package Algorithm::CurveFit; use 5.006; use strict; use warnings; our $VERSION = '1.06'; require Exporter; our @ISA = qw(Exporter); our %EXPORT_TAGS = ( 'all' => [ qw( curve_fit ) ] ); our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } ); our @EXPORT = qw(); use Carp qw/confess/; use Math::Symbolic qw/parse_from_string/; use Math::MatrixReal; use Data::Dumper; # machine epsilon use constant EPS => 2.2e-16; use constant SQRT_EPS => sqrt(EPS); sub curve_fit { shift @_ if not ref $_[0] and defined $_[0] and $_[0] eq 'Algorithm::CurveFit'; confess('Uneven number of arguments to Algorithm::CurveFit::curve_fit.') if @_ % 2; my %args = @_; # Formula confess("Missing 'formula' parameter.") if not defined $args{formula}; my $formula; if (ref($args{formula}) =~ /^Math::Symbolic/) { $formula = $args{formula}; } else { eval { $formula = parse_from_string( $args{formula} ); }; confess( "Cannot parse formula '" . $args{formula} . "'. ($@)" ) if not defined $formula or $@; } # Variable (optional) my $variable = $args{variable}; $variable = 'x' if not defined $variable; confess("Formula '" . $args{formula} . "' not explicitly dependent on " . "variable '$variable'." ) if not grep { $_ eq $variable } $formula->explicit_signature(); # Parameters my $params = $args{params}; confess("Parameter 'params' has to be an array reference.") if not defined $params or not ref($params) eq 'ARRAY'; my @parameters = @$params; confess('No parameters specified.') if not @parameters; confess('Individual parameters need to be array references.') if grep { not defined $_ or not ref($_) eq 'ARRAY' } @parameters; foreach my $p (@parameters) { confess("Weