStringNL "NOT zero"};
    ClearZF;
    IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
  
    Mov r15, 5;
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfC  Then {PrintOutStringNL "Carry"}   , Else {PrintOutStringNL "NO carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
    Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
  
    ok Assemble(debug=>0, eq => <<END);
  ZF=1
  ZF=0
  ZF=1
  ZF=1
  ZF=0
  Zero
  NOT zero
  Carry
  NO carry
  Carry
  NO carry
  END
  

Variables

Variable definitions and operations

Definitions

Variable definitions

Variable($name, $expr, %options)

Create a new variable with the specified name initialized via an optional expression.

     Parameter  Description
  1  $name      Name of variable
  2  $expr      Optional expression initializing variable
  3  %options   Options

G($name, $expr, %options)

Define a global variable.

     Parameter  Description
  1  $name      Name of variable
  2  $expr      Initializing expression
  3  %options   Options

Example:

    my $s = Subroutine
     {my ($p) = @_;
      $$p{v}->copy($$p{v} + $$p{k} + $$p{g} + 1);
     } [qw(v k g)], name => 'add';
  
    my $v = V(v, 1);
    my $k = K(k, 2);
  
    my $g = G(g, 3);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    $s->call($v, $k, $g);
    $v->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  v: 0000 0000 0000 0007
  END
  
  
    my $g = G g, 0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $s = Subroutine
     {my ($p) = @_;
      $$p{g}->copy(K value, 1);
     } [qw(g)], name => 'ref2';
  
    my $t = Subroutine
     {my ($p) = @_;
      $s->call($$p{g});
     } [qw(g)], name => 'ref';
  
    $t->call($g);
    $g->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  g: 0000 0000 0000 0001
  END
  

K($name, $expr, %options)

Define a constant variable.

     Parameter  Description
  1  $name      Name of variable
  2  $expr      Initializing expression
  3  %options   Options

Example:

    my $s = Subroutine
     {my ($p) = @_;
      $$p{v}->copy($$p{v} + $$p{k} + $$p{g} + 1);
     } [qw(v k g)], name => 'add';
  
    my $v = V(v, 1);
  
    my $k = K(k, 2);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $g = G(g, 3);
    $s->call($v, $k, $g);
    $v->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  v: 0000 0000 0000 0007
  END
  
    my $g = G g, 0;
    my $s = Subroutine
     {my ($p) = @_;
  
      $$p{g}->copy(K value, 1);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     } [qw(g)], name => 'ref2';
  
    my $t = Subroutine
     {my ($p) = @_;
      $s->call($$p{g});
     } [qw(g)], name => 'ref';
  
    $t->call($g);
    $g->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  g: 0000 0000 0000 0001
  END
  
    my $a = V(a, 3);  $a->outNL;
  
    my $b = K(b, 2);  $b->outNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $c = $a +  $b; $c->outNL;
    my $d = $c -  $a; $d->outNL;
    my $g = $a *  $b; $g->outNL;
    my $h = $g /  $b; $h->outNL;
    my $i = $a %  $b; $i->outNL;
  
    If ($a == 3,
    Then
     {PrintOutStringNL "a == 3"
     },
    Else
     {PrintOutStringNL "a != 3"
     });
  
    ++$a; $a->outNL;
    --$a; $a->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  a: 0000 0000 0000 0003
  b: 0000 0000 0000 0002
  (a add b): 0000 0000 0000 0005
  ((a add b) sub a): 0000 0000 0000 0002
  (a times b): 0000 0000 0000 0006
  ((a times b) / b): 0000 0000 0000 0003
  (a % b): 0000 0000 0000 0001
  a == 3
  a: 0000 0000 0000 0004
  a: 0000 0000 0000 0003
  END
  

R($name)

Define a reference variable.

     Parameter  Description
  1  $name      Name of variable

V($name, $expr, %options)

Define a variable.

     Parameter  Description
  1  $name      Name of variable
  2  $expr      Initializing expression
  3  %options   Options

Example:

    my $s = Subroutine
     {my ($p) = @_;
      $$p{v}->copy($$p{v} + $$p{k} + $$p{g} + 1);
     } [qw(v k g)], name => 'add';
  
  
    my $v = V(v, 1);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $k = K(k, 2);
    my $g = G(g, 3);
    $s->call($v, $k, $g);
    $v->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  v: 0000 0000 0000 0007
  END
  
    my $g = G g, 0;
    my $s = Subroutine
     {my ($p) = @_;
      $$p{g}->copy(K value, 1);
     } [qw(g)], name => 'ref2';
  
    my $t = Subroutine
     {my ($p) = @_;
      $s->call($$p{g});
     } [qw(g)], name => 'ref';
  
    $t->call($g);
    $g->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  g: 0000 0000 0000 0001
  END
  
  
    my $a = V(a, 3);  $a->outNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    my $b = K(b, 2);  $b->outNL;
    my $c = $a +  $b; $c->outNL;
    my $d = $c -  $a; $d->outNL;
    my $g = $a *  $b; $g->outNL;
    my $h = $g /  $b; $h->outNL;
    my $i = $a %  $b; $i->outNL;
  
    If ($a == 3,
    Then
     {PrintOutStringNL "a == 3"
     },
    Else
     {PrintOutStringNL "a != 3"
     });
  
    ++$a; $a->outNL;
    --$a; $a->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  a: 0000 0000 0000 0003
  b: 0000 0000 0000 0002
  (a add b): 0000 0000 0000 0005
  ((a add b) sub a): 0000 0000 0000 0002
  (a times b): 0000 0000 0000 0006
  ((a times b) / b): 0000 0000 0000 0003
  (a % b): 0000 0000 0000 0001
  a == 3
  a: 0000 0000 0000 0004
  a: 0000 0000 0000 0003
  END
  

Print the values of variables or the memory addressed by them

Nasm::X86::Variable::err($left, $title1, $title2)

Dump the value of a variable on stderr.

     Parameter  Description
  1  $left      Left variable
  2  $title1    Optional leading title
  3  $title2    Optional trailing title

Nasm::X86::Variable::out($left, $title1, $title2)

Dump the value of a variable on stdout.

     Parameter  Description
  1  $left      Left variable
  2  $title1    Optional leading title
  3  $title2    Optional trailing title

Nasm::X86::Variable::errNL($left, $title1, $title2)

Dump the value of a variable on stderr and append a new line.

     Parameter  Description
  1  $left      Left variable
  2  $title1    Optional leading title
  3  $title2    Optional trailing title

Nasm::X86::Variable::d($left, $title1, $title2)

Dump the value of a variable on stderr and append a new line.

     Parameter  Description
  1  $left      Left variable
  2  $title1    Optional leading title
  3  $title2    Optional trailing title

Nasm::X86::Variable::outNL($left, $title1, $title2)

Dump the value of a variable on stdout and append a new line.

     Parameter  Description
  1  $left      Left variable
  2  $title1    Optional leading title
  3  $title2    Optional trailing title

Nasm::X86::Variable::debug($left)

Dump the value of a variable on stdout with an indication of where the dump came from.

     Parameter  Description
  1  $left      Left variable

Operations

Variable operations

Nasm::X86::Variable::address($left, $offset)

Get the address of a variable with an optional offset.

     Parameter  Description
  1  $left      Left variable
  2  $offset    Optional offset

Nasm::X86::Variable::copy($left, $right, $Transfer)

Copy one variable into another.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable
  3  $Transfer  Optional transfer register

Example:

    my $s = Subroutine
     {my ($p) = @_;
      $$p{v}->copy($$p{v} + $$p{k} + $$p{g} + 1);
     } [qw(v k g)], name => 'add';
  
    my $v = V(v, 1);
    my $k = K(k, 2);
    my $g = G(g, 3);
    $s->call($v, $k, $g);
    $v->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  v: 0000 0000 0000 0007
  END
  
    my $g = G g, 0;
    my $s = Subroutine
     {my ($p) = @_;
      $$p{g}->copy(K value, 1);
     } [qw(g)], name => 'ref2';
  
    my $t = Subroutine
     {my ($p) = @_;
      $s->call($$p{g});
     } [qw(g)], name => 'ref';
  
    $t->call($g);
    $g->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  g: 0000 0000 0000 0001
  END
  

Nasm::X86::Variable::copyAddress($left, $right, $Transfer)

Copy a reference to a variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable
  3  $Transfer  Optional transfer register

Nasm::X86::Variable::copyZF($var)

Copy the current state of the zero flag into a variable.

     Parameter  Description
  1  $var       Variable

Example:

    Mov r15, 1;
    my $z = V(zf);
    Cmp r15, 1; $z->copyZF;         $z->outNL;
    Cmp r15, 2; $z->copyZF;         $z->outNL;
    Cmp r15, 1; $z->copyZFInverted; $z->outNL;
    Cmp r15, 2; $z->copyZFInverted; $z->outNL;
  
    is_deeply Assemble(debug=>0), <<END;
  zf: 0000 0000 0000 0001
  zf: 0000 0000 0000 0000
  zf: 0000 0000 0000 0000
  zf: 0000 0000 0000 0001
  END
  

Nasm::X86::Variable::copyZFInverted($var)

Copy the opposite of the current state of the zero flag into a variable.

     Parameter  Description
  1  $var       Variable

Example:

    Mov r15, 1;
    my $z = V(zf);
    Cmp r15, 1; $z->copyZF;         $z->outNL;
    Cmp r15, 2; $z->copyZF;         $z->outNL;
    Cmp r15, 1; $z->copyZFInverted; $z->outNL;
    Cmp r15, 2; $z->copyZFInverted; $z->outNL;
  
    is_deeply Assemble(debug=>0), <<END;
  zf: 0000 0000 0000 0001
  zf: 0000 0000 0000 0000
  zf: 0000 0000 0000 0000
  zf: 0000 0000 0000 0001
  END
  

Nasm::X86::Variable::equals($op, $left, $right)

Equals operator.

     Parameter  Description
  1  $op        Operator
  2  $left      Left variable
  3  $right     Right variable

Nasm::X86::Variable::assign($left, $op, $right)

Assign to the left hand side the value of the right hand side.

     Parameter  Description
  1  $left      Left variable
  2  $op        Operator
  3  $right     Right variable

Nasm::X86::Variable::plusAssign($left, $right)

Implement plus and assign.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::minusAssign($left, $right)

Implement minus and assign.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::arithmetic($op, $name, $left, $right)

Return a variable containing the result of an arithmetic operation on the left hand and right hand side variables.

     Parameter  Description
  1  $op        Operator
  2  $name      Operator name
  3  $left      Left variable
  4  $right     Right variable

Nasm::X86::Variable::add($left, $right)

Add the right hand variable to the left hand variable and return the result as a new variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::sub($left, $right)

Subtract the right hand variable from the left hand variable and return the result as a new variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::times($left, $right)

Multiply the left hand variable by the right hand variable and return the result as a new variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::division($op, $left, $right)

Return a variable containing the result or the remainder that occurs when the left hand side is divided by the right hand side.

     Parameter  Description
  1  $op        Operator
  2  $left      Left variable
  3  $right     Right variable

Nasm::X86::Variable::divide($left, $right)

Divide the left hand variable by the right hand variable and return the result as a new variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::mod($left, $right)

Divide the left hand variable by the right hand variable and return the remainder as a new variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::boolean($sub, $op, $left, $right)

Combine the left hand variable with the right hand variable via a boolean operator.

     Parameter  Description
  1  $sub       Operator
  2  $op        Operator name
  3  $left      Left variable
  4  $right     Right variable

Nasm::X86::Variable::booleanZF($sub, $op, $left, $right)

Combine the left hand variable with the right hand variable via a boolean operator and indicate the result by setting the zero flag if the result is true.

     Parameter  Description
  1  $sub       Operator
  2  $op        Operator name
  3  $left      Left variable
  4  $right     Right variable

Nasm::X86::Variable::booleanC($cmov, $op, $left, $right)

Combine the left hand variable with the right hand variable via a boolean operator using a conditional move instruction.

     Parameter  Description
  1  $cmov      Conditional move instruction name
  2  $op        Operator name
  3  $left      Left variable
  4  $right     Right variable

Nasm::X86::Variable::eq($left, $right)

Check whether the left hand variable is equal to the right hand variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::ne($left, $right)

Check whether the left hand variable is not equal to the right hand variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::ge($left, $right)

Check whether the left hand variable is greater than or equal to the right hand variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::gt($left, $right)

Check whether the left hand variable is greater than the right hand variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::le($left, $right)

Check whether the left hand variable is less than or equal to the right hand variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::lt($left, $right)

Check whether the left hand variable is less than the right hand variable.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::isRef($variable)

Check whether the specified variable is a reference to another variable.

     Parameter  Description
  1  $variable  Variable

Nasm::X86::Variable::setReg($variable, $register)

Set the named registers from the content of the variable.

     Parameter  Description
  1  $variable  Variable
  2  $register  Register to load

Nasm::X86::Variable::getReg($variable, $register, @registers)

Load the variable from the named registers.

     Parameter   Description
  1  $variable   Variable
  2  $register   Register to load
  3  @registers  Optional further registers to load from

Nasm::X86::Variable::getConst($variable, $constant, $transfer)

Load the variable from a constant in effect setting a variable to a specified value.

     Parameter  Description
  1  $variable  Variable
  2  $constant  Constant to load
  3  $transfer  Optional transfer register

Nasm::X86::Variable::getConst22($variable, $constant)

Load the variable from a constant in effect setting a variable to a specified value.

     Parameter  Description
  1  $variable  Variable
  2  $constant  Constant to load

Nasm::X86::Variable::incDec($left, $op)

Increment or decrement a variable.

     Parameter  Description
  1  $left      Left variable operator
  2  $op        Address of operator to perform inc or dec

Nasm::X86::Variable::inc($left)

Increment a variable.

     Parameter  Description
  1  $left      Variable

Nasm::X86::Variable::dec($left)

Decrement a variable.

     Parameter  Description
  1  $left      Variable

Nasm::X86::Variable::str($left)

The name of the variable.

     Parameter  Description
  1  $left      Variable

Nasm::X86::Variable::min($left, $right)

Minimum of two variables.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Example:

    my $a = V("a", 1);
    my $b = V("b", 2);
    my $c = $a->min($b);
    my $d = $a->max($b);
    $a->outNL;
    $b->outNL;
    $c->outNL;
    $d->outNL;
  
    is_deeply Assemble,<<END;
  a: 0000 0000 0000 0001
  b: 0000 0000 0000 0002
  Minimum(a, b): 0000 0000 0000 0001
  Maximum(a, b): 0000 0000 0000 0002
  END
  

Nasm::X86::Variable::max($left, $right)

Maximum of two variables.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Example:

    my $a = V("a", 1);
    my $b = V("b", 2);
    my $c = $a->min($b);
    my $d = $a->max($b);
    $a->outNL;
    $b->outNL;
    $c->outNL;
    $d->outNL;
  
    is_deeply Assemble,<<END;
  a: 0000 0000 0000 0001
  b: 0000 0000 0000 0002
  Minimum(a, b): 0000 0000 0000 0001
  Maximum(a, b): 0000 0000 0000 0002
  END
  

Nasm::X86::Variable::and($left, $right)

And two variables.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::or($left, $right)

Or two variables.

     Parameter  Description
  1  $left      Left variable
  2  $right     Right variable

Nasm::X86::Variable::setMask($start, $length, $mask)

Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere.

     Parameter  Description
  1  $start     Variable containing start of mask
  2  $length    Variable containing length of mask
  3  $mask      Mask register

Example:

    my $start  = V("Start",  7);
    my $length = V("Length", 3);
    $start->setMask($length, k7);
    PrintOutRegisterInHex k7;
  
    is_deeply Assemble, <<END;
      k7: 0000 0000 0000 0380
  END
  
    my $z = V('zero', 0);
    my $o = V('one',  1);
    my $t = V('two',  2);
    $z->setMask($o,       k7); PrintOutRegisterInHex k7;
    $z->setMask($t,       k6); PrintOutRegisterInHex k6;
    $z->setMask($o+$t,    k5); PrintOutRegisterInHex k5;
    $o->setMask($o,       k4); PrintOutRegisterInHex k4;
    $o->setMask($t,       k3); PrintOutRegisterInHex k3;
    $o->setMask($o+$t,    k2); PrintOutRegisterInHex k2;
  
    $t->setMask($o,       k1); PrintOutRegisterInHex k1;
    $t->setMask($t,       k0); PrintOutRegisterInHex k0;
  
  
    ok Assemble(debug => 0, eq => <<END);
      k7: 0000 0000 0000 0001
      k6: 0000 0000 0000 0003
      k5: 0000 0000 0000 0007
      k4: 0000 0000 0000 0002
      k3: 0000 0000 0000 0006
      k2: 0000 0000 0000 000E
      k1: 0000 0000 0000 0004
      k0: 0000 0000 0000 000C
  END
  

Nasm::X86::Variable::setMaskFirst($length, $mask)

Set the first bits in the specified mask register.

     Parameter  Description
  1  $length    Variable containing length to set
  2  $mask      Mask register

Nasm::X86::Variable::setMaskBit($index, $mask)

Set a bit in the specified mask register retaining the other bits.

     Parameter  Description
  1  $index     Variable containing bit position to set
  2  $mask      Mask register

Nasm::X86::Variable::clearMaskBit($index, $mask)

Clear a bit in the specified mask register retaining the other bits.

     Parameter  Description
  1  $index     Variable containing bit position to clear
  2  $mask      Mask register

Nasm::X86::Variable::setBit($index, $mask)

Set a bit in the specified register retaining the other bits.

     Parameter  Description
  1  $index     Variable containing bit position to set
  2  $mask      Mask register

Nasm::X86::Variable::clearBit($index, $mask)

Clear a bit in the specified mask register retaining the other bits.

     Parameter  Description
  1  $index     Variable containing bit position to clear
  2  $mask      Mask register

Nasm::X86::Variable::setZmm($source, $zmm, $offset, $length)

Load bytes from the memory addressed by specified source variable into the numbered zmm register at the offset in the specified offset moving the number of bytes in the specified variable.

     Parameter  Description
  1  $source    Variable containing the address of the source
  2  $zmm       Number of zmm to load
  3  $offset    Variable containing offset in zmm to move to
  4  $length    Variable containing length of move

Example:

    my $s = Rb(0..128);
    my $source = V(Source, $s);
  
    if (1)                                                                        # First block
     {my $offset = V(Offset, 7);
      my $length = V(Length, 3);
      $source->setZmm(0, $offset, $length);
     }
  
    if (1)                                                                        # Second block
     {my $offset = V(Offset, 33);
      my $length = V(Length, 12);
      $source->setZmm(0, $offset, $length);
     }
  
    PrintOutRegisterInHex zmm0;
  
    is_deeply Assemble, <<END;
    zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 000B 0A09 0807   0605 0403 0201 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0201   0000 0000 0000 0000
  END
  

Nasm::X86::Variable::loadZmm($source, $zmm)

Load bytes from the memory addressed by the specified source variable into the numbered zmm register.

     Parameter  Description
  1  $source    Variable containing the address of the source
  2  $zmm       Number of zmm to get

loadFromZmm($register, $size, $zmm, $offset)

Load the specified register from the offset located in the numbered zmm.

     Parameter  Description
  1  $register  Register to load
  2  $size      "b|w|d|q" for size
  3  $zmm       Numbered zmm register to load from
  4  $offset    Constant offset in bytes

putIntoZmm($register, $size, $zmm, $offset)

Put the specified register into the numbered zmm at the specified offset in the zmm.

     Parameter  Description
  1  $register  Register to load
  2  $size      Bwdq for size
  3  $zmm       Numbered zmm register to load from
  4  $offset    Constant offset in bytes

getBwdqFromMm($size, $mm, $offset, $Transfer, $target)

Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable.

     Parameter  Description
  1  $size      Size of get
  2  $mm        Mm register
  3  $offset    Offset in bytes either as a constant or as a variable
  4  $Transfer  Optional transfer register
  5  $target    Optional target variable - if none supplied we create a variable

getBwdqFromMm22($size, $mm, $offset, $Transfer, $target)

Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable.

     Parameter  Description
  1  $size      Size of get
  2  $mm        Mm register
  3  $offset    Offset in bytes either as a constant or as a variable
  4  $Transfer  Optional transfer register
  5  $target    Optional target variable - if none supplied we create a variable

getBFromXmm($xmm, $offset)

Get the byte from the numbered xmm register and return it in a variable.

     Parameter  Description
  1  $xmm       Numbered xmm
  2  $offset    Offset in bytes

getWFromXmm($xmm, $offset)

Get the word from the numbered xmm register and return it in a variable.

     Parameter  Description
  1  $xmm       Numbered xmm
  2  $offset    Offset in bytes

getDFromXmm($xmm, $offset)

Get the double word from the numbered xmm register and return it in a variable.

     Parameter  Description
  1  $xmm       Numbered xmm
  2  $offset    Offset in bytes

getQFromXmm($xmm, $offset)

Get the quad word from the numbered xmm register and return it in a variable.

     Parameter  Description
  1  $xmm       Numbered xmm
  2  $offset    Offset in bytes

getBFromZmm($zmm, $offset)

Get the byte from the numbered zmm register and return it in a variable.

     Parameter  Description
  1  $zmm       Numbered zmm
  2  $offset    Offset in bytes

getWFromZmm($zmm, $offset)

Get the word from the numbered zmm register and return it in a variable.

     Parameter  Description
  1  $zmm       Numbered zmm
  2  $offset    Offset in bytes

getDFromZmm($zmm, $offset, $transfer)

Get the double word from the numbered zmm register and return it in a variable.

     Parameter  Description
  1  $zmm       Numbered zmm
  2  $offset    Offset in bytes
  3  $transfer  Optional transfer register

Example:

    my $s = Rb(0..8);
    my $c = V("Content",   "[$s]");
       $c->putBIntoZmm(0,  4);
       $c->putWIntoZmm(0,  6);
       $c->putDIntoZmm(0, 10);
       $c->putQIntoZmm(0, 16);
    PrintOutRegisterInHex zmm0;
    getBFromZmm(0, 12)->outNL;
    getWFromZmm(0, 12)->outNL;
  
    getDFromZmm(0, 12, r15)->outNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    getQFromZmm(0, 12)->outNL;
  
    is_deeply Assemble, <<END;
    zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0706 0504 0302 0100   0000 0302 0100 0000   0100 0000 0000 0000
  b at offset 12 in zmm0: 0000 0000 0000 0002
  w at offset 12 in zmm0: 0000 0000 0000 0302
  d at offset 12 in zmm0: 0000 0000 0000 0302
  q at offset 12 in zmm0: 0302 0100 0000 0302
  END
  

getQFromZmm($zmm, $offset)

Get the quad word from the numbered zmm register and return it in a variable.

     Parameter  Description
  1  $zmm       Numbered zmm
  2  $offset    Offset in bytes

Nasm::X86::Variable::getBFromZmm($variable, $zmm, $offset)

Get the byte from the numbered zmm register and put it in a variable.

     Parameter  Description
  1  $variable  Variable
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::getWFromZmm($variable, $zmm, $offset)

Get the word from the numbered zmm register and put it in a variable.

     Parameter  Description
  1  $variable  Variable
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::getDFromZmmUnOPtimized($variable, $zmm, $offset, $transfer)

Get the double word from the numbered zmm register and put it in a variable.

     Parameter  Description
  1  $variable  Variable
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes
  4  $transfer  Transfer register

Nasm::X86::Variable::getDFromZmm($variable, $zmm, $offset, $transfer)

Get the double word from the numbered zmm register and put it in a variable.

     Parameter  Description
  1  $variable  Variable
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes
  4  $transfer  Transfer register

Nasm::X86::Variable::getQFromZmm($variable, $zmm, $offset)

Get the quad word from the numbered zmm register and put it in a variable.

     Parameter  Description
  1  $variable  Variable
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::putBwdqIntoMm($content, $size, $mm, $offset, $Transfer)

Place the value of the content variable at the byte|word|double word|quad word in the numbered zmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $size      Size of put
  3  $mm        Numbered zmm
  4  $offset    Offset in bytes
  5  $Transfer  Optional transfer register

Nasm::X86::Variable::putBIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the byte in the numbered xmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $xmm       Numbered xmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::putWIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the word in the numbered xmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $xmm       Numbered xmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::putDIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the double word in the numbered xmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $xmm       Numbered xmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::putQIntoXmm($content, $xmm, $offset)

Place the value of the content variable at the quad word in the numbered xmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $xmm       Numbered xmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::putBIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the byte in the numbered zmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::putWIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the word in the numbered zmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes

Nasm::X86::Variable::putDIntoZmm($content, $zmm, $offset, $transfer)

Place the value of the content variable at the double word in the numbered zmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes
  4  $transfer  Optional transfer register

Example:

    my $s = Rb(0..8);
    my $c = V("Content",   "[$s]");
       $c->putBIntoZmm(0,  4);
       $c->putWIntoZmm(0,  6);
       $c->putDIntoZmm(0, 10);
       $c->putQIntoZmm(0, 16);
    PrintOutRegisterInHex zmm0;
    getBFromZmm(0, 12)->outNL;
    getWFromZmm(0, 12)->outNL;
    getDFromZmm(0, 12, r15)->outNL;
    getQFromZmm(0, 12)->outNL;
  
    is_deeply Assemble, <<END;
    zmm0: 0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0706 0504 0302 0100   0000 0302 0100 0000   0100 0000 0000 0000
  b at offset 12 in zmm0: 0000 0000 0000 0002
  w at offset 12 in zmm0: 0000 0000 0000 0302
  d at offset 12 in zmm0: 0000 0000 0000 0302
  q at offset 12 in zmm0: 0302 0100 0000 0302
  END
  

Nasm::X86::Variable::putQIntoZmm($content, $zmm, $offset)

Place the value of the content variable at the quad word in the numbered zmm register.

     Parameter  Description
  1  $content   Variable with content
  2  $zmm       Numbered zmm
  3  $offset    Offset in bytes

Broadcast

Broadcast from a variable into a zmm

Nasm::X86::Variable::zBroadCastD($variable, $zmm)

Broadcast a double word in a variable into the numbered zmm.

     Parameter  Description
  1  $variable  Variable containing value to broadcast
  2  $zmm       Numbered zmm to broadcast to

Stack

Push and pop variables to and from the stack

Nasm::X86::Variable::push($variable)

Push a variable onto the stack.

     Parameter  Description
  1  $variable  Variable

Nasm::X86::Variable::pop($variable)

Pop a variable from the stack.

     Parameter  Description
  1  $variable  Variable

Memory

Actions on memory described by variables

Nasm::X86::Variable::clearMemory($address, $size)

Clear the memory described in this variable.

     Parameter  Description
  1  $address   Address of memory to clear
  2  $size      Size of the memory to clear

Nasm::X86::Variable::copyMemory($target, $source, $size)

Copy from one block of memory to another.

     Parameter  Description
  1  $target    Address of target
  2  $source    Address of source
  3  $size      Length to copy

Nasm::X86::Variable::printMemoryInHexNL($address, $channel, $size)

Write the memory addressed by a variable to stdout or stderr.

     Parameter  Description
  1  $address   Address of memory
  2  $channel   Channel to print on
  3  $size      Number of bytes to print

Nasm::X86::Variable::printErrMemoryInHexNL($address, $size)

Write the memory addressed by a variable to stderr.

     Parameter  Description
  1  $address   Address of memory
  2  $size      Number of bytes to print

Nasm::X86::Variable::printOutMemoryInHexNL($address, $size)

Write the memory addressed by a variable to stdout.

     Parameter  Description
  1  $address   Address of memory
  2  $size      Number of bytes to print

Nasm::X86::Variable::freeMemory($address, $size)

Free the memory addressed by this variable for the specified length.

     Parameter  Description
  1  $address   Address of memory to free
  2  $size      Size of the memory to free

Example:

    my $N = V(size, 2048);
    my $q = Rs('a'..'p');
    AllocateMemory($N, my $address = V(address));
  
    Vmovdqu8 xmm0, "[$q]";
    $address->setReg(rax);
    Vmovdqu8 "[rax]", xmm0;
    Mov rdi, 16;
    PrintOutMemory;
    PrintOutNL;
  
    FreeMemory(address => $address, size=> $N);
  
    ok Assemble(eq => <<END);
  abcdefghijklmnop
  END
  

Nasm::X86::Variable::allocateMemory($size)

Allocate the specified amount of memory via mmap and return its address.

     Parameter  Description
  1  $size      Size

Structured Programming with variables

Structured programming operations driven off variables.

Nasm::X86::Variable::for($limit, $body)

Iterate the body limit times.

     Parameter  Description
  1  $limit     Limit
  2  $body      Body

Example:

    V(limit,10)->for(sub
     {my ($i, $start, $next, $end) = @_;
      $i->outNL;
     });
  
    is_deeply Assemble, <<END;
  index: 0000 0000 0000 0000
  index: 0000 0000 0000 0001
  index: 0000 0000 0000 0002
  index: 0000 0000 0000 0003
  index: 0000 0000 0000 0004
  index: 0000 0000 0000 0005
  index: 0000 0000 0000 0006
  index: 0000 0000 0000 0007
  index: 0000 0000 0000 0008
  index: 0000 0000 0000 0009
  END
  

Stack

Manage data on the stack

Push, Pop, Peek

Generic versions of push, pop, peek

PopR(@r)

Pop registers from the stack. Use the last stored set if none explicitly supplied. Pops are done in reverse order to match the original pushing order.

     Parameter  Description
  1  @r         Register

Example:

    Mov rax, 0x11111111;
    Mov rbx, 0x22222222;
    PushR my @save = (rax, rbx);
    Mov rax, 0x33333333;
  
    PopR;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 1111 1111
     rbx: 0000 0000 2222 2222
  END
  

PopEax()

We cannot pop a double word from the stack in 64 bit long mode using pop so we improvise.

Example:

    Mov r14, 0;
    Kmovq k0, r14;
    Ktestq k0, k0;
    IfZ Then {PrintOutStringNL "0 & 0 == 0"};
    PrintOutZF;
  
    LoadConstantIntoMaskRegister k1, r13, 1;
    Ktestq k1, k1;
    IfNz Then {PrintOutStringNL "1 & 1 != 0"};
    PrintOutZF;
  
    LoadConstantIntoMaskRegister k2, r13, eval "0b".(('1'x4).('0'x4))x2;
  
    PrintOutRegisterInHex k0, k1, k2;
  
    Mov  r15, 0x89abcdef;
    Mov  r14, 0x01234567;
    Shl  r14, 32;
    Or r15, r14;
    Push r15;
    Push r15;
  
    PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    my $a = V('aaaa');
    $a->pop;
    $a->push;
    $a->outNL;
  
  
    PopEax;  PrintRaxInHex($stdout, 3); PrintOutNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble(debug => 0, eq => <<END);
  0 & 0 == 0
  ZF=1
  1 & 1 != 0
  ZF=0
      k0: 0000 0000 0000 0000
      k1: 0000 0000 0000 0001
      k2: 0000 0000 0000 F0F0
  89AB CDEF
  aaaa: 89AB CDEF 0123 4567
  0123 4567
  END
  

PeekR($r)

Peek at register on stack.

     Parameter  Description
  1  $r         Register

PushZmm(@Z)

Push several zmm registers.

     Parameter  Description
  1  @Z         Zmm register numbers

PopZmm()

Pop zmm registers.

PushMask(@M)

Push several Mask registers.

     Parameter  Description
  1  @M         Mask register numbers

PopMask()

Pop Mask registers.

Declarations

Declare variables and structures

Structures

Declare a structure

Structure()

Create a structure addressed by a register.

Nasm::X86::Structure::field($structure, $length, $comment)

Add a field of the specified length with an optional comment.

     Parameter   Description
  1  $structure  Structure data descriptor
  2  $length     Length of data
  3  $comment    Optional comment

Nasm::X86::StructureField::addr($field, $register)

Address a field in a structure by either the default register or the named register.

     Parameter  Description
  1  $field     Field
  2  $register  Optional address register else rax

All8Structure($N)

Create a structure consisting of 8 byte fields.

     Parameter  Description
  1  $N         Number of variables required

Stack Frame

Declare local variables in a frame on the stack

LocalData()

Map local data.

Nasm::X86::LocalData::start($local)

Start a local data area on the stack.

     Parameter  Description
  1  $local     Local data descriptor

Nasm::X86::LocalData::free($local)

Free a local data area on the stack.

     Parameter  Description
  1  $local     Local data descriptor

Nasm::X86::LocalData::variable($local, $length, $comment)

Add a local variable.

     Parameter  Description
  1  $local     Local data descriptor
  2  $length    Length of data
  3  $comment   Optional comment

Nasm::X86::LocalVariable::stack($variable)

Address a local variable on the stack.

     Parameter  Description
  1  $variable  Variable

Nasm::X86::LocalData::allocate8($local, @comments)

Add some 8 byte local variables and return an array of variable definitions.

     Parameter  Description
  1  $local     Local data descriptor
  2  @comments  Optional comment

AllocateAll8OnStack($N)

Create a local data descriptor consisting of the specified number of 8 byte local variables and return an array: (local data descriptor, variable definitions...).

     Parameter  Description
  1  $N         Number of variables required

Operating system

Interacting with the operating system.

Processes

Create and manage processes

Fork()

Fork.

Example:

    Fork;                                                                         # Fork  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Test rax,rax;
    IfNz                                                                          # Parent
    Then
     {Mov rbx, rax;
      WaitPid;
      GetPid;                                                                     # Pid of parent as seen in parent
      Mov rcx,rax;
      PrintOutRegisterInHex rax, rbx, rcx;
     },
    Else                                                                          # Child
     {Mov r8,rax;
      GetPid;                                                                     # Child pid as seen in child
      Mov r9,rax;
      GetPPid;                                                                    # Parent pid as seen in child
      Mov r10,rax;
      PrintOutRegisterInHex r8, r9, r10;
     };
  
    my $r = Assemble;
  
  #    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
  #    r9: 0000 0000 0003 0C63   #2 Pid of child
  #   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
  #   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
  #   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
  #   rcx: 0000 0000 0003 0C60   #6 Pid of parent
  
    if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
     {ok $2 eq $4;
      ok $2 eq $5;
      ok $3 eq $6;
      ok $2 gt $6;
     }
  

GetPid()

Get process identifier.

Example:

    Fork;                                                                         # Fork
  
    Test rax,rax;
    IfNz                                                                          # Parent
    Then
     {Mov rbx, rax;
      WaitPid;
  
      GetPid;                                                                     # Pid of parent as seen in parent  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

      Mov rcx,rax;
      PrintOutRegisterInHex rax, rbx, rcx;
     },
    Else                                                                          # Child
     {Mov r8,rax;
  
      GetPid;                                                                     # Child pid as seen in child  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

      Mov r9,rax;
      GetPPid;                                                                    # Parent pid as seen in child
      Mov r10,rax;
      PrintOutRegisterInHex r8, r9, r10;
     };
  
    my $r = Assemble;
  
  #    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
  #    r9: 0000 0000 0003 0C63   #2 Pid of child
  #   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
  #   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
  #   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
  #   rcx: 0000 0000 0003 0C60   #6 Pid of parent
  
    if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
     {ok $2 eq $4;
      ok $2 eq $5;
      ok $3 eq $6;
      ok $2 gt $6;
     }
  

GetPidInHex()

Get process identifier in hex as 8 zero terminated bytes in rax.

Example:

    GetPidInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
  
    ok Assemble =~ m(rax: 00);
  

GetPPid()

Get parent process identifier.

Example:

    Fork;                                                                         # Fork
  
    Test rax,rax;
    IfNz                                                                          # Parent
    Then
     {Mov rbx, rax;
      WaitPid;
      GetPid;                                                                     # Pid of parent as seen in parent
      Mov rcx,rax;
      PrintOutRegisterInHex rax, rbx, rcx;
     },
    Else                                                                          # Child
     {Mov r8,rax;
      GetPid;                                                                     # Child pid as seen in child
      Mov r9,rax;
  
      GetPPid;                                                                    # Parent pid as seen in child  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

      Mov r10,rax;
      PrintOutRegisterInHex r8, r9, r10;
     };
  
    my $r = Assemble;
  
  #    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
  #    r9: 0000 0000 0003 0C63   #2 Pid of child
  #   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
  #   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
  #   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
  #   rcx: 0000 0000 0003 0C60   #6 Pid of parent
  
    if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
     {ok $2 eq $4;
      ok $2 eq $5;
      ok $3 eq $6;
      ok $2 gt $6;
     }
  

GetUid()

Get userid of current process.

Example:

    GetUid;                                                                       # Userid  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
  
    my $r = Assemble;
    ok $r =~ m(rax:( 0000){3});
  

WaitPid()

Wait for the pid in rax to complete.

Example:

    Fork;                                                                         # Fork
  
    Test rax,rax;
    IfNz                                                                          # Parent
    Then
     {Mov rbx, rax;
  
      WaitPid;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

      GetPid;                                                                     # Pid of parent as seen in parent
      Mov rcx,rax;
      PrintOutRegisterInHex rax, rbx, rcx;
     },
    Else                                                                          # Child
     {Mov r8,rax;
      GetPid;                                                                     # Child pid as seen in child
      Mov r9,rax;
      GetPPid;                                                                    # Parent pid as seen in child
      Mov r10,rax;
      PrintOutRegisterInHex r8, r9, r10;
     };
  
    my $r = Assemble;
  
  #    r8: 0000 0000 0000 0000   #1 Return from fork as seen by child
  #    r9: 0000 0000 0003 0C63   #2 Pid of child
  #   r10: 0000 0000 0003 0C60   #3 Pid of parent from child
  #   rax: 0000 0000 0003 0C63   #4 Return from fork as seen by parent
  #   rbx: 0000 0000 0003 0C63   #5 Wait for child pid result
  #   rcx: 0000 0000 0003 0C60   #6 Pid of parent
  
    if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
     {ok $2 eq $4;
      ok $2 eq $5;
      ok $3 eq $6;
      ok $2 gt $6;
     }
  

ReadTimeStampCounter()

Read the time stamp counter and return the time in nanoseconds in rax.

Example:

    for(1..10)
  
     {ReadTimeStampCounter;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

      PrintOutRegisterInHex rax;
     }
  
    my @s = split /
/, Assemble;
    my @S = sort @s;
    is_deeply \@s, \@S;
  

Memory

Allocate and print memory

PrintMemoryInHex($channel)

Dump memory from the address in rax for the length in rdi on the specified channel. As this method prints in blocks of 8 up to 7 bytes will be missing from the end unless the length is a multiple of 8 .

     Parameter  Description
  1  $channel   Channel

PrintErrMemoryInHex()

Dump memory from the address in rax for the length in rdi on stderr.

PrintOutMemoryInHex()

Dump memory from the address in rax for the length in rdi on stdout.

Example:

    Mov rax, 0x07654321;
    Shl rax, 32;
    Or  rax, 0x07654321;
    PushR rax;
  
    PrintOutRaxInHex;
    PrintOutNL;
    PrintOutRaxInReverseInHex;
    PrintOutNL;
  
    Mov rax, rsp;
    Mov rdi, 8;
  
    PrintOutMemoryInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutNL;
    PopR rax;
  
    Mov rax, 4096;
    PushR rax;
    Mov rax, rsp;
    Mov rdi, 8;
  
    PrintOutMemoryInHex;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutNL;
    PopR rax;
  
    is_deeply Assemble, <<END;
  0765 4321 0765 4321
  2143 6507 2143 6507
  2143 6507 2143 6507
  0010 0000 0000 0000
  END
  

PrintErrMemoryInHexNL()

Dump memory from the address in rax for the length in rdi and then print a new line.

PrintOutMemoryInHexNL()

Dump memory from the address in rax for the length in rdi and then print a new line.

Example:

    my $N = 256;
    my $s = Rb 0..$N-1;
    AllocateMemory(K(size, $N), my $a = V(address));
    CopyMemory(V(source, $s), V(size, $N), target => $a);
  
    AllocateMemory(K(size, $N), my $b = V(address));
    CopyMemory(source => $a, target => $b, K(size, $N));
  
    $b->setReg(rax);
    Mov rdi, $N;
  
    PrintOutMemoryInHexNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble(debug=>0, eq => <<END);
  0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
  END
  

PrintMemory($channel)

Print the memory addressed by rax for a length of rdi on the specified channel.

     Parameter  Description
  1  $channel   Channel

Example:

    my $file = G(file, Rs($0));
    my $size = G(size);
    my $address = G(address);
    ReadFile $file, $size, $address;                                              # Read file
    $address->setReg(rax);                                                        # Address of file in memory
    $size   ->setReg(rdi);                                                        # Length  of file in memory
    PrintOutMemory;                                                               # Print contents of memory to stdout
  
    my $r = Assemble;                                                             # Assemble and execute
    ok stringMd5Sum($r) eq fileMd5Sum($0);                                        # Output contains this file
  

PrintMemoryNL()

Print the memory addressed by rax for a length of rdi on the specified channel followed by a new line.

PrintErrMemory()

Print the memory addressed by rax for a length of rdi on stderr.

PrintOutMemory()

Print the memory addressed by rax for a length of rdi on stdout.

Example:

    Comment "Print a string from memory";
    my $s = "Hello World";
    Mov rax, Rs($s);
    Mov rdi, length $s;
  
    PrintOutMemory;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Exit(0);
  
    ok Assemble =~ m(Hello World);
  

PrintErrMemoryNL()

Print the memory addressed by rax for a length of rdi followed by a new line on stderr.

PrintOutMemoryNL()

Print the memory addressed by rax for a length of rdi followed by a new line on stdout.

Example:

    my $s = Rs("Hello World

Hello Skye"); Mov rax, $s; Cstrlen; Mov rdi, r15;

    PrintOutMemoryNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble(debug => 0, eq => <<END);
  Hello World
  
  Hello Skye
  END
  

AllocateMemory(@variables)

Allocate the specified amount of memory via mmap and return its address.

     Parameter   Description
  1  @variables  Parameters

Example:

    my $N = V(size, 2048);
    my $q = Rs('a'..'p');
  
    AllocateMemory($N, my $address = V(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    Vmovdqu8 xmm0, "[$q]";
    $address->setReg(rax);
    Vmovdqu8 "[rax]", xmm0;
    Mov rdi, 16;
    PrintOutMemory;
    PrintOutNL;
  
    FreeMemory(address => $address, size=> $N);
  
    ok Assemble(eq => <<END);
  abcdefghijklmnop
  END
  
    my $N = V(size, 4096);                                                        # Size of the initial allocation which should be one or more pages
  
  
    AllocateMemory($N, my $A = V(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ClearMemory($N, $A);
  
    $A->setReg(rax);
    Mov rdi, 128;
    PrintOutMemoryInHexNL;
  
    FreeMemory($N, $A);
  
    ok Assemble(debug => 1, eq => <<END);
  0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  END
  
    my $N = 256;
    my $s = Rb 0..$N-1;
  
    AllocateMemory(K(size, $N), my $a = V(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    CopyMemory(V(source, $s), V(size, $N), target => $a);
  
  
    AllocateMemory(K(size, $N), my $b = V(address));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    CopyMemory(source => $a, target => $b, K(size, $N));
  
    $b->setReg(rax);
    Mov rdi, $N;
    PrintOutMemoryInHexNL;
  
    ok Assemble(debug=>0, eq => <<END);
  0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
  END
  

FreeMemory(@variables)

Free memory.

     Parameter   Description
  1  @variables  Variables

Example:

    my $N = V(size, 4096);                                                        # Size of the initial allocation which should be one or more pages
  
    AllocateMemory($N, my $A = V(address));
  
    ClearMemory($N, $A);
  
    $A->setReg(rax);
    Mov rdi, 128;
    PrintOutMemoryInHexNL;
  
  
    FreeMemory($N, $A);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble(debug => 1, eq => <<END);
  0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  END
  

ClearMemory(@variables)

Clear memory.

     Parameter   Description
  1  @variables  Variables

Example:

    K(loop, 8+1)->for(sub
     {my ($index, $start, $next, $end) = @_;
      $index->setReg(r15);
      Push r15;
     });
  
    Mov rax, rsp;
    Mov rdi, 8*9;
    PrintOutMemoryInHexNL;
  
    ClearMemory(K(size, 8*9), V(address, rax));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutMemoryInHexNL;
  
    ok Assemble(debug => 0, eq => <<END);
  0800 0000 0000 00000700 0000 0000 00000600 0000 0000 00000500 0000 0000 00000400 0000 0000 00000300 0000 0000 00000200 0000 0000 00000100 0000 0000 00000000 0000 0000 0000
  0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  END
  
    my $N = V(size, 4096);                                                        # Size of the initial allocation which should be one or more pages
  
    AllocateMemory($N, my $A = V(address));
  
  
    ClearMemory($N, $A);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    $A->setReg(rax);
    Mov rdi, 128;
    PrintOutMemoryInHexNL;
  
    FreeMemory($N, $A);
  
    ok Assemble(debug => 1, eq => <<END);
  0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  END
  

MaskMemory22(@variables)

Write the specified byte into locations in the target mask that correspond to the locations in the source that contain the specified byte.

     Parameter   Description
  1  @variables  Variables

MaskMemoryInRange4_22(@variables)

Write the specified byte into locations in the target mask that correspond to the locations in the source that contain 4 bytes in the specified range.

     Parameter   Description
  1  @variables  Variables

CopyMemory(@variables)

Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi.

     Parameter   Description
  1  @variables  Variables

Example:

    my $s = Rb 0; Rb 1; Rw 2; Rd 3;  Rq 4;
    my $t = Db 0; Db 1; Dw 2; Dd 3;  Dq 4;
  
    Vmovdqu8 xmm0, "[$s]";
    Vmovdqu8 xmm1, "[$t]";
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
    Sub rsp, 16;
  
    Mov rax, rsp;                                                                 # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
    Mov rdi, 16;
    Mov rsi, $s;
  
    CopyMemory(V(source, rsi), V(target, rax), V(size, rdi));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutMemoryInHex;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(xmm1: 0000 0000 0000 0004   0000 0003 0002 0100);
    ok $r =~ m(0001 0200 0300 00000400 0000 0000 0000);
  
    my $N = 256;
    my $s = Rb 0..$N-1;
    AllocateMemory(K(size, $N), my $a = V(address));
  
    CopyMemory(V(source, $s), V(size, $N), target => $a);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    AllocateMemory(K(size, $N), my $b = V(address));
  
    CopyMemory(source => $a, target => $b, K(size, $N));  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    $b->setReg(rax);
    Mov rdi, $N;
    PrintOutMemoryInHexNL;
  
    ok Assemble(debug=>0, eq => <<END);
  0001 0203 0405 06070809 0A0B 0C0D 0E0F1011 1213 1415 16171819 1A1B 1C1D 1E1F2021 2223 2425 26272829 2A2B 2C2D 2E2F3031 3233 3435 36373839 3A3B 3C3D 3E3F4041 4243 4445 46474849 4A4B 4C4D 4E4F5051 5253 5455 56575859 5A5B 5C5D 5E5F6061 6263 6465 66676869 6A6B 6C6D 6E6F7071 7273 7475 76777879 7A7B 7C7D 7E7F8081 8283 8485 86878889 8A8B 8C8D 8E8F9091 9293 9495 96979899 9A9B 9C9D 9E9FA0A1 A2A3 A4A5 A6A7A8A9 AAAB ACAD AEAFB0B1 B2B3 B4B5 B6B7B8B9 BABB BCBD BEBFC0C1 C2C3 C4C5 C6C7C8C9 CACB CCCD CECFD0D1 D2D3 D4D5 D6D7D8D9 DADB DCDD DEDFE0E1 E2E3 E4E5 E6E7E8E9 EAEB ECED EEEFF0F1 F2F3 F4F5 F6F7F8F9 FAFB FCFD FEFF
  END
  

Files

Interact with the operating system via files.

OpenRead()

Open a file, whose name is addressed by rax, for read and return the file descriptor in rax.

Example:

    Mov rax, Rs($0);                                                              # File to read
  
    OpenRead;                                                                     # Open file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
    CloseFile;                                                                    # Close file
    PrintOutRegisterInHex rax;
  
    Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write
    OpenWrite;                                                                    # Open file
    CloseFile;                                                                    # Close file
  
    is_deeply Assemble, <<END;                                                    # Channel  is now used for tracing
     rax: 0000 0000 0000 0003
     rax: 0000 0000 0000 0000
  END
    ok -e $f;                                                                     # Created file
    unlink $f;
  

OpenWrite()

Create the file named by the terminated string addressed by rax for write.

Example:

    Mov rax, Rs($0);                                                              # File to read
    OpenRead;                                                                     # Open file
    PrintOutRegisterInHex rax;
    CloseFile;                                                                    # Close file
    PrintOutRegisterInHex rax;
  
    Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write
  
    OpenWrite;                                                                    # Open file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    CloseFile;                                                                    # Close file
  
    is_deeply Assemble, <<END;                                                    # Channel  is now used for tracing
     rax: 0000 0000 0000 0003
     rax: 0000 0000 0000 0000
  END
    ok -e $f;                                                                     # Created file
    unlink $f;
  

CloseFile()

Close the file whose descriptor is in rax.

Example:

    Mov rax, Rs($0);                                                              # File to read
    OpenRead;                                                                     # Open file
    PrintOutRegisterInHex rax;
  
    CloseFile;                                                                    # Close file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
  
    Mov rax, Rs(my $f = "zzzTemporaryFile.txt");                                  # File to write
    OpenWrite;                                                                    # Open file
  
    CloseFile;                                                                    # Close file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    is_deeply Assemble, <<END;                                                    # Channel  is now used for tracing
     rax: 0000 0000 0000 0003
     rax: 0000 0000 0000 0000
  END
    ok -e $f;                                                                     # Created file
    unlink $f;
  

StatSize()

Stat a file whose name is addressed by rax to get its size in rax.

Example:

    Mov rax, Rs($0);                                                              # File to stat
  
    StatSize;                                                                     # Stat the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    PrintOutRegisterInHex rax;
  
    my $r = Assemble =~ s( ) ()gsr;
    if ($r =~ m(rax:([0-9a-f]{16}))is)                                            # Compare file size obtained with that from fileSize()
     {is_deeply $1, sprintf("%016X", fileSize($0));
     }
  

ReadFile(@variables)

Read a file whose name is addressed by rax into memory. The address of the mapped memory and its length are returned in registers rax,rdi.

     Parameter   Description
  1  @variables  Variables

Example:

    my $file = G(file, Rs($0));
    my $size = G(size);
    my $address = G(address);
  
    ReadFile $file, $size, $address;                                              # Read file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    $address->setReg(rax);                                                        # Address of file in memory
    $size   ->setReg(rdi);                                                        # Length  of file in memory
    PrintOutMemory;                                                               # Print contents of memory to stdout
  
    my $r = Assemble;                                                             # Assemble and execute
    ok stringMd5Sum($r) eq fileMd5Sum($0);                                        # Output contains this file
  

executeFileViaBash(@variables)

Execute the file named in the arena addressed by rax with bash.

     Parameter   Description
  1  @variables  Variables

Example:

    my $s = CreateArena;                                                          # Create a string
    $s->ql(<<END);                                                                # Write code to execute
  #!/usr/bin/bash
  whoami
  ls -la
  pwd
  END
    $s->write         (my $f = V('file', Rs("zzz.sh")));                          # Write code to a file
  
    executeFileViaBash($f);                                                       # Execute the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    unlinkFile        ($f);                                                       # Delete the file
  
    my $u = qx(whoami); chomp($u);
    ok Assemble(emulator=>0) =~ m($u);                                            # The Intel Software Development Emulator is way too slow on these operations.
  

unlinkFile(@variables)

Unlink the named file.

     Parameter   Description
  1  @variables  Variables

Example:

    my $s = CreateArena;                                                          # Create a string
    $s->ql(<<END);                                                                # Write code to execute
  #!/usr/bin/bash
  whoami
  ls -la
  pwd
  END
    $s->write         (my $f = V('file', Rs("zzz.sh")));                          # Write code to a file
    executeFileViaBash($f);                                                       # Execute the file
  
    unlinkFile        ($f);                                                       # Delete the file  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    my $u = qx(whoami); chomp($u);
    ok Assemble(emulator=>0) =~ m($u);                                            # The Intel Software Development Emulator is way too slow on these operations.
  

Hash functions

Hash functions

Hash()

Hash a string addressed by rax with length held in rdi and return the hash code in r15.

Example:

    Mov rax, "[rbp+24]";
    Cstrlen;                                                                      # Length of string to hash
    Mov rdi, r15;
  
    Hash();                                                                       # Hash string  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    PrintOutRegisterInHex r15;
  
    my $e = Assemble keep=>'hash';                                                # Assemble to the specified file name
    ok qx($e "")  =~ m(r15: 0000 3F80 0000 3F80);                                 # Test well known hashes
    ok qx($e "a") =~ m(r15: 0000 3F80 C000 45B2);
  
  
    if (0)                                                                        # Hash various strings  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

     {my %r; my %f; my $count = 0;
      my $N = RegisterSize zmm0;
  
      if (1)                                                                      # Fixed blocks
       {for my $l(qw(a ab abc abcd), 'a a', 'a  a')
         {for my $i(1..$N)
           {my $t = $l x $i;
            last if $N < length $t;
            my $s = substr($t.(' ' x $N), 0, $N);
            next if $f{$s}++;
            my $r = qx($e "$s");
            say STDERR "$count  $r";
            if ($r =~ m(^.*r15:\s*(.*)$)m)
             {push $r{$1}->@*, $s;
              ++$count;
             }
           }
         }
       }
  
      if (1)                                                                      # Variable blocks
       {for my $l(qw(a ab abc abcd), '', 'a a', 'a  a')
         {for my $i(1..$N)
           {my $t = $l x $i;
            next if $f{$t}++;
            my $r = qx($e "$t");
            say STDERR "$count  $r";
            if ($r =~ m(^.*r15:\s*(.*)$)m)
             {push $r{$1}->@*, $t;
              ++$count;
             }
           }
         }
       }
      for my $r(keys %r)
       {delete $r{$r} if $r{$r}->@* < 2;
       }
  
      say STDERR dump(\%r);
      say STDERR "Keys hashed: ", $count;
      confess "Duplicates : ",  scalar keys(%r);
     }
  

Unicode

Convert utf8 to utf32

GetNextUtf8CharAsUtf32(@parameters)

Get the next utf8 encoded character from the addressed memory and return it as a utf32 char.

     Parameter    Description
  1  @parameters  Parameters

ConvertUtf8ToUtf32(@parameters)

Convert a string of utf8 to an allocated block of utf32 and return its address and length.

     Parameter    Description
  1  @parameters  Parameters

Example:

    my @p = my ($out, $size, $fail) = (V(out), V(size), V('fail'));
  
    my $Chars = Rb(0x24, 0xc2, 0xa2, 0xc9, 0x91, 0xE2, 0x82, 0xAC, 0xF0, 0x90, 0x8D, 0x88);
    my $chars = V(chars, $Chars);
  
    GetNextUtf8CharAsUtf32 in=>$chars, @p;                                        # Dollar               UTF-8 Encoding: 0x24                UTF-32 Encoding: 0x00000024
    $out->out('out1 : ');     $size->outNL(' size : ');
  
    GetNextUtf8CharAsUtf32 in=>$chars+1, @p;                                      # Cents                UTF-8 Encoding: 0xC2 0xA2           UTF-32 Encoding: 0x000000a2
    $out->out('out2 : ');     $size->outNL(' size : ');
  
    GetNextUtf8CharAsUtf32 in=>$chars+3, @p;                                      # Alpha                UTF-8 Encoding: 0xC9 0x91           UTF-32 Encoding: 0x00000251
    $out->out('out3 : ');     $size->outNL(' size : ');
  
    GetNextUtf8CharAsUtf32 in=>$chars+5, @p;                                      # Euro                 UTF-8 Encoding: 0xE2 0x82 0xAC      UTF-32 Encoding: 0x000020AC
    $out->out('out4 : ');     $size->outNL(' size : ');
  
    GetNextUtf8CharAsUtf32 in=>$chars+8, @p;                                      # Gothic Letter Hwair  UTF-8 Encoding  0xF0 0x90 0x8D 0x88 UTF-32 Encoding: 0x00010348
    $out->out('out5 : ');     $size->outNL(' size : ');
  
    my $statement = qq(𝖺
 𝑎𝑠𝑠𝑖𝑔𝑛 【【𝖻 𝐩𝐥𝐮𝐬 𝖼】】
AAAAAAAA);                        # A sample sentence to parse
  
    my $s = K(statement, Rutf8($statement));
    my $l = StringLength string => $s;
  
    AllocateMemory($l, my $address = V(address));                                 # Allocate enough memory for a copy of the string
    CopyMemory(source => $s, target => $address, $l);
  
    GetNextUtf8CharAsUtf32 in=>$address, @p;
    $out->out('outA : ');     $size->outNL(' size : ');
  
    GetNextUtf8CharAsUtf32 in=>$address+4, @p;
    $out->out('outB : ');     $size->outNL(' size : ');
  
    GetNextUtf8CharAsUtf32 in=>$address+5, @p;
    $out->out('outC : ');     $size->outNL(' size : ');
  
    GetNextUtf8CharAsUtf32 in=>$address+30, @p;
    $out->out('outD : ');     $size->outNL(' size : ');
  
    GetNextUtf8CharAsUtf32 in=>$address+35, @p;
    $out->out('outE : ');     $size->outNL(' size : ');
  
    $address->printOutMemoryInHexNL($l);
  
    ok Assemble(debug => 0, eq => <<END);
  out1 : 0000 0000 0000 0024 size : 0000 0000 0000 0001
  out2 : 0000 0000 0000 00A2 size : 0000 0000 0000 0002
  out3 : 0000 0000 0000 0251 size : 0000 0000 0000 0002
  out4 : 0000 0000 0000 20AC size : 0000 0000 0000 0003
  out5 : 0000 0000 0001 0348 size : 0000 0000 0000 0004
  outA : 0000 0000 0001 D5BA size : 0000 0000 0000 0004
  outB : 0000 0000 0000 000A size : 0000 0000 0000 0001
  outC : 0000 0000 0000 0020 size : 0000 0000 0000 0001
  outD : 0000 0000 0000 0020 size : 0000 0000 0000 0001
  outE : 0000 0000 0000 0010 size : 0000 0000 0000 0002
  F09D 96BA 0A20 F09D918E F09D 91A0 F09D91A0 F09D 9196 F09D9194 F09D 919B 20E38090 E380 90F0 9D96BB20 F09D 90A9 F09D90A5 F09D 90AE F09D90AC 20F0 9D96 BCE38091 E380 910A 4141
  END
  

ClassifyInRange(@parameters)

Character classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with each word in zmm1 having the classification in the highest 8 bits and with zmm0 and zmm1 having the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 21 bits. The classification bits from the first matching range are copied into the high (unused) byte of each utf32 character in the block of memory.

     Parameter    Description
  1  @parameters  Parameters

ClassifyWithInRange(@parameters)

Bracket classification: Classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with the classification range in the highest 8 bits of zmm0 and zmm1 and the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 21 bits. The classification bits from the position within the first matching range are copied into the high (unused) byte of each utf32 character in the block of memory.

     Parameter    Description
  1  @parameters  Parameters

ClassifyWithInRangeAndSaveOffset(@parameters)

Alphabetic classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with the classification code in the high byte of zmm1 and the offset of the first element in the range in the high byte of zmm0. The lowest 21 bits of each double word in zmm0 and zmm1 contain the utf32 characters marking the start and end of each range. The classification bits from zmm1 for the first matching range are copied into the high byte of each utf32 character in the block of memory. The offset in the range is copied into the lowest byte of each utf32 character in the block of memory. The middle two bytes are cleared. The net effect is to reduce 21 bits of utf32 to 16 bits.

     Parameter    Description
  1  @parameters  Parameters

Short Strings

Operations on Short Strings

LoadShortStringFromMemoryToZmm($zmm, $address)

Load the short string addressed by rax into the zmm register with the specified number.

     Parameter  Description
  1  $zmm       Zmm register to load
  2  $address   Address of string in memory

Example:

    my $s = Rb(3, 0x01, 0x02, 0x03);
    my $t = Rb(7, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a);
  
  
    LoadShortStringFromMemoryToZmm 0, $s;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    LoadShortStringFromMemoryToZmm 1, $t;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    ConcatenateShortStrings(0, 1);
    PrintOutRegisterInHex xmm0;
    PrintOutRegisterInHex xmm1;
  
    my $r = Assemble;
    ok $r =~ m(xmm0: 0000 0000 000A 0908   0706 0504 0302 010A);
    ok $r =~ m(xmm1: 0000 0000 0000 0000   0A09 0807 0605 0407);
  

GetLengthOfShortString($reg, $zmm)

Get the length of the short string held in the numbered zmm register into the specified register.

     Parameter  Description
  1  $reg       Register to hold length
  2  $zmm       Number of zmm register containing string

SetLengthOfShortString($zmm, $reg)

Set the length of the short string held in the numbered zmm register into the specified register.

     Parameter  Description
  1  $zmm       Number of zmm register containing string
  2  $reg       Register to hold length

ConcatenateShortStrings($left, $right)

Concatenate the numbered source zmm containing a short string with the short string in the numbered target zmm.

     Parameter  Description
  1  $left      Target zmm
  2  $right     Source zmm

Arenas

An arena is single extensible block of memory which contains other data structures such as strings, arrays, trees within it.

StringLength(@parameters)

Length of a zero terminated string.

     Parameter    Description
  1  @parameters  Parameters

Example:

    StringLength(V(string, Rs("abcd")))->outNL;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Assemble(debug => 0, eq => <<END);
  size: 0000 0000 0000 0004
  END
  

CreateArena(%options)

Create an relocatable arena and returns its address in rax. Optionally add a chain header so that 64 byte blocks of memory can be freed and reused within the arena.

     Parameter  Description
  1  %options   Free=>1 adds a free chain.

Example:

    my $a = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    $a->q('aa');
    $a->out;
    PrintOutNL;
    is_deeply Assemble, <<END;                                                    # Assemble and execute
  aa
  END
  
  
    my $a = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    my $b = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    $a->q('aa');
    $b->q('bb');
    $a->out;
    PrintOutNL;
    $b->out;
    PrintOutNL;
    is_deeply Assemble, <<END;                                                    # Assemble and execute
  aa
  bb
  END
  
  
    my $a = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    my $b = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    $a->q('aa');
    $a->q('AA');
    $a->out;
    PrintOutNL;
    is_deeply Assemble, <<END;                                                    # Assemble and execute
  aaAA
  END
  
  
    my $a = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    my $b = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    $a->q('aa');
    $b->q('bb');
    $a->q('AA');
    $b->q('BB');
    $a->q('aa');
    $b->q('bb');
    $a->out;
    $b->out;
    PrintOutNL;
    is_deeply Assemble, <<END;                                                    # Assemble and execute
  aaAAaabbBBbb
  END
  
  
    my $a = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    $a->q('ab');
  
    my $b = CreateArena;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    $b->append(source=>$a->bs);
    $b->append(source=>$a->bs);
    $a->append(source=>$b->bs);
    $b->append(source=>$a->bs);
    $a->append(source=>$b->bs);
    $b->append(source=>$a->bs);
    $b->append(source=>$a->bs);
    $b->append(source=>$a->bs);
    $b->append(source=>$a->bs);
  
  
    $a->out;   PrintOutNL;                                                        # Print arena
    $b->out;   PrintOutNL;                                                        # Print arena
    $a->length(my $sa = V(size)); $sa->outNL;
    $b->length(my $sb = V(size)); $sb->outNL;
    $a->clear;
    $a->length(my $sA = V(size)); $sA->outNL;
    $b->length(my $sB = V(size)); $sB->outNL;
  
    is_deeply Assemble, <<END;                                                    # Assemble and execute
  abababababababab
  ababababababababababababababababababababababababababababababababababababab
  size: 0000 0000 0000 0010
  size: 0000 0000 0000 004A
  size: 0000 0000 0000 0000
  size: 0000 0000 0000 004A
  END
  

Nasm::X86::Arena::length($arena, @variables)

Get the length of an arena.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Nasm::X86::Arena::arenaSize($arena, @variables)

Get the size of an arena.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Nasm::X86::Arena::makeReadOnly($arena)

Make an arena read only.

     Parameter  Description
  1  $arena     Arena descriptor

Nasm::X86::Arena::makeWriteable($arena)

Make an arena writable.

     Parameter  Description
  1  $arena     Arena descriptor

Nasm::X86::Arena::allocate($arena, @variables)

Allocate the amount of space indicated in rdi in the arena addressed by rax and return the offset of the allocation in the arena in rdi.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Nasm::X86::Arena::allocZmmBlock($arena, @variables)

Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

     Parameter   Description
  1  $arena      Arena
  2  @variables  Variables

Nasm::X86::Arena::allocBlock($arena, $bs)

Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

     Parameter  Description
  1  $arena     Arena
  2  $bs        Address of arena

Example:

    my $a = CreateArena; $a->dump;
    my $b1 = $a->allocBlock($a->bs); $a->dump;
    my $b2 = $a->allocBlock($a->bs); $a->dump;
    $a->freeBlock($b2);              $a->dump;
    $a->freeBlock($b1);              $a->dump;
  
    ok Assemble(debug => 0, eq => <<END);
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0018
  0000: 0010 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0058
  0000: 0010 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0098
  0000: 0010 0000 0000 00009800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0098
  0000: 0010 0000 0000 00009800 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0098
  0000: 0010 0000 0000 00009800 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 5800 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  END
  

Nasm::X86::Arena::m($arena, @variables)

Append the content with length rdi addressed by rsi to the arena addressed by rax.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Nasm::X86::Arena::q($arena, $string)

Append a constant string to the arena.

     Parameter  Description
  1  $arena     Arena descriptor
  2  $string    String

Nasm::X86::Arena::ql($arena, $const)

Append a quoted string containing new line characters to the arena addressed by rax.

     Parameter  Description
  1  $arena     Arena
  2  $const     Constant

Nasm::X86::Arena::char($arena, $char)

Append a character expressed as a decimal number to the arena addressed by rax.

     Parameter  Description
  1  $arena     Arena descriptor
  2  $char      Number of character to be appended

Nasm::X86::Arena::nl($arena)

Append a new line to the arena addressed by rax.

     Parameter  Description
  1  $arena     Arena descriptor

Nasm::X86::Arena::z($arena)

Append a trailing zero to the arena addressed by rax.

     Parameter  Description
  1  $arena     Arena descriptor

Nasm::X86::Arena::append($arena, @variables)

Append one arena to another.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Nasm::X86::Arena::clear($arena)

Clear the arena addressed by rax.

     Parameter  Description
  1  $arena     Arena descriptor

Nasm::X86::Arena::write($arena, @variables)

Write the content in an arena addressed by rax to a temporary file and replace the arena content with the name of the temporary file.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Nasm::X86::Arena::read($arena, @variables)

Read the named file (terminated with a zero byte) and place it into the named arena.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Nasm::X86::Arena::out($arena)

Print the specified arena addressed by rax on sysout.

     Parameter  Description
  1  $arena     Arena descriptor

Nasm::X86::Arena::dump($arena, $depth)

Dump details of an arena.

     Parameter  Description
  1  $arena     Arena descriptor
  2  $depth     Optional amount of memory to dump  as the number of 64 byte blocks

String

Strings made from zmm sized blocks of text

Nasm::X86::Arena::CreateString($arena)

Create a string from a doubly link linked list of 64 byte blocks linked via 4 byte offsets in the arena addressed by rax and return its descriptor.

     Parameter  Description
  1  $arena     Arena description

Nasm::X86::String::dump($String)

Dump a string to sysout.

     Parameter  Description
  1  $String    String descriptor

Nasm::X86::String::len($String, $bs, $first)

Find the length of a string.

     Parameter  Description
  1  $String    String descriptor
  2  $bs        Optional arena address
  3  $first     Offset of first block

Example:

    my $c = Rb(0..255);
    my $S = CreateArena;   my $s = $S->CreateString;
  
    $s->append(source=>V(source, $c),  V(size, 165)); $s->dump;
    $s->deleteChar(V(position, 0x44));                $s->dump;
    $s->len->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0037
   zmm31: 0000 0058 0000 0098   3635 3433 3231 302F   2E2D 2C2B 2A29 2827   2625 2423 2221 201F   1E1D 1C1B 1A19 1817   1615 1413 1211 100F   0E0D 0C0B 0A09 0807   0605 0403 0201 0037
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0037
   zmm31: 0000 0098 0000 0018   6D6C 6B6A 6968 6766   6564 6362 6160 5F5E   5D5C 5B5A 5958 5756   5554 5352 5150 4F4E   4D4C 4B4A 4948 4746   4544 4342 4140 3F3E   3D3C 3B3A 3938 3737
  Offset: 0000 0000 0000 0098   Length: 0000 0000 0000 0037
   zmm31: 0000 0018 0000 0058   A4A3 A2A1 A09F 9E9D   9C9B 9A99 9897 9695   9493 9291 908F 8E8D   8C8B 8A89 8887 8685   8483 8281 807F 7E7D   7C7B 7A79 7877 7675   7473 7271 706F 6E37
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0037
   zmm31: 0000 0058 0000 0098   3635 3433 3231 302F   2E2D 2C2B 2A29 2827   2625 2423 2221 201F   1E1D 1C1B 1A19 1817   1615 1413 1211 100F   0E0D 0C0B 0A09 0807   0605 0403 0201 0037
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0036
   zmm31: 0000 0098 0000 0018   186D 6C6B 6A69 6867   6665 6463 6261 605F   5E5D 5C5B 5A59 5857   5655 5453 5251 504F   4E4D 4C4B 4A49 4847   4645 4342 4140 3F3E   3D3C 3B3A 3938 3736
  Offset: 0000 0000 0000 0098   Length: 0000 0000 0000 0037
   zmm31: 0000 0018 0000 0058   A4A3 A2A1 A09F 9E9D   9C9B 9A99 9897 9695   9493 9291 908F 8E8D   8C8B 8A89 8887 8685   8483 8281 807F 7E7D   7C7B 7A79 7877 7675   7473 7271 706F 6E37
  
  size: 0000 0000 0000 00A4
  END
  

Nasm::X86::String::concatenate($target, $source)

Concatenate two strings by appending a copy of the source to the target string.

     Parameter  Description
  1  $target    Target string
  2  $source    Source string

Nasm::X86::String::insertChar($String, @variables)

Insert a character into a string.

     Parameter   Description
  1  $String     String
  2  @variables  Variables

Example:

    my $c = Rb(0..255);
    my $S = CreateArena;
    my $s = $S->CreateString;
  
    $s->append(source=>V(source, $c), K(size, 54));       $s->dump;
  
    $s->insertChar(V(character, 0x77), K(position,  4));  $s->dump;
    $s->insertChar(V(character, 0x88), K(position,  5));  $s->dump;
    $s->insertChar(V(character, 0x99), K(position,  6));  $s->dump;
    $s->insertChar(V(character, 0xAA), K(position,  7));  $s->dump;
    $s->insertChar(V(character, 0xBB), K(position,  8));  $s->dump;
    $s->insertChar(V(character, 0xCC), K(position,  9));  $s->dump;
    $s->insertChar(V(character, 0xDD), K(position, 10));  $s->dump;
    $s->insertChar(V(character, 0xEE), K(position, 11));  $s->dump;
    $s->insertChar(V(character, 0xFF), K(position, 12));  $s->dump;
  
    ok Assemble(debug => 0, eq => <<END);
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0036
   zmm31: 0000 0018 0000 0018   0035 3433 3231 302F   2E2D 2C2B 2A29 2827   2625 2423 2221 201F   1E1D 1C1B 1A19 1817   1615 1413 1211 100F   0E0D 0C0B 0A09 0807   0605 0403 0201 0036
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0037
   zmm31: 0000 0018 0000 0018   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0037
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0005
   zmm31: 0000 0058 0000 0058   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0005
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0033
   zmm31: 0000 0018 0000 0018   0000 0018 3534 3332   3130 2F2E 2D2C 2B2A   2928 2726 2524 2322   2120 1F1E 1D1C 1B1A   1918 1716 1514 1312   1110 0F0E 0D0C 0B0A   0908 0706 0504 8833
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0005
   zmm31: 0000 0058 0000 0058   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0005
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0034
   zmm31: 0000 0018 0000 0018   0000 0035 3433 3231   302F 2E2D 2C2B 2A29   2827 2625 2423 2221   201F 1E1D 1C1B 1A19   1817 1615 1413 1211   100F 0E0D 0C0B 0A09   0807 0605 0499 8834
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0005
   zmm31: 0000 0058 0000 0058   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0005
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0035
   zmm31: 0000 0018 0000 0018   0000 3534 3332 3130   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 AA99 8835
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0005
   zmm31: 0000 0058 0000 0058   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0005
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0036
   zmm31: 0000 0018 0000 0018   0035 3433 3231 302F   2E2D 2C2B 2A29 2827   2625 2423 2221 201F   1E1D 1C1B 1A19 1817   1615 1413 1211 100F   0E0D 0C0B 0A09 0807   0605 04BB AA99 8836
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0005
   zmm31: 0000 0058 0000 0058   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0005
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0037
   zmm31: 0000 0018 0000 0018   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 CCBB AA99 8837
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0005
   zmm31: 0000 0058 0000 0058   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0005
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0005
   zmm31: 0000 0098 0000 0098   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 CCBB AA99 8805
  Offset: 0000 0000 0000 0098   Length: 0000 0000 0000 0033
   zmm31: 0000 0018 0000 0018   0000 0018 3534 3332   3130 2F2E 2D2C 2B2A   2928 2726 2524 2322   2120 1F1E 1D1C 1B1A   1918 1716 1514 1312   1110 0F0E 0D0C 0B0A   0908 0706 0504 DD33
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0005
   zmm31: 0000 0058 0000 0058   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0005
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0005
   zmm31: 0000 0098 0000 0098   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 CCBB AA99 8805
  Offset: 0000 0000 0000 0098   Length: 0000 0000 0000 0034
   zmm31: 0000 0018 0000 0018   0000 0035 3433 3231   302F 2E2D 2C2B 2A29   2827 2625 2423 2221   201F 1E1D 1C1B 1A19   1817 1615 1413 1211   100F 0E0D 0C0B 0A09   0807 0605 04EE DD34
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0005
   zmm31: 0000 0058 0000 0058   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 7703 0201 0005
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0005
   zmm31: 0000 0098 0000 0098   3534 3332 3130 2F2E   2D2C 2B2A 2928 2726   2524 2322 2120 1F1E   1D1C 1B1A 1918 1716   1514 1312 1110 0F0E   0D0C 0B0A 0908 0706   0504 CCBB AA99 8805
  Offset: 0000 0000 0000 0098   Length: 0000 0000 0000 0035
   zmm31: 0000 0018 0000 0018   0000 3534 3332 3130   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 FFEE DD35
  
  END
  

Nasm::X86::String::deleteChar($String, @variables)

Delete a character in a string.

     Parameter   Description
  1  $String     String
  2  @variables  Variables

Example:

    my $c = Rb(0..255);
    my $S = CreateArena;   my $s = $S->CreateString;
  
    $s->append(source=>V(source, $c),  V(size, 165)); $s->dump;
    $s->deleteChar(V(position, 0x44));                $s->dump;
    $s->len->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0037
   zmm31: 0000 0058 0000 0098   3635 3433 3231 302F   2E2D 2C2B 2A29 2827   2625 2423 2221 201F   1E1D 1C1B 1A19 1817   1615 1413 1211 100F   0E0D 0C0B 0A09 0807   0605 0403 0201 0037
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0037
   zmm31: 0000 0098 0000 0018   6D6C 6B6A 6968 6766   6564 6362 6160 5F5E   5D5C 5B5A 5958 5756   5554 5352 5150 4F4E   4D4C 4B4A 4948 4746   4544 4342 4140 3F3E   3D3C 3B3A 3938 3737
  Offset: 0000 0000 0000 0098   Length: 0000 0000 0000 0037
   zmm31: 0000 0018 0000 0058   A4A3 A2A1 A09F 9E9D   9C9B 9A99 9897 9695   9493 9291 908F 8E8D   8C8B 8A89 8887 8685   8483 8281 807F 7E7D   7C7B 7A79 7877 7675   7473 7271 706F 6E37
  
  string Dump
  Offset: 0000 0000 0000 0018   Length: 0000 0000 0000 0037
   zmm31: 0000 0058 0000 0098   3635 3433 3231 302F   2E2D 2C2B 2A29 2827   2625 2423 2221 201F   1E1D 1C1B 1A19 1817   1615 1413 1211 100F   0E0D 0C0B 0A09 0807   0605 0403 0201 0037
  Offset: 0000 0000 0000 0058   Length: 0000 0000 0000 0036
   zmm31: 0000 0098 0000 0018   186D 6C6B 6A69 6867   6665 6463 6261 605F   5E5D 5C5B 5A59 5857   5655 5453 5251 504F   4E4D 4C4B 4A49 4847   4645 4342 4140 3F3E   3D3C 3B3A 3938 3736
  Offset: 0000 0000 0000 0098   Length: 0000 0000 0000 0037
   zmm31: 0000 0018 0000 0058   A4A3 A2A1 A09F 9E9D   9C9B 9A99 9897 9695   9493 9291 908F 8E8D   8C8B 8A89 8887 8685   8483 8281 807F 7E7D   7C7B 7A79 7877 7675   7473 7271 706F 6E37
  
  size: 0000 0000 0000 00A4
  END
  

Nasm::X86::String::getCharacter($String, @variables)

Get a character from a string.

     Parameter   Description
  1  $String     String
  2  @variables  Variables

Nasm::X86::String::append($String, @variables)

Append the specified content in memory to the specified string.

     Parameter   Description
  1  $String     String descriptor
  2  @variables  Variables

Nasm::X86::String::clear($String)

Clear the block by freeing all but the first block.

     Parameter  Description
  1  $String    String descriptor

Array

Array constructed as a set of blocks in an arena

Nasm::X86::Arena::CreateArray($arena)

Create a array in an arena.

     Parameter  Description
  1  $arena     Arena description

Nasm::X86::Array::dump($Array, @variables)

Dump a array.

     Parameter   Description
  1  $Array      Array descriptor
  2  @variables  Variables

Nasm::X86::Array::push($Array, @variables)

Push an element onto the array.

     Parameter   Description
  1  $Array      Array descriptor
  2  @variables  Variables

Example:

    my $c = Rb(0..255);
    my $A = CreateArena;  my $a = $A->CreateArray;
    my $l = V(limit, 15);
    my $L = $l + 5;
  
    my sub put                                                                    # Put a constant or a variable
     {my ($e) = @_;
      $a->push(element => (ref($e) ? $e : V($e, $e)));
     };
  
    my sub get                                                                    # Get a constant or a variable
     {my ($i) = @_;
      $a->get(index=>(my $v = ref($i) ? $i : K('index', $i)), my $e = V(element));
      $v->out("index: ", "  "); $e->outNL;
     };
  
    $l->for(sub                                                                   # Loop to the limit pushing
     {my ($index, $start, $next, $end) = @_;
      put($index+1);
     });
  
    $l->for(sub                                                                   # Loop to the limit getting
     {my ($index, $start, $next, $end) = @_;
      get($index);
     });
  
    put(16);
    get(15);
  
    $L->for(sub
     {my ($index, $start, $next, $end) = @_;
      put($index+$l+2);
     });
  
    $L->for(sub
     {my ($index, $start, $next, $end) = @_;
      get($index + $l + 1);
     });
  
    if (1)
     {$a->put(my $i = V('index',  9), my $e = V(element, 0xFFF9));
      get(9);
     }
  
    if (1)
     {$a->put(my $i = V('index', 19), my $e = V(element, 0xEEE9));
      get(19);
     }
  
    ($l+$L+1)->for(sub
     {my ($i, $start, $next, $end) = @_;
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    V(limit, 38)->for(sub                                                         # Push using a loop and reusing the freed space
     {my ($index, $start, $next, $end) = @_;
      $a->push(element=>$index*2);
     });
  
    V(limit, 38)->for(sub                                                         # Push using a loop and reusing the freed space
     {my ($index, $start, $next, $end) = @_;
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    $a->dump;
  
    ok Assemble(debug => 0, eq => <<END);
  index: 0000 0000 0000 0000  element: 0000 0000 0000 0001
  index: 0000 0000 0000 0001  element: 0000 0000 0000 0002
  index: 0000 0000 0000 0002  element: 0000 0000 0000 0003
  index: 0000 0000 0000 0003  element: 0000 0000 0000 0004
  index: 0000 0000 0000 0004  element: 0000 0000 0000 0005
  index: 0000 0000 0000 0005  element: 0000 0000 0000 0006
  index: 0000 0000 0000 0006  element: 0000 0000 0000 0007
  index: 0000 0000 0000 0007  element: 0000 0000 0000 0008
  index: 0000 0000 0000 0008  element: 0000 0000 0000 0009
  index: 0000 0000 0000 0009  element: 0000 0000 0000 000A
  index: 0000 0000 0000 000A  element: 0000 0000 0000 000B
  index: 0000 0000 0000 000B  element: 0000 0000 0000 000C
  index: 0000 0000 0000 000C  element: 0000 0000 0000 000D
  index: 0000 0000 0000 000D  element: 0000 0000 0000 000E
  index: 0000 0000 0000 000E  element: 0000 0000 0000 000F
  index: 0000 0000 0000 000F  element: 0000 0000 0000 0010
  index: 0000 0000 0000 0010  element: 0000 0000 0000 0011
  index: 0000 0000 0000 0011  element: 0000 0000 0000 0012
  index: 0000 0000 0000 0012  element: 0000 0000 0000 0013
  index: 0000 0000 0000 0013  element: 0000 0000 0000 0014
  index: 0000 0000 0000 0014  element: 0000 0000 0000 0015
  index: 0000 0000 0000 0015  element: 0000 0000 0000 0016
  index: 0000 0000 0000 0016  element: 0000 0000 0000 0017
  index: 0000 0000 0000 0017  element: 0000 0000 0000 0018
  index: 0000 0000 0000 0018  element: 0000 0000 0000 0019
  index: 0000 0000 0000 0019  element: 0000 0000 0000 001A
  index: 0000 0000 0000 001A  element: 0000 0000 0000 001B
  index: 0000 0000 0000 001B  element: 0000 0000 0000 001C
  index: 0000 0000 0000 001C  element: 0000 0000 0000 001D
  index: 0000 0000 0000 001D  element: 0000 0000 0000 001E
  index: 0000 0000 0000 001E  element: 0000 0000 0000 001F
  index: 0000 0000 0000 001F  element: 0000 0000 0000 0020
  index: 0000 0000 0000 0020  element: 0000 0000 0000 0021
  index: 0000 0000 0000 0021  element: 0000 0000 0000 0022
  index: 0000 0000 0000 0022  element: 0000 0000 0000 0023
  index: 0000 0000 0000 0023  element: 0000 0000 0000 0024
  index: 0000 0000 0000 0009  element: 0000 0000 0000 FFF9
  index: 0000 0000 0000 0013  element: 0000 0000 0000 EEE9
  element: 0000 0000 0000 0024
  element: 0000 0000 0000 0023
  element: 0000 0000 0000 0022
  element: 0000 0000 0000 0021
  element: 0000 0000 0000 0020
  element: 0000 0000 0000 001F
  element: 0000 0000 0000 001E
  element: 0000 0000 0000 001D
  element: 0000 0000 0000 001C
  element: 0000 0000 0000 001B
  element: 0000 0000 0000 001A
  element: 0000 0000 0000 0019
  element: 0000 0000 0000 0018
  element: 0000 0000 0000 0017
  element: 0000 0000 0000 0016
  element: 0000 0000 0000 0015
  element: 0000 0000 0000 EEE9
  element: 0000 0000 0000 0013
  element: 0000 0000 0000 0012
  element: 0000 0000 0000 0011
  element: 0000 0000 0000 0010
  element: 0000 0000 0000 000F
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000D
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000B
  element: 0000 0000 0000 FFF9
  element: 0000 0000 0000 0009
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0007
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0005
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0003
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0001
  element: 0000 0000 0000 004A
  element: 0000 0000 0000 0048
  element: 0000 0000 0000 0046
  element: 0000 0000 0000 0044
  element: 0000 0000 0000 0042
  element: 0000 0000 0000 0040
  element: 0000 0000 0000 003E
  element: 0000 0000 0000 003C
  element: 0000 0000 0000 003A
  element: 0000 0000 0000 0038
  element: 0000 0000 0000 0036
  element: 0000 0000 0000 0034
  element: 0000 0000 0000 0032
  element: 0000 0000 0000 0030
  element: 0000 0000 0000 002E
  element: 0000 0000 0000 002C
  element: 0000 0000 0000 002A
  element: 0000 0000 0000 0028
  element: 0000 0000 0000 0026
  element: 0000 0000 0000 0024
  element: 0000 0000 0000 0022
  element: 0000 0000 0000 0020
  element: 0000 0000 0000 001E
  element: 0000 0000 0000 001C
  element: 0000 0000 0000 001A
  element: 0000 0000 0000 0018
  element: 0000 0000 0000 0016
  element: 0000 0000 0000 0014
  element: 0000 0000 0000 0012
  element: 0000 0000 0000 0010
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000A
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0000
  array
  Size: 0000 0000 0000 0000   zmm31: 0000 001C 0000 001A   0000 0018 0000 0016   0000 0014 0000 0012   0000 0010 0000 000E   0000 000C 0000 000A   0000 0008 0000 0006   0000 0004 0000 0002   0000 0000 0000 0000
  END
  
    my $c = Rb(0..255);
    my $A = CreateArena;  my $a = $A->CreateArray;
  
    my sub put
     {my ($e) = @_;
      $a->push(element => V($e, $e));
     };
  
    my sub get
     {my ($i) = @_;                                                               # Parameters
      $a->get(my $v = V('index', $i), my $e = V(element));
      $v->out; PrintOutString "  "; $e->outNL;
     };
  
    put($_) for 1..15;  get(15);
  
    ok Assemble(debug => 2, eq => <<END);
  Index out of bounds on get from array, Index: 0000 0000 0000 000F  Size: 0000 0000 0000 000F
  END
  

Nasm::X86::Array::pop($Array, @variables)

Pop an element from an array.

     Parameter   Description
  1  $Array      Array descriptor
  2  @variables  Variables

Example:

    my $c = Rb(0..255);
    my $A = CreateArena;  my $a = $A->CreateArray;
    my $l = V(limit, 15);
    my $L = $l + 5;
  
    my sub put                                                                    # Put a constant or a variable
     {my ($e) = @_;
      $a->push(element => (ref($e) ? $e : V($e, $e)));
     };
  
    my sub get                                                                    # Get a constant or a variable
     {my ($i) = @_;
      $a->get(index=>(my $v = ref($i) ? $i : K('index', $i)), my $e = V(element));
      $v->out("index: ", "  "); $e->outNL;
     };
  
    $l->for(sub                                                                   # Loop to the limit pushing
     {my ($index, $start, $next, $end) = @_;
      put($index+1);
     });
  
    $l->for(sub                                                                   # Loop to the limit getting
     {my ($index, $start, $next, $end) = @_;
      get($index);
     });
  
    put(16);
    get(15);
  
    $L->for(sub
     {my ($index, $start, $next, $end) = @_;
      put($index+$l+2);
     });
  
    $L->for(sub
     {my ($index, $start, $next, $end) = @_;
      get($index + $l + 1);
     });
  
    if (1)
     {$a->put(my $i = V('index',  9), my $e = V(element, 0xFFF9));
      get(9);
     }
  
    if (1)
     {$a->put(my $i = V('index', 19), my $e = V(element, 0xEEE9));
      get(19);
     }
  
    ($l+$L+1)->for(sub
     {my ($i, $start, $next, $end) = @_;
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    V(limit, 38)->for(sub                                                         # Push using a loop and reusing the freed space
     {my ($index, $start, $next, $end) = @_;
      $a->push(element=>$index*2);
     });
  
    V(limit, 38)->for(sub                                                         # Push using a loop and reusing the freed space
     {my ($index, $start, $next, $end) = @_;
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    $a->dump;
  
    ok Assemble(debug => 0, eq => <<END);
  index: 0000 0000 0000 0000  element: 0000 0000 0000 0001
  index: 0000 0000 0000 0001  element: 0000 0000 0000 0002
  index: 0000 0000 0000 0002  element: 0000 0000 0000 0003
  index: 0000 0000 0000 0003  element: 0000 0000 0000 0004
  index: 0000 0000 0000 0004  element: 0000 0000 0000 0005
  index: 0000 0000 0000 0005  element: 0000 0000 0000 0006
  index: 0000 0000 0000 0006  element: 0000 0000 0000 0007
  index: 0000 0000 0000 0007  element: 0000 0000 0000 0008
  index: 0000 0000 0000 0008  element: 0000 0000 0000 0009
  index: 0000 0000 0000 0009  element: 0000 0000 0000 000A
  index: 0000 0000 0000 000A  element: 0000 0000 0000 000B
  index: 0000 0000 0000 000B  element: 0000 0000 0000 000C
  index: 0000 0000 0000 000C  element: 0000 0000 0000 000D
  index: 0000 0000 0000 000D  element: 0000 0000 0000 000E
  index: 0000 0000 0000 000E  element: 0000 0000 0000 000F
  index: 0000 0000 0000 000F  element: 0000 0000 0000 0010
  index: 0000 0000 0000 0010  element: 0000 0000 0000 0011
  index: 0000 0000 0000 0011  element: 0000 0000 0000 0012
  index: 0000 0000 0000 0012  element: 0000 0000 0000 0013
  index: 0000 0000 0000 0013  element: 0000 0000 0000 0014
  index: 0000 0000 0000 0014  element: 0000 0000 0000 0015
  index: 0000 0000 0000 0015  element: 0000 0000 0000 0016
  index: 0000 0000 0000 0016  element: 0000 0000 0000 0017
  index: 0000 0000 0000 0017  element: 0000 0000 0000 0018
  index: 0000 0000 0000 0018  element: 0000 0000 0000 0019
  index: 0000 0000 0000 0019  element: 0000 0000 0000 001A
  index: 0000 0000 0000 001A  element: 0000 0000 0000 001B
  index: 0000 0000 0000 001B  element: 0000 0000 0000 001C
  index: 0000 0000 0000 001C  element: 0000 0000 0000 001D
  index: 0000 0000 0000 001D  element: 0000 0000 0000 001E
  index: 0000 0000 0000 001E  element: 0000 0000 0000 001F
  index: 0000 0000 0000 001F  element: 0000 0000 0000 0020
  index: 0000 0000 0000 0020  element: 0000 0000 0000 0021
  index: 0000 0000 0000 0021  element: 0000 0000 0000 0022
  index: 0000 0000 0000 0022  element: 0000 0000 0000 0023
  index: 0000 0000 0000 0023  element: 0000 0000 0000 0024
  index: 0000 0000 0000 0009  element: 0000 0000 0000 FFF9
  index: 0000 0000 0000 0013  element: 0000 0000 0000 EEE9
  element: 0000 0000 0000 0024
  element: 0000 0000 0000 0023
  element: 0000 0000 0000 0022
  element: 0000 0000 0000 0021
  element: 0000 0000 0000 0020
  element: 0000 0000 0000 001F
  element: 0000 0000 0000 001E
  element: 0000 0000 0000 001D
  element: 0000 0000 0000 001C
  element: 0000 0000 0000 001B
  element: 0000 0000 0000 001A
  element: 0000 0000 0000 0019
  element: 0000 0000 0000 0018
  element: 0000 0000 0000 0017
  element: 0000 0000 0000 0016
  element: 0000 0000 0000 0015
  element: 0000 0000 0000 EEE9
  element: 0000 0000 0000 0013
  element: 0000 0000 0000 0012
  element: 0000 0000 0000 0011
  element: 0000 0000 0000 0010
  element: 0000 0000 0000 000F
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000D
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000B
  element: 0000 0000 0000 FFF9
  element: 0000 0000 0000 0009
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0007
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0005
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0003
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0001
  element: 0000 0000 0000 004A
  element: 0000 0000 0000 0048
  element: 0000 0000 0000 0046
  element: 0000 0000 0000 0044
  element: 0000 0000 0000 0042
  element: 0000 0000 0000 0040
  element: 0000 0000 0000 003E
  element: 0000 0000 0000 003C
  element: 0000 0000 0000 003A
  element: 0000 0000 0000 0038
  element: 0000 0000 0000 0036
  element: 0000 0000 0000 0034
  element: 0000 0000 0000 0032
  element: 0000 0000 0000 0030
  element: 0000 0000 0000 002E
  element: 0000 0000 0000 002C
  element: 0000 0000 0000 002A
  element: 0000 0000 0000 0028
  element: 0000 0000 0000 0026
  element: 0000 0000 0000 0024
  element: 0000 0000 0000 0022
  element: 0000 0000 0000 0020
  element: 0000 0000 0000 001E
  element: 0000 0000 0000 001C
  element: 0000 0000 0000 001A
  element: 0000 0000 0000 0018
  element: 0000 0000 0000 0016
  element: 0000 0000 0000 0014
  element: 0000 0000 0000 0012
  element: 0000 0000 0000 0010
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000A
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0000
  array
  Size: 0000 0000 0000 0000   zmm31: 0000 001C 0000 001A   0000 0018 0000 0016   0000 0014 0000 0012   0000 0010 0000 000E   0000 000C 0000 000A   0000 0008 0000 0006   0000 0004 0000 0002   0000 0000 0000 0000
  END
  

Nasm::X86::Array::size($Array, $bs, $first)

Return the size of an array as a variable.

     Parameter  Description
  1  $Array     Array descriptor
  2  $bs        Optional arena address
  3  $first     Optional first block

Example:

    my $N = 15;
    my $A = CreateArena;
    my $a = $A->CreateArray;
  
    $a->push(V(element, $_)) for 1..$N;
  
    K(loop, $N)->for(sub
     {my ($start, $end, $next) = @_;
      my $l = $a->size;
      If $l == 0, Then {Jmp $end};
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    ok Assemble(debug => 0, eq => <<END);
  element: 0000 0000 0000 000F
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000D
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000B
  element: 0000 0000 0000 000A
  element: 0000 0000 0000 0009
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0007
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0005
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0003
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0001
  END
  

Nasm::X86::Array::get($Array, @variables)

Get an element from the array.

     Parameter   Description
  1  $Array      Array descriptor
  2  @variables  Variables

Example:

    my $c = Rb(0..255);
    my $A = CreateArena;  my $a = $A->CreateArray;
    my $l = V(limit, 15);
    my $L = $l + 5;
  
    my sub put                                                                    # Put a constant or a variable
     {my ($e) = @_;
      $a->push(element => (ref($e) ? $e : V($e, $e)));
     };
  
    my sub get                                                                    # Get a constant or a variable
     {my ($i) = @_;
      $a->get(index=>(my $v = ref($i) ? $i : K('index', $i)), my $e = V(element));
      $v->out("index: ", "  "); $e->outNL;
     };
  
    $l->for(sub                                                                   # Loop to the limit pushing
     {my ($index, $start, $next, $end) = @_;
      put($index+1);
     });
  
    $l->for(sub                                                                   # Loop to the limit getting
     {my ($index, $start, $next, $end) = @_;
      get($index);
     });
  
    put(16);
    get(15);
  
    $L->for(sub
     {my ($index, $start, $next, $end) = @_;
      put($index+$l+2);
     });
  
    $L->for(sub
     {my ($index, $start, $next, $end) = @_;
      get($index + $l + 1);
     });
  
    if (1)
     {$a->put(my $i = V('index',  9), my $e = V(element, 0xFFF9));
      get(9);
     }
  
    if (1)
     {$a->put(my $i = V('index', 19), my $e = V(element, 0xEEE9));
      get(19);
     }
  
    ($l+$L+1)->for(sub
     {my ($i, $start, $next, $end) = @_;
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    V(limit, 38)->for(sub                                                         # Push using a loop and reusing the freed space
     {my ($index, $start, $next, $end) = @_;
      $a->push(element=>$index*2);
     });
  
    V(limit, 38)->for(sub                                                         # Push using a loop and reusing the freed space
     {my ($index, $start, $next, $end) = @_;
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    $a->dump;
  
    ok Assemble(debug => 0, eq => <<END);
  index: 0000 0000 0000 0000  element: 0000 0000 0000 0001
  index: 0000 0000 0000 0001  element: 0000 0000 0000 0002
  index: 0000 0000 0000 0002  element: 0000 0000 0000 0003
  index: 0000 0000 0000 0003  element: 0000 0000 0000 0004
  index: 0000 0000 0000 0004  element: 0000 0000 0000 0005
  index: 0000 0000 0000 0005  element: 0000 0000 0000 0006
  index: 0000 0000 0000 0006  element: 0000 0000 0000 0007
  index: 0000 0000 0000 0007  element: 0000 0000 0000 0008
  index: 0000 0000 0000 0008  element: 0000 0000 0000 0009
  index: 0000 0000 0000 0009  element: 0000 0000 0000 000A
  index: 0000 0000 0000 000A  element: 0000 0000 0000 000B
  index: 0000 0000 0000 000B  element: 0000 0000 0000 000C
  index: 0000 0000 0000 000C  element: 0000 0000 0000 000D
  index: 0000 0000 0000 000D  element: 0000 0000 0000 000E
  index: 0000 0000 0000 000E  element: 0000 0000 0000 000F
  index: 0000 0000 0000 000F  element: 0000 0000 0000 0010
  index: 0000 0000 0000 0010  element: 0000 0000 0000 0011
  index: 0000 0000 0000 0011  element: 0000 0000 0000 0012
  index: 0000 0000 0000 0012  element: 0000 0000 0000 0013
  index: 0000 0000 0000 0013  element: 0000 0000 0000 0014
  index: 0000 0000 0000 0014  element: 0000 0000 0000 0015
  index: 0000 0000 0000 0015  element: 0000 0000 0000 0016
  index: 0000 0000 0000 0016  element: 0000 0000 0000 0017
  index: 0000 0000 0000 0017  element: 0000 0000 0000 0018
  index: 0000 0000 0000 0018  element: 0000 0000 0000 0019
  index: 0000 0000 0000 0019  element: 0000 0000 0000 001A
  index: 0000 0000 0000 001A  element: 0000 0000 0000 001B
  index: 0000 0000 0000 001B  element: 0000 0000 0000 001C
  index: 0000 0000 0000 001C  element: 0000 0000 0000 001D
  index: 0000 0000 0000 001D  element: 0000 0000 0000 001E
  index: 0000 0000 0000 001E  element: 0000 0000 0000 001F
  index: 0000 0000 0000 001F  element: 0000 0000 0000 0020
  index: 0000 0000 0000 0020  element: 0000 0000 0000 0021
  index: 0000 0000 0000 0021  element: 0000 0000 0000 0022
  index: 0000 0000 0000 0022  element: 0000 0000 0000 0023
  index: 0000 0000 0000 0023  element: 0000 0000 0000 0024
  index: 0000 0000 0000 0009  element: 0000 0000 0000 FFF9
  index: 0000 0000 0000 0013  element: 0000 0000 0000 EEE9
  element: 0000 0000 0000 0024
  element: 0000 0000 0000 0023
  element: 0000 0000 0000 0022
  element: 0000 0000 0000 0021
  element: 0000 0000 0000 0020
  element: 0000 0000 0000 001F
  element: 0000 0000 0000 001E
  element: 0000 0000 0000 001D
  element: 0000 0000 0000 001C
  element: 0000 0000 0000 001B
  element: 0000 0000 0000 001A
  element: 0000 0000 0000 0019
  element: 0000 0000 0000 0018
  element: 0000 0000 0000 0017
  element: 0000 0000 0000 0016
  element: 0000 0000 0000 0015
  element: 0000 0000 0000 EEE9
  element: 0000 0000 0000 0013
  element: 0000 0000 0000 0012
  element: 0000 0000 0000 0011
  element: 0000 0000 0000 0010
  element: 0000 0000 0000 000F
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000D
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000B
  element: 0000 0000 0000 FFF9
  element: 0000 0000 0000 0009
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0007
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0005
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0003
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0001
  element: 0000 0000 0000 004A
  element: 0000 0000 0000 0048
  element: 0000 0000 0000 0046
  element: 0000 0000 0000 0044
  element: 0000 0000 0000 0042
  element: 0000 0000 0000 0040
  element: 0000 0000 0000 003E
  element: 0000 0000 0000 003C
  element: 0000 0000 0000 003A
  element: 0000 0000 0000 0038
  element: 0000 0000 0000 0036
  element: 0000 0000 0000 0034
  element: 0000 0000 0000 0032
  element: 0000 0000 0000 0030
  element: 0000 0000 0000 002E
  element: 0000 0000 0000 002C
  element: 0000 0000 0000 002A
  element: 0000 0000 0000 0028
  element: 0000 0000 0000 0026
  element: 0000 0000 0000 0024
  element: 0000 0000 0000 0022
  element: 0000 0000 0000 0020
  element: 0000 0000 0000 001E
  element: 0000 0000 0000 001C
  element: 0000 0000 0000 001A
  element: 0000 0000 0000 0018
  element: 0000 0000 0000 0016
  element: 0000 0000 0000 0014
  element: 0000 0000 0000 0012
  element: 0000 0000 0000 0010
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000A
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0000
  array
  Size: 0000 0000 0000 0000   zmm31: 0000 001C 0000 001A   0000 0018 0000 0016   0000 0014 0000 0012   0000 0010 0000 000E   0000 000C 0000 000A   0000 0008 0000 0006   0000 0004 0000 0002   0000 0000 0000 0000
  END
  

Nasm::X86::Array::put($Array, @variables)

Put an element into an array as long as it is with in its limits established by pushing.

     Parameter   Description
  1  $Array      Array descriptor
  2  @variables  Variables

Example:

    my $c = Rb(0..255);
    my $A = CreateArena;  my $a = $A->CreateArray;
    my $l = V(limit, 15);
    my $L = $l + 5;
  
    my sub put                                                                    # Put a constant or a variable
     {my ($e) = @_;
      $a->push(element => (ref($e) ? $e : V($e, $e)));
     };
  
    my sub get                                                                    # Get a constant or a variable
     {my ($i) = @_;
      $a->get(index=>(my $v = ref($i) ? $i : K('index', $i)), my $e = V(element));
      $v->out("index: ", "  "); $e->outNL;
     };
  
    $l->for(sub                                                                   # Loop to the limit pushing
     {my ($index, $start, $next, $end) = @_;
      put($index+1);
     });
  
    $l->for(sub                                                                   # Loop to the limit getting
     {my ($index, $start, $next, $end) = @_;
      get($index);
     });
  
    put(16);
    get(15);
  
    $L->for(sub
     {my ($index, $start, $next, $end) = @_;
      put($index+$l+2);
     });
  
    $L->for(sub
     {my ($index, $start, $next, $end) = @_;
      get($index + $l + 1);
     });
  
    if (1)
     {$a->put(my $i = V('index',  9), my $e = V(element, 0xFFF9));
      get(9);
     }
  
    if (1)
     {$a->put(my $i = V('index', 19), my $e = V(element, 0xEEE9));
      get(19);
     }
  
    ($l+$L+1)->for(sub
     {my ($i, $start, $next, $end) = @_;
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    V(limit, 38)->for(sub                                                         # Push using a loop and reusing the freed space
     {my ($index, $start, $next, $end) = @_;
      $a->push(element=>$index*2);
     });
  
    V(limit, 38)->for(sub                                                         # Push using a loop and reusing the freed space
     {my ($index, $start, $next, $end) = @_;
      $a->pop(my $e = V(element));
      $e->outNL;
     });
  
    $a->dump;
  
    ok Assemble(debug => 0, eq => <<END);
  index: 0000 0000 0000 0000  element: 0000 0000 0000 0001
  index: 0000 0000 0000 0001  element: 0000 0000 0000 0002
  index: 0000 0000 0000 0002  element: 0000 0000 0000 0003
  index: 0000 0000 0000 0003  element: 0000 0000 0000 0004
  index: 0000 0000 0000 0004  element: 0000 0000 0000 0005
  index: 0000 0000 0000 0005  element: 0000 0000 0000 0006
  index: 0000 0000 0000 0006  element: 0000 0000 0000 0007
  index: 0000 0000 0000 0007  element: 0000 0000 0000 0008
  index: 0000 0000 0000 0008  element: 0000 0000 0000 0009
  index: 0000 0000 0000 0009  element: 0000 0000 0000 000A
  index: 0000 0000 0000 000A  element: 0000 0000 0000 000B
  index: 0000 0000 0000 000B  element: 0000 0000 0000 000C
  index: 0000 0000 0000 000C  element: 0000 0000 0000 000D
  index: 0000 0000 0000 000D  element: 0000 0000 0000 000E
  index: 0000 0000 0000 000E  element: 0000 0000 0000 000F
  index: 0000 0000 0000 000F  element: 0000 0000 0000 0010
  index: 0000 0000 0000 0010  element: 0000 0000 0000 0011
  index: 0000 0000 0000 0011  element: 0000 0000 0000 0012
  index: 0000 0000 0000 0012  element: 0000 0000 0000 0013
  index: 0000 0000 0000 0013  element: 0000 0000 0000 0014
  index: 0000 0000 0000 0014  element: 0000 0000 0000 0015
  index: 0000 0000 0000 0015  element: 0000 0000 0000 0016
  index: 0000 0000 0000 0016  element: 0000 0000 0000 0017
  index: 0000 0000 0000 0017  element: 0000 0000 0000 0018
  index: 0000 0000 0000 0018  element: 0000 0000 0000 0019
  index: 0000 0000 0000 0019  element: 0000 0000 0000 001A
  index: 0000 0000 0000 001A  element: 0000 0000 0000 001B
  index: 0000 0000 0000 001B  element: 0000 0000 0000 001C
  index: 0000 0000 0000 001C  element: 0000 0000 0000 001D
  index: 0000 0000 0000 001D  element: 0000 0000 0000 001E
  index: 0000 0000 0000 001E  element: 0000 0000 0000 001F
  index: 0000 0000 0000 001F  element: 0000 0000 0000 0020
  index: 0000 0000 0000 0020  element: 0000 0000 0000 0021
  index: 0000 0000 0000 0021  element: 0000 0000 0000 0022
  index: 0000 0000 0000 0022  element: 0000 0000 0000 0023
  index: 0000 0000 0000 0023  element: 0000 0000 0000 0024
  index: 0000 0000 0000 0009  element: 0000 0000 0000 FFF9
  index: 0000 0000 0000 0013  element: 0000 0000 0000 EEE9
  element: 0000 0000 0000 0024
  element: 0000 0000 0000 0023
  element: 0000 0000 0000 0022
  element: 0000 0000 0000 0021
  element: 0000 0000 0000 0020
  element: 0000 0000 0000 001F
  element: 0000 0000 0000 001E
  element: 0000 0000 0000 001D
  element: 0000 0000 0000 001C
  element: 0000 0000 0000 001B
  element: 0000 0000 0000 001A
  element: 0000 0000 0000 0019
  element: 0000 0000 0000 0018
  element: 0000 0000 0000 0017
  element: 0000 0000 0000 0016
  element: 0000 0000 0000 0015
  element: 0000 0000 0000 EEE9
  element: 0000 0000 0000 0013
  element: 0000 0000 0000 0012
  element: 0000 0000 0000 0011
  element: 0000 0000 0000 0010
  element: 0000 0000 0000 000F
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000D
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000B
  element: 0000 0000 0000 FFF9
  element: 0000 0000 0000 0009
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0007
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0005
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0003
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0001
  element: 0000 0000 0000 004A
  element: 0000 0000 0000 0048
  element: 0000 0000 0000 0046
  element: 0000 0000 0000 0044
  element: 0000 0000 0000 0042
  element: 0000 0000 0000 0040
  element: 0000 0000 0000 003E
  element: 0000 0000 0000 003C
  element: 0000 0000 0000 003A
  element: 0000 0000 0000 0038
  element: 0000 0000 0000 0036
  element: 0000 0000 0000 0034
  element: 0000 0000 0000 0032
  element: 0000 0000 0000 0030
  element: 0000 0000 0000 002E
  element: 0000 0000 0000 002C
  element: 0000 0000 0000 002A
  element: 0000 0000 0000 0028
  element: 0000 0000 0000 0026
  element: 0000 0000 0000 0024
  element: 0000 0000 0000 0022
  element: 0000 0000 0000 0020
  element: 0000 0000 0000 001E
  element: 0000 0000 0000 001C
  element: 0000 0000 0000 001A
  element: 0000 0000 0000 0018
  element: 0000 0000 0000 0016
  element: 0000 0000 0000 0014
  element: 0000 0000 0000 0012
  element: 0000 0000 0000 0010
  element: 0000 0000 0000 000E
  element: 0000 0000 0000 000C
  element: 0000 0000 0000 000A
  element: 0000 0000 0000 0008
  element: 0000 0000 0000 0006
  element: 0000 0000 0000 0004
  element: 0000 0000 0000 0002
  element: 0000 0000 0000 0000
  array
  Size: 0000 0000 0000 0000   zmm31: 0000 001C 0000 001A   0000 0018 0000 0016   0000 0014 0000 0012   0000 0010 0000 000E   0000 000C 0000 000A   0000 0008 0000 0006   0000 0004 0000 0002   0000 0000 0000 0000
  END
  

Tree

Tree constructed as sets of blocks in an arena.

Nasm::X86::Arena::DescribeTree($arena)

Return a descriptor for a tree in the specified arena.

     Parameter  Description
  1  $arena     Arena descriptor

Nasm::X86::Arena::CreateTree($arena, $bs)

Create a tree in an arena.

     Parameter  Description
  1  $arena     Arena description
  2  $bs        Optional arena address

Example:

    my $N = 12;
    my $b = CreateArena;
    my $t = $b->CreateTree;
  
    K(count, $N)->for(sub                                                         # Add some entries to the tree
     {my ($index, $start, $next, $end) = @_;
      my $k = $index + 1;
      $t->insert($k,      $k + 0x100);
      $t->insert($k + $N, $k + 0x200);
     });
  
    $t->by(sub                                                                    # Iterate through the tree
     {my ($iter, $end) = @_;
      $iter->key ->out('key: ');
      $iter->data->out(' data: ');
      my $D = V(depth);
      $iter->tree->depth($t->address, $iter->node, $D);
  
      $t->find($iter->key);
      $t->found->out(' found: '); $t->data->out(' data: '); $D->outNL(' depth: ');
     });
  
    $t->find(K(key, 0xffff));  $t->found->outNL('Found: ');                       # Find some entries
    $t->find(K(key, 0xd));     $t->found->outNL('Found: ');
    If ($t->found > 0,
    Then
     {$t->data->outNL("Data : ");
     });
  
    ok Assemble(debug => 0, eq => <<END);
  key: 0000 0000 0000 0001 data: 0000 0000 0000 0101 found: 0000 0000 0000 0001 data: 0000 0000 0000 0101 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0002 data: 0000 0000 0000 0102 found: 0000 0000 0000 0001 data: 0000 0000 0000 0102 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0003 data: 0000 0000 0000 0103 found: 0000 0000 0000 0001 data: 0000 0000 0000 0103 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0004 data: 0000 0000 0000 0104 found: 0000 0000 0000 0001 data: 0000 0000 0000 0104 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0005 data: 0000 0000 0000 0105 found: 0000 0000 0000 0001 data: 0000 0000 0000 0105 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0006 data: 0000 0000 0000 0106 found: 0000 0000 0000 0001 data: 0000 0000 0000 0106 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0007 data: 0000 0000 0000 0107 found: 0000 0000 0000 0001 data: 0000 0000 0000 0107 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0008 data: 0000 0000 0000 0108 found: 0000 0000 0000 0001 data: 0000 0000 0000 0108 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0009 data: 0000 0000 0000 0109 found: 0000 0000 0000 0001 data: 0000 0000 0000 0109 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 000A data: 0000 0000 0000 010A found: 0000 0000 0000 0001 data: 0000 0000 0000 010A depth: 0000 0000 0000 0002
  key: 0000 0000 0000 000B data: 0000 0000 0000 010B found: 0000 0000 0000 0001 data: 0000 0000 0000 010B depth: 0000 0000 0000 0002
  key: 0000 0000 0000 000C data: 0000 0000 0000 010C found: 0000 0000 0000 0001 data: 0000 0000 0000 010C depth: 0000 0000 0000 0002
  key: 0000 0000 0000 000D data: 0000 0000 0000 0201 found: 0000 0000 0000 0001 data: 0000 0000 0000 0201 depth: 0000 0000 0000 0001
  key: 0000 0000 0000 000E data: 0000 0000 0000 0202 found: 0000 0000 0000 0001 data: 0000 0000 0000 0202 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 000F data: 0000 0000 0000 0203 found: 0000 0000 0000 0001 data: 0000 0000 0000 0203 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0010 data: 0000 0000 0000 0204 found: 0000 0000 0000 0001 data: 0000 0000 0000 0204 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0011 data: 0000 0000 0000 0205 found: 0000 0000 0000 0001 data: 0000 0000 0000 0205 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0012 data: 0000 0000 0000 0206 found: 0000 0000 0000 0001 data: 0000 0000 0000 0206 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0013 data: 0000 0000 0000 0207 found: 0000 0000 0000 0001 data: 0000 0000 0000 0207 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0014 data: 0000 0000 0000 0208 found: 0000 0000 0000 0001 data: 0000 0000 0000 0208 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0015 data: 0000 0000 0000 0209 found: 0000 0000 0000 0001 data: 0000 0000 0000 0209 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0016 data: 0000 0000 0000 020A found: 0000 0000 0000 0001 data: 0000 0000 0000 020A depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0017 data: 0000 0000 0000 020B found: 0000 0000 0000 0001 data: 0000 0000 0000 020B depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0018 data: 0000 0000 0000 020C found: 0000 0000 0000 0001 data: 0000 0000 0000 020C depth: 0000 0000 0000 0002
  Found: 0000 0000 0000 0000
  Found: 0000 0000 0000 0001
  Data : 0000 0000 0000 0201
  END
  

Nasm::X86::Tree::Clone($tree)

Clone the specified tree descriptions.

     Parameter  Description
  1  $tree      Tree descriptor

Example:

    my $L = K(loop, 4);
    my $b = CreateArena;
    my $T = $b->CreateTree;
    my $t = $T->Clone;
  
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      $t->insertTreeAndClone($i);
      $t->first->outNL;
     });
  
    $t->insert($L, $L*2);
  
    my $f = $T->Clone;
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      $f->findAndClone($i);
      $i->out('i: '); $f->found->out('  f: '); $f->data->out('  d: '); $f->subTree->outNL('  s: ');
     });
    $f->find($L);
    $L->out('N: '); $f->found->out('  f: '); $f->data->out('  d: ');   $f->subTree->outNL('  s: ');
  
    ok Assemble(debug => 0, eq => <<END);
  first: 0000 0000 0000 0098
  first: 0000 0000 0000 0118
  first: 0000 0000 0000 0198
  first: 0000 0000 0000 0218
  i: 0000 0000 0000 0000  f: 0000 0000 0000 0001  d: 0000 0000 0000 0098  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0001  f: 0000 0000 0000 0001  d: 0000 0000 0000 0118  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0002  f: 0000 0000 0000 0001  d: 0000 0000 0000 0198  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0003  f: 0000 0000 0000 0001  d: 0000 0000 0000 0218  s: 0000 0000 0000 0001
  N: 0000 0000 0000 0004  f: 0000 0000 0000 0001  d: 0000 0000 0000 0008  s: 0000 0000 0000 0000
  END
  

Nasm::X86::Tree::find($t, $key, $bs, $first)

Find a key in a tree and test whether the found data is a sub tree. The results are held in the variables "found", "data", "subTree" addressed by the tree descriptor.

     Parameter  Description
  1  $t         Tree descriptor
  2  $key       Key field to search for
  3  $bs        Optional arena address
  4  $first     Optional start node

Nasm::X86::Tree::findAndClone($t, $key)

Find a key in the specified tree and clone it is it is a sub tree.

     Parameter  Description
  1  $t         Tree descriptor
  2  $key       Key as a dword

Example:

    my $L = K(loop, 4);
    my $b = CreateArena;
    my $T = $b->CreateTree;
    my $t = $T->Clone;
  
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      $t->insertTreeAndClone($i);
      $t->first->outNL;
     });
  
    $t->insert($L, $L*2);
  
    my $f = $T->Clone;
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      $f->findAndClone($i);
      $i->out('i: '); $f->found->out('  f: '); $f->data->out('  d: '); $f->subTree->outNL('  s: ');
     });
    $f->find($L);
    $L->out('N: '); $f->found->out('  f: '); $f->data->out('  d: ');   $f->subTree->outNL('  s: ');
  
    ok Assemble(debug => 0, eq => <<END);
  first: 0000 0000 0000 0098
  first: 0000 0000 0000 0118
  first: 0000 0000 0000 0198
  first: 0000 0000 0000 0218
  i: 0000 0000 0000 0000  f: 0000 0000 0000 0001  d: 0000 0000 0000 0098  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0001  f: 0000 0000 0000 0001  d: 0000 0000 0000 0118  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0002  f: 0000 0000 0000 0001  d: 0000 0000 0000 0198  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0003  f: 0000 0000 0000 0001  d: 0000 0000 0000 0218  s: 0000 0000 0000 0001
  N: 0000 0000 0000 0004  f: 0000 0000 0000 0001  d: 0000 0000 0000 0008  s: 0000 0000 0000 0000
  END
  

Nasm::X86::Tree::insertDataOrTree($t, $tnd, $key, $data)

Insert either a key, data pair into the tree or create a sub tree at the specified key (if it does not already exist) and return the offset of the first block of the sub tree in the data variable.

     Parameter  Description
  1  $t         Tree descriptor
  2  $tnd       0 - data or 1 - tree
  3  $key       Key as a dword
  4  $data      Data as a dword

Nasm::X86::Tree::insert($t, $key, $data)

Insert a dword into into the specified tree at the specified key.

     Parameter  Description
  1  $t         Tree descriptor
  2  $key       Key as a dword
  3  $data      Data as a dword

Nasm::X86::Tree::insertTree($t, $key, $subTree)

Insert a sub tree into the specified tree tree under the specified key. If no sub tree is supplied an empty one is provided gratis.

     Parameter  Description
  1  $t         Tree descriptor
  2  $key       Key as a dword
  3  $subTree   Sub tree to insert else an empty one will be added

Example:

    my $b = CreateArena;
    my $t = $b->CreateTree;
    my $T = $b->CreateTree;
  
    $T->insert    (K(key, 2), K(data, 4));
    $t->insertTree(K(key, 1), $T);
  
    $t->print;
  
    ok Assemble(debug => 0, eq => <<END);
  Tree at:  0000 0000 0000 0018
  key: 0000 0000 0000 0001 data: 0000 0000 0000 0098 depth: 0000 0000 0000 0001
  Tree at:  0000 0000 0000 0098
  key: 0000 0000 0000 0002 data: 0000 0000 0000 0004 depth: 0000 0000 0000 0001
  END
  
    my $L = K(loop, 11);
    my $b = CreateArena;
    my $B = CreateArena;
    my $t = $b->CreateTree;
    my $T = $B->CreateTree;
  
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      $t->insert($i+0x11, K(data, 0xFF));
      $T->insert($i+0x22, K(data, 0xDD));
     });
  
    $b->dump;
    $B->dump;
  
    $t->print;
    $T->print;
  
    ok Assemble(debug => 0, eq => <<END);
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0098
  0000: 0010 0000 0000 00009800 0000 0000 00000000 0000 0000 00001100 0000 1200 00001300 0000 1400 00001500 0000 1600 00001700 0000 1800 00001900 0000 1A00 0000
  0040: 1B00 0000 0000 00000000 0000 0000 00000B00 0000 5800 0000FF00 0000 FF00 0000FF00 0000 FF00 0000FF00 0000 FF00 0000FF00 0000 FF00 0000FF00 0000 FF00 0000
  0080: FF00 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0098
  0000: 0010 0000 0000 00009800 0000 0000 00000000 0000 0000 00002200 0000 2300 00002400 0000 2500 00002600 0000 2700 00002800 0000 2900 00002A00 0000 2B00 0000
  0040: 2C00 0000 0000 00000000 0000 0000 00000B00 0000 5800 0000DD00 0000 DD00 0000DD00 0000 DD00 0000DD00 0000 DD00 0000DD00 0000 DD00 0000DD00 0000 DD00 0000
  0080: DD00 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Tree at:  0000 0000 0000 0018
  key: 0000 0000 0000 0011 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0012 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0013 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0014 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0015 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0016 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0017 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0018 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0019 data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 001A data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  key: 0000 0000 0000 001B data: 0000 0000 0000 00FF depth: 0000 0000 0000 0001
  Tree at:  0000 0000 0000 0018
  key: 0000 0000 0000 0022 data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0023 data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0024 data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0025 data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0026 data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0027 data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0028 data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0029 data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 002A data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 002B data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  key: 0000 0000 0000 002C data: 0000 0000 0000 00DD depth: 0000 0000 0000 0001
  END
  

Nasm::X86::Tree::insertTreeAndClone($t, $key)

Insert a new sub tree into the specified tree tree under the specified key and return a descriptor for it. If the tree already exists, return a descriptor for it.

     Parameter  Description
  1  $t         Tree descriptor
  2  $key       Key as a dword

Example:

    my $L = K(loop, 4);
    my $b = CreateArena;
    my $T = $b->CreateTree;
    my $t = $T->Clone;
  
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      $t->insertTreeAndClone($i);
      $t->first->outNL;
     });
  
    $t->insert($L, $L*2);
  
    my $f = $T->Clone;
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      $f->findAndClone($i);
      $i->out('i: '); $f->found->out('  f: '); $f->data->out('  d: '); $f->subTree->outNL('  s: ');
     });
    $f->find($L);
    $L->out('N: '); $f->found->out('  f: '); $f->data->out('  d: ');   $f->subTree->outNL('  s: ');
  
    ok Assemble(debug => 0, eq => <<END);
  first: 0000 0000 0000 0098
  first: 0000 0000 0000 0118
  first: 0000 0000 0000 0198
  first: 0000 0000 0000 0218
  i: 0000 0000 0000 0000  f: 0000 0000 0000 0001  d: 0000 0000 0000 0098  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0001  f: 0000 0000 0000 0001  d: 0000 0000 0000 0118  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0002  f: 0000 0000 0000 0001  d: 0000 0000 0000 0198  s: 0000 0000 0000 0001
  i: 0000 0000 0000 0003  f: 0000 0000 0000 0001  d: 0000 0000 0000 0218  s: 0000 0000 0000 0001
  N: 0000 0000 0000 0004  f: 0000 0000 0000 0001  d: 0000 0000 0000 0008  s: 0000 0000 0000 0000
  END
  

Nasm::X86::Tree::leftOrRightMost($t, $dir, $bs, $node, $offset)

Return the offset of the left most or right most node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $dir       Direction: left = 0 or right = 1
  3  $bs        Arena address
  4  $node      Start node
  5  $offset    Offset of located node

Nasm::X86::Tree::leftMost($t, $bs, $node, $offset)

Return the offset of the left most node from the specified node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $node      Start node
  4  $offset    Returned offset

Nasm::X86::Tree::rightMost($t, $bs, $node, $offset)

Return the offset of the left most node from the specified node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $node      Start node
  4  $offset    Returned offset

Nasm::X86::Tree::depth($t, $bs, $node, $depth)

Return the depth of a node within a tree.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $node      Node
  4  $depth     Return depth

Sub trees

Construct trees of trees.

Print

Print a tree

Nasm::X86::Tree::print($t)

Print a tree.

     Parameter  Description
  1  $t         Tree

Example:

    my $L = V(loop, 45);
  
    my $b = CreateArena;
    my $t = $b->CreateTree;
  
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      my $l = $L - $i;
      If ($i % 2 == 0, sub
       {$t->insert($i, $l);
        $t->insertTree($l);
       });
     });
  
    $t->print;
  
    ok Assemble(debug => 0, eq => <<END);
  Tree at:  0000 0000 0000 0018
  key: 0000 0000 0000 0000 data: 0000 0000 0000 002D depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0001 data: 0000 0000 0000 0ED8 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0ED8
  key: 0000 0000 0000 0002 data: 0000 0000 0000 002B depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0003 data: 0000 0000 0000 0E58 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0E58
  key: 0000 0000 0000 0004 data: 0000 0000 0000 0029 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0005 data: 0000 0000 0000 0DD8 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0DD8
  key: 0000 0000 0000 0006 data: 0000 0000 0000 0027 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0007 data: 0000 0000 0000 0D58 depth: 0000 0000 0000 0001
  Tree at:  0000 0000 0000 0D58
  key: 0000 0000 0000 0008 data: 0000 0000 0000 0025 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0009 data: 0000 0000 0000 0CD8 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0CD8
  key: 0000 0000 0000 000A data: 0000 0000 0000 0023 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 000B data: 0000 0000 0000 0C58 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0C58
  key: 0000 0000 0000 000C data: 0000 0000 0000 0021 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 000D data: 0000 0000 0000 0BD8 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0BD8
  key: 0000 0000 0000 000E data: 0000 0000 0000 001F depth: 0000 0000 0000 0001
  key: 0000 0000 0000 000F data: 0000 0000 0000 0B58 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0B58
  key: 0000 0000 0000 0010 data: 0000 0000 0000 001D depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0011 data: 0000 0000 0000 0AD8 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0AD8
  key: 0000 0000 0000 0012 data: 0000 0000 0000 001B depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0013 data: 0000 0000 0000 0998 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0998
  key: 0000 0000 0000 0014 data: 0000 0000 0000 0019 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0015 data: 0000 0000 0000 0918 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0918
  key: 0000 0000 0000 0016 data: 0000 0000 0000 0017 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0017 data: 0000 0000 0000 0898 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0898
  key: 0000 0000 0000 0018 data: 0000 0000 0000 0015 depth: 0000 0000 0000 0001
  key: 0000 0000 0000 0019 data: 0000 0000 0000 0818 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0818
  key: 0000 0000 0000 001A data: 0000 0000 0000 0013 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 001B data: 0000 0000 0000 06D8 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 06D8
  key: 0000 0000 0000 001C data: 0000 0000 0000 0011 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 001D data: 0000 0000 0000 0658 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0658
  key: 0000 0000 0000 001E data: 0000 0000 0000 000F depth: 0000 0000 0000 0002
  key: 0000 0000 0000 001F data: 0000 0000 0000 05D8 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 05D8
  key: 0000 0000 0000 0020 data: 0000 0000 0000 000D depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0021 data: 0000 0000 0000 0398 depth: 0000 0000 0000 0001
  Tree at:  0000 0000 0000 0398
  key: 0000 0000 0000 0022 data: 0000 0000 0000 000B depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0023 data: 0000 0000 0000 0318 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0318
  key: 0000 0000 0000 0024 data: 0000 0000 0000 0009 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0025 data: 0000 0000 0000 0298 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0298
  key: 0000 0000 0000 0026 data: 0000 0000 0000 0007 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0027 data: 0000 0000 0000 0218 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0218
  key: 0000 0000 0000 0028 data: 0000 0000 0000 0005 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 0029 data: 0000 0000 0000 0198 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0198
  key: 0000 0000 0000 002A data: 0000 0000 0000 0003 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 002B data: 0000 0000 0000 0118 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0118
  key: 0000 0000 0000 002C data: 0000 0000 0000 0001 depth: 0000 0000 0000 0002
  key: 0000 0000 0000 002D data: 0000 0000 0000 0098 depth: 0000 0000 0000 0002
  Tree at:  0000 0000 0000 0098
  END
  

Nasm::X86::Tree::dump($t, $first, $bs)

Dump a tree and all its sub trees.

     Parameter  Description
  1  $t         Tree
  2  $first     Optional offset to first node
  3  $bs        Optional arena address

Example:

    my $L = V(loop, 15);
  
    my $b = CreateArena;
    my $t = $b->CreateTree;
  
    $L->for(sub
     {my ($i, $start, $next, $end) = @_;
      If ($i % 2 == 0,
      Then
       {$t->insert    ($i, $i);
       },
      Else
       {$t->insertTree($i);
       });
     });
  
    $t->dump();
  
    ok Assemble(debug => 0, eq => <<END);
  Tree at:  0000 0000 0000 0018  length: 0000 0000 0000 0001
    0000 0018 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0518 0000 0458
    0000 0418 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0218
    0000 0058 0001 0001   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007
      index: 0000 0000 0000 0000   key: 0000 0000 0000 0007   data: 0000 0000 0000 0218 subTree
    Tree at:  0000 0000 0000 0218  length: 0000 0000 0000 0000
      0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      0000 0258 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    end
    Tree at:  0000 0000 0000 0458  length: 0000 0000 0000 0007
      0000 0458 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      0000 04D8 0000 0018   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0006   0000 0198 0000 0004   0000 0118 0000 0002   0000 0098 0000 0000
      0000 0498 002A 0007   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0006   0000 0005 0000 0004   0000 0003 0000 0002   0000 0001 0000 0000
        index: 0000 0000 0000 0000   key: 0000 0000 0000 0000   data: 0000 0000 0000 0000
        index: 0000 0000 0000 0001   key: 0000 0000 0000 0001   data: 0000 0000 0000 0098 subTree
        index: 0000 0000 0000 0002   key: 0000 0000 0000 0002   data: 0000 0000 0000 0002
        index: 0000 0000 0000 0003   key: 0000 0000 0000 0003   data: 0000 0000 0000 0118 subTree
        index: 0000 0000 0000 0004   key: 0000 0000 0000 0004   data: 0000 0000 0000 0004
        index: 0000 0000 0000 0005   key: 0000 0000 0000 0005   data: 0000 0000 0000 0198 subTree
        index: 0000 0000 0000 0006   key: 0000 0000 0000 0006   data: 0000 0000 0000 0006
      Tree at:  0000 0000 0000 0098  length: 0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 00D8 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      end
      Tree at:  0000 0000 0000 0118  length: 0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 0158 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      end
      Tree at:  0000 0000 0000 0198  length: 0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 01D8 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      end
    end
    Tree at:  0000 0000 0000 0518  length: 0000 0000 0000 0007
      0000 0518 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      0000 0598 0000 0018   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 000E   0000 0398 0000 000C   0000 0318 0000 000A   0000 0298 0000 0008
      0000 0558 002A 0007   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 000E   0000 000D 0000 000C   0000 000B 0000 000A   0000 0009 0000 0008
        index: 0000 0000 0000 0000   key: 0000 0000 0000 0008   data: 0000 0000 0000 0008
        index: 0000 0000 0000 0001   key: 0000 0000 0000 0009   data: 0000 0000 0000 0298 subTree
        index: 0000 0000 0000 0002   key: 0000 0000 0000 000A   data: 0000 0000 0000 000A
        index: 0000 0000 0000 0003   key: 0000 0000 0000 000B   data: 0000 0000 0000 0318 subTree
        index: 0000 0000 0000 0004   key: 0000 0000 0000 000C   data: 0000 0000 0000 000C
        index: 0000 0000 0000 0005   key: 0000 0000 0000 000D   data: 0000 0000 0000 0398 subTree
        index: 0000 0000 0000 0006   key: 0000 0000 0000 000E   data: 0000 0000 0000 000E
      Tree at:  0000 0000 0000 0298  length: 0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 02D8 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      end
      Tree at:  0000 0000 0000 0318  length: 0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 0358 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      end
      Tree at:  0000 0000 0000 0398  length: 0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
        0000 03D8 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
      end
    end
  end
  END
  

Iteration

Iterate through a tree non recursively

Nasm::X86::Tree::iterator($t, $bs, $first)

Iterate through a multi way tree starting either at the specified node or the first node of the specified tree.

     Parameter  Description
  1  $t         Tree
  2  $bs        Optional arena else the arena associated with the tree
  3  $first     Optionally the node to start at else the first node of the supplied tree will be used

Nasm::X86::Tree::Iterator::next($iter)

Next element in the tree.

     Parameter  Description
  1  $iter      Iterator

Nasm::X86::Tree::by($t, $body, $bs, $first)

Call the specified body with each (key, data) from the specified tree in order.

     Parameter  Description
  1  $t         Tree descriptor
  2  $body      Body to execute
  3  $bs        Arena address if not the one associated with the tree descriptor
  4  $first     First node offset if not the root of the tree provided

Assemble

Assemble generated code

CallC($sub, @parameters)

Call a C subroutine.

     Parameter    Description
  1  $sub         Name of the sub to call
  2  @parameters  Parameters

Example:

    my $format = Rs "Hello %s
";
    my $data   = Rs "World";
  
    Extern qw(printf exit malloc strcpy); Link 'c';
  
  
    CallC 'malloc', length($format)+1;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov r15, rax;
  
    CallC 'strcpy', r15, $format;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    CallC 'printf', r15, $data;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    CallC 'exit', 0;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble(eq => <<END);
  Hello World
  END
  

Extern(@externalReferences)

Name external references.

     Parameter            Description
  1  @externalReferences  External references

Example:

    my $format = Rs "Hello %s
";
    my $data   = Rs "World";
  
  
    Extern qw(printf exit malloc strcpy); Link 'c';  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    CallC 'malloc', length($format)+1;
    Mov r15, rax;
    CallC 'strcpy', r15, $format;
    CallC 'printf', r15, $data;
    CallC 'exit', 0;
  
    ok Assemble(eq => <<END);
  Hello World
  END
  

Link(@libraries)

Libraries to link with.

     Parameter   Description
  1  @libraries  External references

Example:

    my $format = Rs "Hello %s
";
    my $data   = Rs "World";
  
  
    Extern qw(printf exit malloc strcpy); Link 'c';  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    CallC 'malloc', length($format)+1;
    Mov r15, rax;
    CallC 'strcpy', r15, $format;
    CallC 'printf', r15, $data;
    CallC 'exit', 0;
  
    ok Assemble(eq => <<END);
  Hello World
  END
  

Start()

Initialize the assembler.

Exit($c)

Exit with the specified return code or zero if no return code supplied. Assemble() automatically adds a call to Exit(0) if the last operation in the program is not a call to Exit.

     Parameter  Description
  1  $c         Return code

Example:

    Comment "Print a string from memory";
    my $s = "Hello World";
    Mov rax, Rs($s);
    Mov rdi, length $s;
    PrintOutMemory;
  
    Exit(0);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  
    ok Assemble =~ m(Hello World);
  

Assemble(%options)

Assemble the generated code.

     Parameter  Description
  1  %options   Options

Example:

    PrintOutStringNL "Hello World";
    PrintOutStringNL "Hello
World";
    PrintErrStringNL "Hello World";
  
  
    ok Assemble(debug => 0, eq => <<END);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

  Hello World
  Hello
  World
  END
  

Hash Definitions

Nasm::X86 Definition

Iterator

Output fields

args

Hash of {argument name, argument variable}

bs

Arena containing tree

constant

Constant if true

count

Counter - number of node

data

Data at this position

depth

Lexical depth

end

End label for this subroutine

expr

Expression that initializes the variable

first

Variable addressing offset to first block of keys.

found

Variable indicating whether the last find was successful or not

free

Free chain offset

global

Global if true

key

Key at this position

label

Address in memory

leftLength

Left split length

length

Maximum length in a block

lengthOffset

Offset of length in keys block. The length field is a word - see: "MultiWayTree.svg"

level

Lexical level

Location of links in bytes in zmm

loop

Offset of keys, data, node loop.

maxKeys

Maximum number of keys.

more

Iteration not yet finished

name

Name of the variable

nameString

Name of the sub as a string constant

next

Location of next offset in block in bytes

node

Current node within tree

options

Options

parameters

Parameters

pos

Current position within node

prev

Location of prev offset in block in bytes

reference

Reference to another variable

rightLength

Right split length

size

Size field offset

slots1

Number of slots in first block

slots2

Number of slots in second and subsequent blocks

splittingKey

POint at which to split a full block

start

Start label for this subroutine

subTree

Variable indicating whether the last find found a sub tree

tree

Tree we are iterating over

treeBits

Offset of tree bits in keys block. The tree bits field is a word, each bit of which tells us whether the corresponding data element is the offset (or not) to a sub tree of this tree .

treeBitsMask

Total of 14 tree bits

up

Offset of up in data block.

used

Used field offset

variables

Argument variables

vars

Number of variables in subroutine

width

Width of a key or data slot.

Attributes

The following is a list of all the attributes in this package. A method coded with the same name in your package will over ride the method of the same name in this package and thus provide your value for the attribute in place of the default value supplied for this attribute by this package.

Replaceable Attribute List

Pi32 Pi64

Pi32

Pi as a 32 bit float.

Pi64

Pi as a 64 bit float.

Private Methods

Label({return "l".++$Labels unless @_;)

Create a unique label or reuse the one supplied.

     Parameter                         Description
  1  {return "l".++$Labels unless @_;  Generate a label

Dbwdq($s, @d)

Layout data.

     Parameter  Description
  1  $s         Element size
  2  @d         Data to be laid out

Rbwdq($s, @d)

Layout data.

     Parameter  Description
  1  $s         Element size
  2  @d         Data to be laid out

Nasm::X86::Sub::callTo($sub, $mode, $label, @parameters)

Call a sub passing it some parameters.

     Parameter    Description
  1  $sub         Subroutine descriptor
  2  $mode        Mode 0 - direct call or 1 - indirect call
  3  $label       Label of sub
  4  @parameters  Parameter variables

hexTranslateTable()

Create/address a hex translate table and return its label.

PrintOutRipInHex()

Print the instruction pointer in hex.

PrintOutRflagsInHex()

Print the flags register in hex.

Nasm::X86::Variable::dump($left, $channel, $newLine, $title1, $title2)

Dump the value of a variable to the specified channel adding an optional title and new line if requested.

     Parameter  Description
  1  $left      Left variable
  2  $channel   Channel
  3  $newLine   New line required
  4  $title1    Optional leading title
  5  $title2    Optional trailing title

Example:

    my $a = V(a, 3);  $a->outNL;
    my $b = K(b, 2);  $b->outNL;
    my $c = $a +  $b; $c->outNL;
    my $d = $c -  $a; $d->outNL;
    my $g = $a *  $b; $g->outNL;
    my $h = $g /  $b; $h->outNL;
    my $i = $a %  $b; $i->outNL;
  
    If ($a == 3,
    Then
     {PrintOutStringNL "a == 3"
     },
    Else
     {PrintOutStringNL "a != 3"
     });
  
    ++$a; $a->outNL;
    --$a; $a->outNL;
  
    ok Assemble(debug => 0, eq => <<END);
  a: 0000 0000 0000 0003
  b: 0000 0000 0000 0002
  (a add b): 0000 0000 0000 0005
  ((a add b) sub a): 0000 0000 0000 0002
  (a times b): 0000 0000 0000 0006
  ((a times b) / b): 0000 0000 0000 0003
  (a % b): 0000 0000 0000 0001
  a == 3
  a: 0000 0000 0000 0004
  a: 0000 0000 0000 0003
  END
  

PushRR(@r)

Push registers onto the stack without tracking.

     Parameter  Description
  1  @r         Register

PushR(@r)

Push registers onto the stack.

     Parameter  Description
  1  @r         Register

Example:

    Mov rax, 0x11111111;
    Mov rbx, 0x22222222;
  
    PushR my @save = (rax, rbx);  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rax, 0x33333333;
    PopR;
    PrintOutRegisterInHex rax;
    PrintOutRegisterInHex rbx;
  
    is_deeply Assemble, <<END;
     rax: 0000 0000 1111 1111
     rbx: 0000 0000 2222 2222
  END
  

PopRR(@r)

Pop registers from the stack without tracking.

     Parameter  Description
  1  @r         Register

ClassifyRange($recordOffsetInRange, @parameters)

Implementation of ClassifyInRange and ClassifyWithinRange.

     Parameter             Description
  1  $recordOffsetInRange  Record offset in classification in high byte if 1 else in classification if 2
  2  @parameters           Parameters

PrintUtf32($n, $m)

Print the specified number of utf32 characters at the specified address.

     Parameter  Description
  1  $n         Variable: number of characters to print
  2  $m         Variable: address of memory

Cstrlen()

Length of the C style string addressed by rax returning the length in r15.

Example:

    my $s = Rs("Hello World

Hello Skye"); Mov rax, $s;

    Cstrlen;  # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲

    Mov rdi, r15;
    PrintOutMemoryNL;
  
    ok Assemble(debug => 0, eq => <<END);
  Hello World
  
  Hello Skye
  END
  

Nasm::X86::Arena::chain($arena, $bs, $variable, @offsets)

Return a variable with the end point of a chain of double words in the arena starting at the specified variable.

     Parameter  Description
  1  $arena     Arena descriptor
  2  $bs        Arena locator
  3  $variable  Start variable
  4  @offsets   Offsets chain

Example:

    my $format = Rd(map{4*$_+24} 0..64);
  
    my $b = CreateArena;
    my $a = $b->allocBlock($b->bs);
    Vmovdqu8 zmm31, "[$format]";
    $b->putBlock($b->bs, $a, 31);
    my $r = $b->chain($b->bs, V(start, 0x18), 4);       $r->outNL("chain1: ");
    my $s = $b->chain($b->bs, $r, 4);                   $s->outNL("chain2: ");
    my $t = $b->chain($b->bs, $s, 4);                   $t->outNL("chain3: ");
    my $A = $b->chain($b->bs, V(start, 0x18), 4, 4, 4); $A->outNL("chain4: ");    # Get a long chain
  
    $b->putChain($b->bs, V(start, 0x18), V(end, 0xff), 4, 4, 4);                  # Put at the end of a long chain
  
    $b->dump;
  
    my $sub = Subroutine
     {my ($p) = @_;                                                               # Parameters
      If ($$p{c} == -1,
        sub {PrintOutStringNL "C is minus one"},
        sub {PrintOutStringNL "C is NOT minus one"},
       );
      If ($$p{d} == -1,
        sub {PrintOutStringNL "D is minus one"},
        sub {PrintOutStringNL "D is NOT minus one"},
       );
  
      $$p{c}->outNL;
  
      $$p{e} += 1;
      $$p{e}->outNL('E: ');
  
      $$p{f}->outNL('F1: ');
      $$p{f}++;
      $$p{f}->outNL('F2: ');
     } [qw(c d e f)], name=> 'aaa';
  
    my $c = K(c, -1);
    my $d = K(d, -1);
    my $e = V(e,  1);
    my $f = V(f,  2);
  
    $sub->call($c, $d, $e, $f);
    $f->outNL('F3: ');
  
    ok Assemble(debug => 0, eq => <<END);
  chain1: 0000 0000 0000 001C
  chain2: 0000 0000 0000 0020
  chain3: 0000 0000 0000 0024
  chain4: 0000 0000 0000 0024
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0058
  0000: 0010 0000 0000 00005800 0000 0000 00000000 0000 0000 00001800 0000 1C00 00002000 0000 FF00 00002800 0000 2C00 00003000 0000 3400 00003800 0000 3C00 0000
  0040: 4000 0000 4400 00004800 0000 4C00 00005000 0000 5400 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  C is minus one
  D is minus one
  c: FFFF FFFF FFFF FFFF
  E: 0000 0000 0000 0002
  F1: 0000 0000 0000 0002
  F2: 0000 0000 0000 0003
  F3: 0000 0000 0000 0003
  END
  

Nasm::X86::Arena::putChain($arena, $bs, $start, $value, @offsets)

Write the double word in the specified variable to the double word location at the the specified offset in the specified arena.

     Parameter  Description
  1  $arena     Arena descriptor
  2  $bs        Arena locator variable
  3  $start     Start variable
  4  $value     Value to put as a variable
  5  @offsets   Offsets chain

Nasm::X86::Arena::updateSpace($arena, @variables)

Make sure that the arena addressed by rax has enough space to accommodate content of length rdi.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Nasm::X86::Arena::blockSize($arena)

Size of a block.

     Parameter  Description
  1  $arena     Arena

Nasm::X86::Arena::firstFreeBlock($arena)

Create and load a variable with the first free block on the free block chain or zero if no such block in the given arena.

     Parameter  Description
  1  $arena     Arena address as a variable

Nasm::X86::Arena::setFirstFreeBlock($arena, $offset)

Set the first free block field from a variable.

     Parameter  Description
  1  $arena     Arena descriptor
  2  $offset    First free block offset as a variable

Nasm::X86::Arena::freeBlock($arena, @variables)

Free a block in an arena by placing it on the free chain.

     Parameter   Description
  1  $arena      Arena descriptor
  2  @variables  Variables

Example:

    my $a = CreateArena; $a->dump;
    my $b1 = $a->allocBlock($a->bs); $a->dump;
    my $b2 = $a->allocBlock($a->bs); $a->dump;
    $a->freeBlock($b2);              $a->dump;
    $a->freeBlock($b1);              $a->dump;
  
    ok Assemble(debug => 0, eq => <<END);
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0018
  0000: 0010 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0058
  0000: 0010 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0098
  0000: 0010 0000 0000 00009800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0098
  0000: 0010 0000 0000 00009800 0000 0000 00005800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  Arena
    Size: 0000 0000 0000 1000
    Used: 0000 0000 0000 0098
  0000: 0010 0000 0000 00009800 0000 0000 00001800 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0040: 0000 0000 0000 00000000 0000 0000 00000000 0000 5800 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  0080: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  00C0: 0000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 00000000 0000 0000 0000
  END
  

Nasm::X86::Arena::getBlock($arena, $address, $block, $zmm, $work1, $work2)

Get the block with the specified offset in the specified string and return it in the numbered zmm.

     Parameter  Description
  1  $arena     Arena descriptor
  2  $address   Arena address variable
  3  $block     Offset of the block as a variable
  4  $zmm       Number of zmm register to contain block
  5  $work1     First optional work register
  6  $work2     Second optional work register

Nasm::X86::Arena::putBlock($arena, $address, $block, $zmm, $work1, $work2)

Write the numbered zmm to the block at the specified offset in the specified arena.

     Parameter  Description
  1  $arena     Arena descriptor
  2  $address   Arena address variable
  3  $block     Offset of the block as a variable
  4  $zmm       Number of zmm register to contain block
  5  $work1     First optional work register
  6  $work2     Second optional work register

Nasm::X86::String::address($String)

Address of a string.

     Parameter  Description
  1  $String    String descriptor

Nasm::X86::String::allocBlock($String, $arena)

Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

     Parameter  Description
  1  $String    String descriptor
  2  $arena     Arena address

Nasm::X86::String::getBlockLength($String, $zmm)

Get the block length of the numbered zmm and return it in a variable.

     Parameter  Description
  1  $String    String descriptor
  2  $zmm       Number of zmm register

Nasm::X86::String::setBlockLengthInZmm($String, $length, $zmm)

Set the block length of the numbered zmm to the specified length.

     Parameter  Description
  1  $String    String descriptor
  2  $length    Length as a variable
  3  $zmm       Number of zmm register

Nasm::X86::String::getBlock($String, $bsa, $block, $zmm)

Get the block with the specified offset in the specified string and return it in the numbered zmm.

     Parameter  Description
  1  $String    String descriptor
  2  $bsa       Arena variable
  3  $block     Offset of the block as a variable
  4  $zmm       Number of zmm register to contain block

Nasm::X86::String::putBlock($String, $bsa, $block, $zmm)

Write the numbered zmm to the block at the specified offset in the specified arena.

     Parameter  Description
  1  $String    String descriptor
  2  $bsa       Arena variable
  3  $block     Block in arena
  4  $zmm       Content variable

Nasm::X86::String::getNextAndPrevBlockOffsetFromZmm($String, $zmm)

Get the offsets of the next and previous blocks as variables from the specified zmm.

     Parameter  Description
  1  $String    String descriptor
  2  $zmm       Zmm containing block

Nasm::X86::String::putNextandPrevBlockOffsetIntoZmm($String, $zmm, $next, $prev)

Save next and prev offsets into a zmm representing a block.

     Parameter  Description
  1  $String    String descriptor
  2  $zmm       Zmm containing block
  3  $next      Next offset as a variable
  4  $prev      Prev offset as a variable

Nasm::X86::Array::address($Array)

Address of a string.

     Parameter  Description
  1  $Array     Array descriptor

Nasm::X86::Array::allocBlock($Array, $bs)

Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

     Parameter  Description
  1  $Array     Array descriptor
  2  $bs        Arena address

Nasm::X86::Tree::allocKeysDataNode($t, $bs, $K, $D, $N)

Allocate a keys/data/node block and place it in the numbered zmm registers.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $K         Numbered zmm for keys
  4  $D         Numbered zmm for data
  5  $N         Numbered zmm for children

Nasm::X86::Tree::splitNode($t, $bs, $node, $key, @variables)

Split a non root node given its offset in an arena retaining the key being inserted in the node being split while putting the remainder to the left or right.

     Parameter   Description
  1  $t          Tree descriptor
  2  $bs         Backing arena
  3  $node       Offset of node
  4  $key        Key
  5  @variables  Variables

Nasm::X86::Tree::reParent($t, $bs, $PK, $PD, $PN, @variables)

Reparent the children of a node held in registers. The children are in the backing arena not registers.

     Parameter   Description
  1  $t          Tree descriptor
  2  $bs         Backing arena
  3  $PK         Numbered zmm key node
  4  $PD         Numbered zmm data node
  5  $PN         Numbered zmm child node
  6  @variables  Variables

Nasm::X86::Tree::transferTreeBitsFromParent($t, $parent, $left, $right)

Transfer tree bits when splitting a full node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $parent    Numbered parent zmm
  3  $left      Numbered left zmm
  4  $right     Numbered right zmm

Example:

    my $B = Rb(0..63);
    Vmovdqu8 zmm0, "[$B]";
    loadFromZmm r15, w, zmm, 14;
  
    my $b = CreateArena;
    my $t = $b->CreateTree;
    $t->getTreeBits(0, r14);
  
    PrintOutRegisterInHex zmm0, r15, r14;
  
    Mov r14, my $treeBits = 0xDCBA;
    $t->putTreeBits(1, r14);
    PrintOutRegisterInHex zmm1;
  
    $t->transferTreeBitsFromParent(1, 2, 3);
    PrintOutStringNL "Split:";
    PrintOutRegisterInHex zmm1, zmm2, zmm3;
  
    my $left  =  $treeBits & ((1<<$t->leftLength)  - 1);
    my $right = ($treeBits >>    ($t->leftLength   + 1)) & ((1<<$t->rightLength) - 1);
  
    my $l = sprintf("%02X", $left);
    my $r = sprintf("%02X", $right);
  
    ok Assemble(debug => 0, eq => <<END);
    zmm0: 3F3E 3D3C 3B3A 3938   3736 3534 3332 3130   2F2E 2D2C 2B2A 2928   2726 2524 2322 2120   1F1E 1D1C 1B1A 1918   1716 1514 1312 1110   0F0E 0D0C 0B0A 0908   0706 0504 0302 0100
     r15: 0000 0000 0000 0F0E
     r14: 0000 0000 0000 3B3A
    zmm1: 0000 0000 DCBA 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
  Split:
    zmm1: 0000 0000 0001 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    zmm2: 0000 0000 00$l 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    zmm3: 0000 0000 00$r 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
  END
  

Nasm::X86::Tree::transferTreeBitsFromLeftOrRight($t, $rnl, $point, $parent, $left, $right)

Transfer tree bits when splitting a full left or right node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $rnl       0 - left 1 - right
  3  $point     Register indicating point of left in parent
  4  $parent    Numbered parent zmm
  5  $left      Numbered left zmm
  6  $right     Numbered right zmm

Nasm::X86::Tree::transferTreeBitsFromLeft($t, $point, $parent, $left, $right)

Transfer tree bits when splitting a full left node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $point     Register indicating point of left in parent
  3  $parent    Numbered parent zmm
  4  $left      Numbered left zmm
  5  $right     Numbered right zmm

Example:

    my $b = CreateArena;
    my $t = $b->CreateTree;
    my $lR = "110110";
    my $lP = "1";
    my $lL = "1110111";
  
    my $p1 = "01010_110010";
    my $p2 = "1";
  
    my $epe = sprintf("%04X", eval "0b$p1$lP$p2");
    my $ele = sprintf("%04X", eval "0b$lL"      );
    my $ere = sprintf("%04X", eval "0b$lR"      );
  
    my @expected;
    for my $i(0..1)
     {Mov r15, eval "0b$lR$lP$lL"; $t->putTreeBits(1+$i, r15);
      Mov r15, eval "0b$p1$p2";    $t->putTreeBits(0,    r15);
  
      PrintOutRegisterInHex zmm 0, 1+$i;
  
      Mov r15, 0b10;
      $t->transferTreeBitsFromLeft (r15, 0, 1, 2) unless $i;
      $t->transferTreeBitsFromRight(r15, 0, 1, 2) if     $i;
      PrintOutRegisterInHex zmm 0..2;
  
      my $zzz = $i ? "zmm2" : "zmm1";
      push @expected, <<END;
    zmm0: 0000 0000 0565 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    $zzz: 0000 0000 36F7 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    zmm0: 0000 0000 $epe 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    zmm1: 0000 0000 $ele 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    zmm2: 0000 0000 $ere 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
  END
     }
  
    ok Assemble(debug => 0, eq => join "", @expected);
  

Nasm::X86::Tree::transferTreeBitsFromRight($t, $point, $parent, $left, $right)

Transfer tree bits when splitting a full right node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $point     Register indicating point of right in parent
  3  $parent    Numbered parent zmm
  4  $left      Numbered left zmm
  5  $right     Numbered right zmm

Example:

    my $b = CreateArena;
    my $t = $b->CreateTree;
    my $lR = "110110";
    my $lP = "1";
    my $lL = "1110111";
  
    my $p1 = "01010_110010";
    my $p2 = "1";
  
    my $epe = sprintf("%04X", eval "0b$p1$lP$p2");
    my $ele = sprintf("%04X", eval "0b$lL"      );
    my $ere = sprintf("%04X", eval "0b$lR"      );
  
    my @expected;
    for my $i(0..1)
     {Mov r15, eval "0b$lR$lP$lL"; $t->putTreeBits(1+$i, r15);
      Mov r15, eval "0b$p1$p2";    $t->putTreeBits(0,    r15);
  
      PrintOutRegisterInHex zmm 0, 1+$i;
  
      Mov r15, 0b10;
      $t->transferTreeBitsFromLeft (r15, 0, 1, 2) unless $i;
      $t->transferTreeBitsFromRight(r15, 0, 1, 2) if     $i;
      PrintOutRegisterInHex zmm 0..2;
  
      my $zzz = $i ? "zmm2" : "zmm1";
      push @expected, <<END;
    zmm0: 0000 0000 0565 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    $zzz: 0000 0000 36F7 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    zmm0: 0000 0000 $epe 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    zmm1: 0000 0000 $ele 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
    zmm2: 0000 0000 $ere 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000
  END
     }
  
    ok Assemble(debug => 0, eq => join "", @expected);
  

Nasm::X86::Tree::splitFullRoot($t, $bs)

Split a full root block held in 31..29 and place the left block in 28..26 and the right block in 25..23. The left and right blocks should have their loop offsets set so they can be inserted into the root.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address

Nasm::X86::Tree::splitFullLeftOrRightNode($t, $right)

Split a full a full left node (held in 28..26) or a full right node (held in 25..23) whose parent is in 31..29.

     Parameter  Description
  1  $t         Tree descriptor
  2  $right     0 left or 1 right

Nasm::X86::Tree::splitFullLeftNode($t)

Split a full left node block held in 28..26 whose parent is in 31..29 and place the new right block in 25..23. The parent is assumed to be not full. The loop and length fields are assumed to be authoritative and hence are preserved.

     Parameter  Description
  1  $t         Tree descriptor

Example:

    my $Sk = Rd(17..28, 0, 0, 12,   0xFF);
    my $Sd = Rd(17..28, 0, 0, 0xDD, 0xEE);
    my $Sn = Rd(1..13,     0, 0,    0xCC);
  
    my $sk = Rd(1..14, 14,   0xA1);
    my $sd = Rd(1..14, 0xCC, 0xA2);
    my $sn = Rd(1..15,       0xA3);
  
    my $rk = Rd((0)x14, 14,   0xB1);
    my $rd = Rd((0)x14, 0xCC, 0xB2);
    my $rn = Rd((0)x15,       0xB3);
  
    my $b = CreateArena;
    my $t = $b->CreateTree;
  
    Vmovdqu8 zmm31, "[$Sk]";
    Vmovdqu8 zmm30, "[$Sd]";
    Vmovdqu8 zmm29, "[$Sn]";
  
    Vmovdqu8 zmm28, "[$sk]";
    Vmovdqu8 zmm27, "[$sd]";
    Vmovdqu8 zmm26, "[$sn]";
  
    Vmovdqu8 zmm25, "[$rk]";
    Vmovdqu8 zmm24, "[$rd]";
    Vmovdqu8 zmm23, "[$rn]";
  
    $t->splitFullLeftNode;
  
    PrintOutRegisterInHex reverse zmm(23..31);
  
    ok Assemble(debug => 0, eq => <<END);
   zmm31: 0000 00FF 0000 000D   0000 0000 0000 0000   0000 001C 0000 001B   0000 001A 0000 0019   0000 0018 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
   zmm30: 0000 00EE 0000 00DD   0000 0000 0000 0000   0000 001C 0000 001B   0000 001A 0000 0019   0000 0018 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
   zmm29: 0000 00CC 0000 0000   0000 0000 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009   0000 0008 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
   zmm28: 0000 00A1 0000 0007   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
   zmm27: 0000 00A2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
   zmm26: 0000 00A3 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
   zmm25: 0000 00B1 0000 0006   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
   zmm24: 0000 00B2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
   zmm23: 0000 00B3 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
  END
  
    my $tk = Rd(1, (0) x 13, 1, 0xC1);
    my $td = Rd(1, (0) x 14,    0xC2);
    my $tn = Rd(1, 0xAA, (0) x 13, 0xCC);
  
    my $lk = Rd(1..14, 14,   0xA1);
    my $ld = Rd(1..14, 0xCC, 0xA2);
    my $ln = Rd(1..15,       0xAA);
  
    my $rk = Rd((0)x14, 14,   0xB1);
    my $rd = Rd((0)x14, 0xCC, 0xB2);
    my $rn = Rd((0)x15,       0xBB);
  
    my $b = CreateArena;
    my $t = $b->CreateTree;
  
    Vmovdqu8 zmm31, "[$tk]";
    Vmovdqu8 zmm30, "[$td]";
    Vmovdqu8 zmm29, "[$tn]";
  
    Vmovdqu8 zmm28, "[$lk]";
    Vmovdqu8 zmm27, "[$ld]";
    Vmovdqu8 zmm26, "[$ln]";
  
    Vmovdqu8 zmm25, "[$rk]";
    Vmovdqu8 zmm24, "[$rd]";
    Vmovdqu8 zmm23, "[$rn]";
  
    $t->splitFullLeftNode;
  
    PrintOutRegisterInHex reverse zmm(23..31);
  
    ok Assemble(debug => 0, eq => <<END);
   zmm31: 0000 00C1 0000 0002   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0008 0000 0001
   zmm30: 0000 00C2 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0008 0000 0001
   zmm29: 0000 00CC 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 00BB   0000 00AA 0000 0001
   zmm28: 0000 00A1 0000 0007   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
   zmm27: 0000 00A2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
   zmm26: 0000 00AA 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0007   0000 0006 0000 0005   0000 0004 0000 0003   0000 0002 0000 0001
   zmm25: 0000 00B1 0000 0006   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
   zmm24: 0000 00B2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
   zmm23: 0000 00BB 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 000E 0000 000D   0000 000C 0000 000B   0000 000A 0000 0009
  END
  

Nasm::X86::Tree::splitFullRightNode($t)

Split a full right node block held in 25..23 whose parent is in 31..29 and place the new left block in 28..26. The loop and length fields are assumed to be authoritative and hence are preserved.

     Parameter  Description
  1  $t         Tree descriptor

Example:

    my $tk = Rd(1..12, 0, 0, 12,      0xC1);
    my $td = Rd(1..12, 0, 0,  0,      0xC2);
    my $tn = Rd(1, 0xBB, 3..13, 0, 0, 0xCC);
  
    my $lk = Rd(17..30, 14,   0xA1);
    my $ld = Rd(17..30, 0xCC, 0xA2);
    my $ln = Rd(17..31,       0xAA);
  
    my $rk = Rd(17..30, 14,   0xB1);
    my $rd = Rd(17..30, 0xCC, 0xB2);
    my $rn = Rd(17..31,       0xBB);
  
    my $b = CreateArena;
    my $t = $b->CreateTree;
  
    Vmovdqu8 zmm31, "[$tk]";
    Vmovdqu8 zmm30, "[$td]";
    Vmovdqu8 zmm29, "[$tn]";
  
    Vmovdqu8 zmm28, "[$lk]";
    Vmovdqu8 zmm27, "[$ld]";
    Vmovdqu8 zmm26, "[$ln]";
  
    Vmovdqu8 zmm25, "[$rk]";
    Vmovdqu8 zmm24, "[$rd]";
    Vmovdqu8 zmm23, "[$rn]";
  
    $t->splitFullRightNode;
  
    PrintOutRegisterInHex reverse zmm(23..31);
  
    ok Assemble(debug => 0, eq => <<END);
   zmm31: 0000 00C1 0000 000D   0000 0000 0000 000C   0000 000B 0000 000A   0000 0009 0000 0008   0000 0007 0000 0006   0000 0005 0000 0004   0000 0003 0000 0002   0000 0018 0000 0001
   zmm30: 0000 00C2 0000 0000   0000 0000 0000 000C   0000 000B 0000 000A   0000 0009 0000 0008   0000 0007 0000 0006   0000 0005 0000 0004   0000 0003 0000 0002   0000 0018 0000 0001
   zmm29: 0000 00CC 0000 0000   0000 000D 0000 000C   0000 000B 0000 000A   0000 0009 0000 0008   0000 0007 0000 0006   0000 0005 0000 0004   0000 0003 0000 00BB   0000 00AA 0000 0001
   zmm28: 0000 00A1 0000 0007   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
   zmm27: 0000 00A2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
   zmm26: 0000 00AA 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0017   0000 0016 0000 0015   0000 0014 0000 0013   0000 0012 0000 0011
   zmm25: 0000 00B1 0000 0006   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 001E 0000 001D   0000 001C 0000 001B   0000 001A 0000 0019
   zmm24: 0000 00B2 0000 00CC   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 001E 0000 001D   0000 001C 0000 001B   0000 001A 0000 0019
   zmm23: 0000 00BB 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 0000 0000 0000   0000 001E 0000 001D   0000 001C 0000 001B   0000 001A 0000 0019
  END
  

Nasm::X86::Tree::findAndSplit($t, $bs, $first, $key, $compare, $offset, $index)

Find a key in a tree which is known to contain at least one key splitting full nodes along the path to the key.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $first     Start node
  4  $key       Key to find
  5  $compare   Last comparison result variable
  6  $offset    Offset of last node found
  7  $index     Index within last node found

Nasm::X86::Tree::getKeysData($t, $bs, $offset, $zmmKeys, $zmmData, $work1, $work2)

Load the keys and data blocks for a node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $offset    Offset as a variable
  4  $zmmKeys   Numbered zmm for keys
  5  $zmmData   Numbered data for keys
  6  $work1     Optional first work register
  7  $work2     Optional second work register

Nasm::X86::Tree::putKeysData($t, $bs, $offset, $zmmKeys, $zmmData, $work1, $work2)

Save the key and data blocks for a node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $offset    Offset as a variable
  4  $zmmKeys   Numbered zmm for keys
  5  $zmmData   Numbered data for keys
  6  $work1     Optional first work register
  7  $work2     Optional second work register

Nasm::X86::Tree::getKeysDataNode($t, $bs, $offset, $zmmKeys, $zmmData, $zmmNode, $work1, $work2)

Load the keys, data and child nodes for a node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $offset    Offset as a variable
  4  $zmmKeys   Numbered zmm for keys
  5  $zmmData   Numbered data for keys
  6  $zmmNode   Numbered numbered for keys
  7  $work1     Optional first work register
  8  $work2     Optional second work register

Nasm::X86::Tree::putKeysDataNode($t, $bs, $offset, $zmmKeys, $zmmData, $zmmNode, $work1, $work2)

Save the keys, data and child nodes for a node.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Arena address
  3  $offset    Offset as a variable
  4  $zmmKeys   Numbered zmm for keys
  5  $zmmData   Numbered data for keys
  6  $zmmNode   Numbered numbered for keys
  7  $work1     Optional first work register
  8  $work2     Optional second work register

Nasm::X86::Tree::getLengthInKeys($t, $zmm)

Get the length of the keys block in the numbered zmm and return it as a variable.

     Parameter  Description
  1  $t         Tree descriptor
  2  $zmm       Zmm number

Nasm::X86::Tree::putLengthInKeys($t, $zmm, $length)

Get the length of the block in the numbered zmm from the specified variable.

     Parameter  Description
  1  $t         Tree
  2  $zmm       Zmm number
  3  $length    Length variable

Nasm::X86::Tree::getUpFromData($t, $zmm, $transfer)

Get the up offset from the data block in the numbered zmm and return it as a variable.

     Parameter  Description
  1  $t         Tree descriptor
  2  $zmm       Zmm number
  3  $transfer  Transfer register

Nasm::X86::Tree::putUpIntoData($t, $offset, $zmm, $transfer)

Put the offset of the parent keys block expressed as a variable into the numbered zmm.

     Parameter  Description
  1  $t         Tree descriptor
  2  $offset    Variable containing up offset
  3  $zmm       Zmm number
  4  $transfer  Optional transfer register

Nasm::X86::Tree::getLoop($t, $zmm, $transfer)

Return the value of the loop field as a variable.

     Parameter  Description
  1  $t         Tree descriptor
  2  $zmm       Numbered zmm
  3  $transfer  Optional transfer register

Nasm::X86::Tree::putLoop($t, $value, $zmm, $transfer)

Set the value of the loop field from a variable.

     Parameter  Description
  1  $t         Tree descriptor
  2  $value     Variable containing offset of next loop entry
  3  $zmm       Numbered zmm
  4  $transfer  Optional transfer register

Nasm::X86::Tree::nodeFromData($t, $data, $node)

Load the the node block into the numbered zmm corresponding to the data block held in the numbered zmm.

     Parameter  Description
  1  $t         Tree descriptor
  2  $data      Numbered zmm containing data
  3  $node      Numbered zmm to hold node block

Nasm::X86::Tree::address($t)

Address of the arena containing a tree.

     Parameter  Description
  1  $t         Tree descriptor

Nasm::X86::Tree::allocBlock($t, $bs)

Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

     Parameter  Description
  1  $t         Tree descriptor
  2  $bs        Variables

Nasm::X86::Tree::testTree($t, $position, $zmm)

Set the Zero Flag to oppose the tree bit indexed by the specified variable in the numbered zmm register holding the keys of a node to indicate whether the data element indicated by the specified register is an offset to a sub tree in the containing arena or not.

     Parameter  Description
  1  $t         Tree descriptor
  2  $position  Variable holding index of position to test
  3  $zmm       Numbered zmm register holding the keys for a node in the tree

Nasm::X86::Tree::isTree($t, $register, $zmm)

Set the Zero Flag to oppose the tree bit in the numbered zmm register holding the keys of a node to indicate whether the data element indicated by the specified register is an offset to a sub tree in the containing arena or not.

     Parameter  Description
  1  $t         Tree descriptor
  2  $register  Word register holding a bit shifted into the position to test
  3  $zmm       Numbered zmm register holding the keys for a node in the tree

Nasm::X86::Tree::setOrClearTree($t, $set, $register, $zmm)

Set or clear the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indicated by the specified register is an offset to a sub tree in the containing arena.

     Parameter  Description
  1  $t         Tree descriptor
  2  $set       Set if true else clear
  3  $register  Register holding a single one in the lowest 14 bits at the insertion point
  4  $zmm       Numbered zmm register holding the keys for a node in the tree

Nasm::X86::Tree::setTree($t, $register, $zmm)

Set the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indexed by the specified register is an offset to a sub tree in the containing arena.

     Parameter  Description
  1  $t         Tree descriptor
  2  $register  Register holding data element index 0..13
  3  $zmm       Numbered zmm register holding the keys for a node in the tree

Nasm::X86::Tree::clearTree($t, $register, $zmm)

Clear the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indexed by the specified register is an offset to a sub tree in the containing arena.

     Parameter  Description
  1  $t         Tree descriptor
  2  $register  Register holding data element index 0..13
  3  $zmm       Numbered zmm register holding the keys for a node in the tree

Nasm::X86::Tree::getTreeBits($t, $zmm, $register)

Load the tree bits from the numbered zmm into the specified register.

     Parameter  Description
  1  $t         Tree descriptor
  2  $zmm       Numbered zmm
  3  $register  Target register

Nasm::X86::Tree::putTreeBits($t, $zmm, $register)

Put the tree bits in the specified register into the numbered zmm.

     Parameter  Description
  1  $t         Tree descriptor
  2  $zmm       Numbered zmm
  3  $register  Target register

Nasm::X86::Tree::expandTreeBitsWithZeroOrOne($t, $onz, $zmm, $point)

Insert a zero or one into the tree bits field in the numbered zmm at the specified point.

     Parameter  Description
  1  $t         Tree descriptor
  2  $onz       0 - zero or 1 - one
  3  $zmm       Numbered zmm
  4  $point     Register indicating point

Nasm::X86::Tree::expandTreeBitsWithZero($t, $zmm, $point)

Insert a zero into the tree bits field in the numbered zmm at the specified point.

     Parameter  Description
  1  $t         Tree descriptor
  2  $zmm       Numbered zmm
  3  $point     Register indicating point

Nasm::X86::Tree::expandTreeBitsWithOne($t, $zmm, $point)

Insert a one into the tree bits field in the numbered zmm at the specified point.

     Parameter  Description
  1  $t         Tree descriptor
  2  $zmm       Numbered zmm
  3  $point     Register indicating point

LocateIntelEmulator()

Locate the Intel Software Development Emulator.

getInstructionCount()

Get the number of instructions executed from the emulator mix file.

Optimize(%options)

Perform code optimizations.

     Parameter  Description
  1  %options   Options

removeNonAsciiChars($string)

Return a copy of the specified string with all the non ascii characters removed.

     Parameter  Description
  1  $string    String

totalBytesAssembled()

Total size in bytes of all files assembled during testing.

Index

1 All8Structure - Create a structure consisting of 8 byte fields.

2 AllocateAll8OnStack - Create a local data descriptor consisting of the specified number of 8 byte local variables and return an array: (local data descriptor, variable definitions.

3 AllocateMemory - Allocate the specified amount of memory via mmap and return its address.

4 AndBlock - Execute a block of code one with the option of jumping out of the block or restarting the block via the supplied labels.

5 Assemble - Assemble the generated code.

6 CallC - Call a C subroutine.

7 CheckGeneralPurposeRegister - Check that a register is in fact a general purpose register.

8 CheckMaskRegister - Check that a register is in fact a mask register.

9 CheckNumberedGeneralPurposeRegister - Check that a register is in fact a numbered general purpose register.

10 ChooseRegisters - Choose the specified numbers of registers excluding those on the specified list.

11 ClassifyInRange - Character classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with each word in zmm1 having the classification in the highest 8 bits and with zmm0 and zmm1 having the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 21 bits.

12 ClassifyRange - Implementation of ClassifyInRange and ClassifyWithinRange.

13 ClassifyWithInRange - Bracket classification: Classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with the classification range in the highest 8 bits of zmm0 and zmm1 and the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 21 bits.

14 ClassifyWithInRangeAndSaveOffset - Alphabetic classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with the classification code in the high byte of zmm1 and the offset of the first element in the range in the high byte of zmm0.

15 ClearMemory - Clear memory.

16 ClearRegisters - Clear registers by setting them to zero.

17 ClearZF - Clear the zero flag.

18 CloseFile - Close the file whose descriptor is in rax.

19 Comment - Insert a comment into the assembly code.

20 CommentWithTraceBack - Insert a comment into the assembly code with a traceback showing how it was generated.

21 ConcatenateShortStrings - Concatenate the numbered source zmm containing a short string with the short string in the numbered target zmm.

22 ConvertUtf8ToUtf32 - Convert a string of utf8 to an allocated block of utf32 and return its address and length.

23 CopyMemory - Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi.

24 cr - Call a subroutine with a reordering of the registers.

25 CreateArena - Create an relocatable arena and returns its address in rax.

26 Cstrlen - Length of the C style string addressed by rax returning the length in r15.

27 Db - Layout bytes in the data segment and return their label.

28 Dbwdq - Layout data.

29 DComment - Insert a comment into the data segment.

30 Dd - Layout double words in the data segment and return their label.

31 Dq - Layout quad words in the data segment and return their label.

32 Ds - Layout bytes in memory and return their label.

33 Dw - Layout words in the data segment and return their label.

34 Else - Else body for an If statement.

35 executeFileViaBash - Execute the file named in the arena addressed by rax with bash.

36 Exit - Exit with the specified return code or zero if no return code supplied.

37 Extern - Name external references.

38 For - For - iterate the body as long as register is less than limit incrementing by increment each time.

39 ForEver - Iterate for ever.

40 ForIn - For - iterate the full body as long as register plus increment is less than than limit incrementing by increment each time then increment the last body for the last non full block.

41 Fork - Fork.

42 FreeMemory - Free memory.

43 G - Define a global variable.

44 getBFromXmm - Get the byte from the numbered xmm register and return it in a variable.

45 getBFromZmm - Get the byte from the numbered zmm register and return it in a variable.

46 getBwdqFromMm - Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable.

47 getBwdqFromMm22 - Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable.

48 getDFromXmm - Get the double word from the numbered xmm register and return it in a variable.

49 getDFromZmm - Get the double word from the numbered zmm register and return it in a variable.

50 getInstructionCount - Get the number of instructions executed from the emulator mix file.

51 GetLengthOfShortString - Get the length of the short string held in the numbered zmm register into the specified register.

52 GetNextUtf8CharAsUtf32 - Get the next utf8 encoded character from the addressed memory and return it as a utf32 char.

53 GetPid - Get process identifier.

54 GetPidInHex - Get process identifier in hex as 8 zero terminated bytes in rax.

55 GetPPid - Get parent process identifier.

56 getQFromXmm - Get the quad word from the numbered xmm register and return it in a variable.

57 getQFromZmm - Get the quad word from the numbered zmm register and return it in a variable.

58 GetUid - Get userid of current process.

59 getWFromXmm - Get the word from the numbered xmm register and return it in a variable.

60 getWFromZmm - Get the word from the numbered zmm register and return it in a variable.

61 Hash - Hash a string addressed by rax with length held in rdi and return the hash code in r15.

62 hexTranslateTable - Create/address a hex translate table and return its label.

63 If - If.

64 IfC - If the carry flag is set then execute the then body else the else body.

65 IfEq - If equal execute the then body else the else body.

66 IfGe - If greater than or equal execute the then body else the else body.

67 IfGt - If greater than execute the then body else the else body.

68 IfLe - If less than or equal execute the then body else the else body.

69 IfLt - If less than execute the then body else the else body.

70 IfNc - If the carry flag is not set then execute the then body else the else body.

71 IfNe - If not equal execute the then body else the else body.

72 IfNz - If the zero flag is not set then execute the then body else the else body.

73 IfZ - If the zero flag is set then execute the then body else the else body.

74 InsertOneIntoRegisterAtPoint - Insert a one into the specified register at the point indicated by another register.

75 InsertZeroIntoRegisterAtPoint - Insert a zero into the specified register at the point indicated by another register.

76 K - Define a constant variable.

77 Label - Create a unique label or reuse the one supplied.

78 Link - Libraries to link with.

79 LoadBitsIntoMaskRegister - Load a bit string specification into a mask register.

80 LoadConstantIntoMaskRegister - Set a mask register equal to a constant.

81 loadFromZmm - Load the specified register from the offset located in the numbered zmm.

82 LoadShortStringFromMemoryToZmm - Load the short string addressed by rax into the zmm register with the specified number.

83 LoadZmm - Load a numbered zmm with the specified bytes.

84 LocalData - Map local data.

85 LocateIntelEmulator - Locate the Intel Software Development Emulator.

86 Macro - Create a sub with optional parameters name=> the name of the subroutine so it can be reused rather than regenerated, comment=> a comment describing the sub.

87 MaskMemory22 - Write the specified byte into locations in the target mask that correspond to the locations in the source that contain the specified byte.

88 MaskMemoryInRange4_22 - Write the specified byte into locations in the target mask that correspond to the locations in the source that contain 4 bytes in the specified range.

89 Nasm::X86::Arena::allocate - Allocate the amount of space indicated in rdi in the arena addressed by rax and return the offset of the allocation in the arena in rdi.

90 Nasm::X86::Arena::allocBlock - Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

91 Nasm::X86::Arena::allocZmmBlock - Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

92 Nasm::X86::Arena::append - Append one arena to another.

93 Nasm::X86::Arena::arenaSize - Get the size of an arena.

94 Nasm::X86::Arena::blockSize - Size of a block.

95 Nasm::X86::Arena::chain - Return a variable with the end point of a chain of double words in the arena starting at the specified variable.

96 Nasm::X86::Arena::char - Append a character expressed as a decimal number to the arena addressed by rax.

97 Nasm::X86::Arena::clear - Clear the arena addressed by rax.

98 Nasm::X86::Arena::CreateArray - Create a array in an arena.

99 Nasm::X86::Arena::CreateString - Create a string from a doubly link linked list of 64 byte blocks linked via 4 byte offsets in the arena addressed by rax and return its descriptor.

100 Nasm::X86::Arena::CreateTree - Create a tree in an arena.

101 Nasm::X86::Arena::DescribeTree - Return a descriptor for a tree in the specified arena.

102 Nasm::X86::Arena::dump - Dump details of an arena.

103 Nasm::X86::Arena::firstFreeBlock - Create and load a variable with the first free block on the free block chain or zero if no such block in the given arena.

104 Nasm::X86::Arena::freeBlock - Free a block in an arena by placing it on the free chain.

105 Nasm::X86::Arena::getBlock - Get the block with the specified offset in the specified string and return it in the numbered zmm.

106 Nasm::X86::Arena::length - Get the length of an arena.

107 Nasm::X86::Arena::m - Append the content with length rdi addressed by rsi to the arena addressed by rax.

108 Nasm::X86::Arena::makeReadOnly - Make an arena read only.

109 Nasm::X86::Arena::makeWriteable - Make an arena writable.

110 Nasm::X86::Arena::nl - Append a new line to the arena addressed by rax.

111 Nasm::X86::Arena::out - Print the specified arena addressed by rax on sysout.

112 Nasm::X86::Arena::putBlock - Write the numbered zmm to the block at the specified offset in the specified arena.

113 Nasm::X86::Arena::putChain - Write the double word in the specified variable to the double word location at the the specified offset in the specified arena.

114 Nasm::X86::Arena::q - Append a constant string to the arena.

115 Nasm::X86::Arena::ql - Append a quoted string containing new line characters to the arena addressed by rax.

116 Nasm::X86::Arena::read - Read the named file (terminated with a zero byte) and place it into the named arena.

117 Nasm::X86::Arena::setFirstFreeBlock - Set the first free block field from a variable.

118 Nasm::X86::Arena::updateSpace - Make sure that the arena addressed by rax has enough space to accommodate content of length rdi.

119 Nasm::X86::Arena::write - Write the content in an arena addressed by rax to a temporary file and replace the arena content with the name of the temporary file.

120 Nasm::X86::Arena::z - Append a trailing zero to the arena addressed by rax.

121 Nasm::X86::Array::address - Address of a string.

122 Nasm::X86::Array::allocBlock - Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

123 Nasm::X86::Array::dump - Dump a array.

124 Nasm::X86::Array::get - Get an element from the array.

125 Nasm::X86::Array::pop - Pop an element from an array.

126 Nasm::X86::Array::push - Push an element onto the array.

127 Nasm::X86::Array::put - Put an element into an array as long as it is with in its limits established by pushing.

128 Nasm::X86::Array::size - Return the size of an array as a variable.

129 Nasm::X86::LocalData::allocate8 - Add some 8 byte local variables and return an array of variable definitions.

130 Nasm::X86::LocalData::free - Free a local data area on the stack.

131 Nasm::X86::LocalData::start - Start a local data area on the stack.

132 Nasm::X86::LocalData::variable - Add a local variable.

133 Nasm::X86::LocalVariable::stack - Address a local variable on the stack.

134 Nasm::X86::String::address - Address of a string.

135 Nasm::X86::String::allocBlock - Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

136 Nasm::X86::String::append - Append the specified content in memory to the specified string.

137 Nasm::X86::String::clear - Clear the block by freeing all but the first block.

138 Nasm::X86::String::concatenate - Concatenate two strings by appending a copy of the source to the target string.

139 Nasm::X86::String::deleteChar - Delete a character in a string.

140 Nasm::X86::String::dump - Dump a string to sysout.

141 Nasm::X86::String::getBlock - Get the block with the specified offset in the specified string and return it in the numbered zmm.

142 Nasm::X86::String::getBlockLength - Get the block length of the numbered zmm and return it in a variable.

143 Nasm::X86::String::getCharacter - Get a character from a string.

144 Nasm::X86::String::getNextAndPrevBlockOffsetFromZmm - Get the offsets of the next and previous blocks as variables from the specified zmm.

145 Nasm::X86::String::insertChar - Insert a character into a string.

146 Nasm::X86::String::len - Find the length of a string.

147 Nasm::X86::String::putBlock - Write the numbered zmm to the block at the specified offset in the specified arena.

148 Nasm::X86::String::putNextandPrevBlockOffsetIntoZmm - Save next and prev offsets into a zmm representing a block.

149 Nasm::X86::String::setBlockLengthInZmm - Set the block length of the numbered zmm to the specified length.

150 Nasm::X86::Structure::field - Add a field of the specified length with an optional comment.

151 Nasm::X86::StructureField::addr - Address a field in a structure by either the default register or the named register.

152 Nasm::X86::Sub::call - Call a sub passing it some parameters.

153 Nasm::X86::Sub::callTo - Call a sub passing it some parameters.

154 Nasm::X86::Sub::V - Put the address of a subroutine into a stack variable so that it can be passed as a parameter.

155 Nasm::X86::Sub::via - Call a sub by reference passing it some parameters.

156 Nasm::X86::Tree::address - Address of the arena containing a tree.

157 Nasm::X86::Tree::allocBlock - Allocate a block to hold a zmm register in the specified arena and return the offset of the block in a variable.

158 Nasm::X86::Tree::allocKeysDataNode - Allocate a keys/data/node block and place it in the numbered zmm registers.

159 Nasm::X86::Tree::by - Call the specified body with each (key, data) from the specified tree in order.

160 Nasm::X86::Tree::clearTree - Clear the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indexed by the specified register is an offset to a sub tree in the containing arena.

161 Nasm::X86::Tree::Clone - Clone the specified tree descriptions.

162 Nasm::X86::Tree::depth - Return the depth of a node within a tree.

163 Nasm::X86::Tree::dump - Dump a tree and all its sub trees.

164 Nasm::X86::Tree::expandTreeBitsWithOne - Insert a one into the tree bits field in the numbered zmm at the specified point.

165 Nasm::X86::Tree::expandTreeBitsWithZero - Insert a zero into the tree bits field in the numbered zmm at the specified point.

166 Nasm::X86::Tree::expandTreeBitsWithZeroOrOne - Insert a zero or one into the tree bits field in the numbered zmm at the specified point.

167 Nasm::X86::Tree::find - Find a key in a tree and test whether the found data is a sub tree.

168 Nasm::X86::Tree::findAndClone - Find a key in the specified tree and clone it is it is a sub tree.

169 Nasm::X86::Tree::findAndSplit - Find a key in a tree which is known to contain at least one key splitting full nodes along the path to the key.

170 Nasm::X86::Tree::getKeysData - Load the keys and data blocks for a node.

171 Nasm::X86::Tree::getKeysDataNode - Load the keys, data and child nodes for a node.

172 Nasm::X86::Tree::getLengthInKeys - Get the length of the keys block in the numbered zmm and return it as a variable.

173 Nasm::X86::Tree::getLoop - Return the value of the loop field as a variable.

174 Nasm::X86::Tree::getTreeBits - Load the tree bits from the numbered zmm into the specified register.

175 Nasm::X86::Tree::getUpFromData - Get the up offset from the data block in the numbered zmm and return it as a variable.

176 Nasm::X86::Tree::insert - Insert a dword into into the specified tree at the specified key.

177 Nasm::X86::Tree::insertDataOrTree - Insert either a key, data pair into the tree or create a sub tree at the specified key (if it does not already exist) and return the offset of the first block of the sub tree in the data variable.

178 Nasm::X86::Tree::insertTree - Insert a sub tree into the specified tree tree under the specified key.

179 Nasm::X86::Tree::insertTreeAndClone - Insert a new sub tree into the specified tree tree under the specified key and return a descriptor for it.

180 Nasm::X86::Tree::isTree - Set the Zero Flag to oppose the tree bit in the numbered zmm register holding the keys of a node to indicate whether the data element indicated by the specified register is an offset to a sub tree in the containing arena or not.

181 Nasm::X86::Tree::iterator - Iterate through a multi way tree starting either at the specified node or the first node of the specified tree.

182 Nasm::X86::Tree::Iterator::next - Next element in the tree.

183 Nasm::X86::Tree::leftMost - Return the offset of the left most node from the specified node.

184 Nasm::X86::Tree::leftOrRightMost - Return the offset of the left most or right most node.

185 Nasm::X86::Tree::nodeFromData - Load the the node block into the numbered zmm corresponding to the data block held in the numbered zmm.

186 Nasm::X86::Tree::print - Print a tree.

187 Nasm::X86::Tree::putKeysData - Save the key and data blocks for a node.

188 Nasm::X86::Tree::putKeysDataNode - Save the keys, data and child nodes for a node.

189 Nasm::X86::Tree::putLengthInKeys - Get the length of the block in the numbered zmm from the specified variable.

190 Nasm::X86::Tree::putLoop - Set the value of the loop field from a variable.

191 Nasm::X86::Tree::putTreeBits - Put the tree bits in the specified register into the numbered zmm.

192 Nasm::X86::Tree::putUpIntoData - Put the offset of the parent keys block expressed as a variable into the numbered zmm.

193 Nasm::X86::Tree::reParent - Reparent the children of a node held in registers.

194 Nasm::X86::Tree::rightMost - Return the offset of the left most node from the specified node.

195 Nasm::X86::Tree::setOrClearTree - Set or clear the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indicated by the specified register is an offset to a sub tree in the containing arena.

196 Nasm::X86::Tree::setTree - Set the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indexed by the specified register is an offset to a sub tree in the containing arena.

197 Nasm::X86::Tree::splitFullLeftNode - Split a full left node block held in 28.

198 Nasm::X86::Tree::splitFullLeftOrRightNode - Split a full a full left node (held in 28.

199 Nasm::X86::Tree::splitFullRightNode - Split a full right node block held in 25.

200 Nasm::X86::Tree::splitFullRoot - Split a full root block held in 31.

201 Nasm::X86::Tree::splitNode - Split a non root node given its offset in an arena retaining the key being inserted in the node being split while putting the remainder to the left or right.

202 Nasm::X86::Tree::testTree - Set the Zero Flag to oppose the tree bit indexed by the specified variable in the numbered zmm register holding the keys of a node to indicate whether the data element indicated by the specified register is an offset to a sub tree in the containing arena or not.

203 Nasm::X86::Tree::transferTreeBitsFromLeft - Transfer tree bits when splitting a full left node.

204 Nasm::X86::Tree::transferTreeBitsFromLeftOrRight - Transfer tree bits when splitting a full left or right node.

205 Nasm::X86::Tree::transferTreeBitsFromParent - Transfer tree bits when splitting a full node.

206 Nasm::X86::Tree::transferTreeBitsFromRight - Transfer tree bits when splitting a full right node.

207 Nasm::X86::Variable::add - Add the right hand variable to the left hand variable and return the result as a new variable.

208 Nasm::X86::Variable::address - Get the address of a variable with an optional offset.

209 Nasm::X86::Variable::allocateMemory - Allocate the specified amount of memory via mmap and return its address.

210 Nasm::X86::Variable::and - And two variables.

211 Nasm::X86::Variable::arithmetic - Return a variable containing the result of an arithmetic operation on the left hand and right hand side variables.

212 Nasm::X86::Variable::assign - Assign to the left hand side the value of the right hand side.

213 Nasm::X86::Variable::boolean - Combine the left hand variable with the right hand variable via a boolean operator.

214 Nasm::X86::Variable::booleanC - Combine the left hand variable with the right hand variable via a boolean operator using a conditional move instruction.

215 Nasm::X86::Variable::booleanZF - Combine the left hand variable with the right hand variable via a boolean operator and indicate the result by setting the zero flag if the result is true.

216 Nasm::X86::Variable::clearBit - Clear a bit in the specified mask register retaining the other bits.

217 Nasm::X86::Variable::clearMaskBit - Clear a bit in the specified mask register retaining the other bits.

218 Nasm::X86::Variable::clearMemory - Clear the memory described in this variable.

219 Nasm::X86::Variable::copy - Copy one variable into another.

220 Nasm::X86::Variable::copyAddress - Copy a reference to a variable.

221 Nasm::X86::Variable::copyMemory - Copy from one block of memory to another.

222 Nasm::X86::Variable::copyZF - Copy the current state of the zero flag into a variable.

223 Nasm::X86::Variable::copyZFInverted - Copy the opposite of the current state of the zero flag into a variable.

224 Nasm::X86::Variable::d - Dump the value of a variable on stderr and append a new line.

225 Nasm::X86::Variable::debug - Dump the value of a variable on stdout with an indication of where the dump came from.

226 Nasm::X86::Variable::dec - Decrement a variable.

227 Nasm::X86::Variable::divide - Divide the left hand variable by the right hand variable and return the result as a new variable.

228 Nasm::X86::Variable::division - Return a variable containing the result or the remainder that occurs when the left hand side is divided by the right hand side.

229 Nasm::X86::Variable::dump - Dump the value of a variable to the specified channel adding an optional title and new line if requested.

230 Nasm::X86::Variable::eq - Check whether the left hand variable is equal to the right hand variable.

231 Nasm::X86::Variable::equals - Equals operator.

232 Nasm::X86::Variable::err - Dump the value of a variable on stderr.

233 Nasm::X86::Variable::errNL - Dump the value of a variable on stderr and append a new line.

234 Nasm::X86::Variable::for - Iterate the body limit times.

235 Nasm::X86::Variable::freeMemory - Free the memory addressed by this variable for the specified length.

236 Nasm::X86::Variable::ge - Check whether the left hand variable is greater than or equal to the right hand variable.

237 Nasm::X86::Variable::getBFromZmm - Get the byte from the numbered zmm register and put it in a variable.

238 Nasm::X86::Variable::getConst - Load the variable from a constant in effect setting a variable to a specified value.

239 Nasm::X86::Variable::getConst22 - Load the variable from a constant in effect setting a variable to a specified value.

240 Nasm::X86::Variable::getDFromZmm - Get the double word from the numbered zmm register and put it in a variable.

241 Nasm::X86::Variable::getDFromZmmUnOPtimized - Get the double word from the numbered zmm register and put it in a variable.

242 Nasm::X86::Variable::getQFromZmm - Get the quad word from the numbered zmm register and put it in a variable.

243 Nasm::X86::Variable::getReg - Load the variable from the named registers.

244 Nasm::X86::Variable::getWFromZmm - Get the word from the numbered zmm register and put it in a variable.

245 Nasm::X86::Variable::gt - Check whether the left hand variable is greater than the right hand variable.

246 Nasm::X86::Variable::inc - Increment a variable.

247 Nasm::X86::Variable::incDec - Increment or decrement a variable.

248 Nasm::X86::Variable::isRef - Check whether the specified variable is a reference to another variable.

249 Nasm::X86::Variable::le - Check whether the left hand variable is less than or equal to the right hand variable.

250 Nasm::X86::Variable::loadZmm - Load bytes from the memory addressed by the specified source variable into the numbered zmm register.

251 Nasm::X86::Variable::lt - Check whether the left hand variable is less than the right hand variable.

252 Nasm::X86::Variable::max - Maximum of two variables.

253 Nasm::X86::Variable::min - Minimum of two variables.

254 Nasm::X86::Variable::minusAssign - Implement minus and assign.

255 Nasm::X86::Variable::mod - Divide the left hand variable by the right hand variable and return the remainder as a new variable.

256 Nasm::X86::Variable::ne - Check whether the left hand variable is not equal to the right hand variable.

257 Nasm::X86::Variable::or - Or two variables.

258 Nasm::X86::Variable::out - Dump the value of a variable on stdout.

259 Nasm::X86::Variable::outNL - Dump the value of a variable on stdout and append a new line.

260 Nasm::X86::Variable::plusAssign - Implement plus and assign.

261 Nasm::X86::Variable::pop - Pop a variable from the stack.

262 Nasm::X86::Variable::printErrMemoryInHexNL - Write the memory addressed by a variable to stderr.

263 Nasm::X86::Variable::printMemoryInHexNL - Write the memory addressed by a variable to stdout or stderr.

264 Nasm::X86::Variable::printOutMemoryInHexNL - Write the memory addressed by a variable to stdout.

265 Nasm::X86::Variable::push - Push a variable onto the stack.

266 Nasm::X86::Variable::putBIntoXmm - Place the value of the content variable at the byte in the numbered xmm register.

267 Nasm::X86::Variable::putBIntoZmm - Place the value of the content variable at the byte in the numbered zmm register.

268 Nasm::X86::Variable::putBwdqIntoMm - Place the value of the content variable at the byte|word|double word|quad word in the numbered zmm register.

269 Nasm::X86::Variable::putDIntoXmm - Place the value of the content variable at the double word in the numbered xmm register.

270 Nasm::X86::Variable::putDIntoZmm - Place the value of the content variable at the double word in the numbered zmm register.

271 Nasm::X86::Variable::putQIntoXmm - Place the value of the content variable at the quad word in the numbered xmm register.

272 Nasm::X86::Variable::putQIntoZmm - Place the value of the content variable at the quad word in the numbered zmm register.

273 Nasm::X86::Variable::putWIntoXmm - Place the value of the content variable at the word in the numbered xmm register.

274 Nasm::X86::Variable::putWIntoZmm - Place the value of the content variable at the word in the numbered zmm register.

275 Nasm::X86::Variable::setBit - Set a bit in the specified register retaining the other bits.

276 Nasm::X86::Variable::setMask - Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere.

277 Nasm::X86::Variable::setMaskBit - Set a bit in the specified mask register retaining the other bits.

278 Nasm::X86::Variable::setMaskFirst - Set the first bits in the specified mask register.

279 Nasm::X86::Variable::setReg - Set the named registers from the content of the variable.

280 Nasm::X86::Variable::setZmm - Load bytes from the memory addressed by specified source variable into the numbered zmm register at the offset in the specified offset moving the number of bytes in the specified variable.

281 Nasm::X86::Variable::str - The name of the variable.

282 Nasm::X86::Variable::sub - Subtract the right hand variable from the left hand variable and return the result as a new variable.

283 Nasm::X86::Variable::times - Multiply the left hand variable by the right hand variable and return the result as a new variable.

284 Nasm::X86::Variable::zBroadCastD - Broadcast a double word in a variable into the numbered zmm.

285 OnSegv - Request a trace back followed by exit on a segv signal.

286 OpenRead - Open a file, whose name is addressed by rax, for read and return the file descriptor in rax.

287 OpenWrite - Create the file named by the terminated string addressed by rax for write.

288 Optimize - Perform code optimizations.

289 OrBlock - Execute a block of code one with the option of jumping out of the block or restarting the block via the supplied labels.

290 PeekR - Peek at register on stack.

291 PopEax - We cannot pop a double word from the stack in 64 bit long mode using pop so we improvise.

292 PopMask - Pop Mask registers.

293 PopR - Pop registers from the stack.

294 PopRR - Pop registers from the stack without tracking.

295 PopZmm - Pop zmm registers.

296 PrintErrMemory - Print the memory addressed by rax for a length of rdi on stderr.

297 PrintErrMemoryInHex - Dump memory from the address in rax for the length in rdi on stderr.

298 PrintErrMemoryInHexNL - Dump memory from the address in rax for the length in rdi and then print a new line.

299 PrintErrMemoryNL - Print the memory addressed by rax for a length of rdi followed by a new line on stderr.

300 PrintErrNL - Print a new line to stderr.

301 PrintErrRaxInHex - Write the content of register rax in hexadecimal in big endian notation to stderr.

302 PrintErrRegisterInHex - Print the named registers as hex strings on stderr.

303 PrintErrSpace - Print one or more spaces to stderr.

304 PrintErrString - Print a constant string to stderr.

305 PrintErrStringNL - Print a constant string followed by a new line to stderr.

306 PrintErrTraceBack - Print sub routine track back on stderr.

307 PrintErrZF - Print the zero flag without disturbing it on stderr.

308 PrintMemory - Print the memory addressed by rax for a length of rdi on the specified channel.

309 PrintMemoryInHex - Dump memory from the address in rax for the length in rdi on the specified channel.

310 PrintMemoryNL - Print the memory addressed by rax for a length of rdi on the specified channel followed by a new line.

311 PrintNL - Print a new line to stdout or stderr.

312 PrintOneRegisterInHex - Print the named register as a hex strings.

313 PrintOutMemory - Print the memory addressed by rax for a length of rdi on stdout.

314 PrintOutMemoryInHex - Dump memory from the address in rax for the length in rdi on stdout.

315 PrintOutMemoryInHexNL - Dump memory from the address in rax for the length in rdi and then print a new line.

316 PrintOutMemoryNL - Print the memory addressed by rax for a length of rdi followed by a new line on stdout.

317 PrintOutNL - Print a new line to stderr.

318 PrintOutRaxInHex - Write the content of register rax in hexadecimal in big endian notation to stderr.

319 PrintOutRaxInReverseInHex - Write the content of register rax to stderr in hexadecimal in little endian notation.

320 PrintOutRegisterInHex - Print the named registers as hex strings on stdout.

321 PrintOutRegistersInHex - Print the general purpose registers in hex.

322 PrintOutRflagsInHex - Print the flags register in hex.

323 PrintOutRipInHex - Print the instruction pointer in hex.

324 PrintOutSpace - Print one or more spaces to stdout.

325 PrintOutString - Print a constant string to stdout.

326 PrintOutStringNL - Print a constant string followed by a new line to stdout.

327 PrintOutTraceBack - Print sub routine track back on stdout.

328 PrintOutZF - Print the zero flag without disturbing it on stdout.

329 PrintRaxInHex - Write the content of register rax in hexadecimal in big endian notation to the specified channel.

330 PrintRegisterInHex - Print the named registers as hex strings.

331 PrintSpace - Print one or more spaces to the specified channel.

332 PrintString - Print a constant string to the specified channel.

333 PrintStringNL - Print a constant string to the specified channel followed by a new line.

334 PrintTraceBack - Trace the call stack.

335 PrintUtf32 - Print the specified number of utf32 characters at the specified address.

336 PushMask - Push several Mask registers.

337 PushR - Push registers onto the stack.

338 PushRR - Push registers onto the stack without tracking.

339 PushZmm - Push several zmm registers.

340 putIntoZmm - Put the specified register into the numbered zmm at the specified offset in the zmm.

341 R - Define a reference variable.

342 Rb - Layout bytes in the data segment and return their label.

343 Rbwdq - Layout data.

344 RComment - Insert a comment into the read only data segment.

345 Rd - Layout double words in the data segment and return their label.

346 ReadFile - Read a file whose name is addressed by rax into memory.

347 ReadTimeStampCounter - Read the time stamp counter and return the time in nanoseconds in rax.

348 RegistersAvailable - Add a new set of registers that are available.

349 RegistersFree - Remove the current set of registers known to be free.

350 RegisterSize - Return the size of a register.

351 removeNonAsciiChars - Return a copy of the specified string with all the non ascii characters removed.

352 ReorderSyscallRegisters - Map the list of registers provided to the 64 bit system call sequence.

353 RestoreFirstFour - Restore the first 4 parameter registers.

354 RestoreFirstFourExceptRax - Restore the first 4 parameter registers except rax so it can return its value.

355 RestoreFirstFourExceptRaxAndRdi - Restore the first 4 parameter registers except rax and rdi so we can return a pair of values.

356 RestoreFirstSeven - Restore the first 7 parameter registers.

357 RestoreFirstSevenExceptRax - Restore the first 7 parameter registers except rax which is being used to return the result.

358 RestoreFirstSevenExceptRaxAndRdi - Restore the first 7 parameter registers except rax and rdi which are being used to return the results.

359 Rq - Layout quad words in the data segment and return their label.

360 Rs - Layout bytes in read only memory and return their label.

361 Rutf8 - Layout a utf8 encoded string as bytes in read only memory and return their label.

362 Rw - Layout words in the data segment and return their label.

363 SaveFirstFour - Save the first 4 parameter registers making any parameter registers read only.

364 SaveFirstSeven - Save the first 7 parameter registers.

365 SetLabel - Create (if necessary) and set a label in the code section returning the label so set.

366 SetLengthOfShortString - Set the length of the short string held in the numbered zmm register into the specified register.

367 SetMaskRegister - Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere.

368 SetZF - Set the zero flag.

369 Start - Initialize the assembler.

370 StatSize - Stat a file whose name is addressed by rax to get its size in rax.

371 StringLength - Length of a zero terminated string.

372 Structure - Create a structure addressed by a register.

373 Subroutine - Create a subroutine that can be called in assembler code.

374 SubroutineStartStack - Initialize a new stack frame.

375 Then - Then body for an If statement.

376 totalBytesAssembled - Total size in bytes of all files assembled during testing.

377 unlinkFile - Unlink the named file.

378 UnReorderSyscallRegisters - Recover the initial values in registers that were reordered.

379 V - Define a variable.

380 Variable - Create a new variable with the specified name initialized via an optional expression.

381 WaitPid - Wait for the pid in rax to complete.

382 xmm - Add xmm to the front of a list of register expressions.

383 ymm - Add ymm to the front of a list of register expressions.

384 zmm - Add zmm to the front of a list of register expressions.

Installation

This module is written in 100% Pure Perl and, thus, it is easy to read, comprehend, use, modify and install via cpan:

  sudo cpan install Nasm::X86

Author

philiprbrenan@gmail.com

http://www.appaapps.com

Copyright

Copyright (c) 2016-2021 Philip R Brenan.

This module is free software. It may be used, redistributed and/or modified under the same terms as Perl itself.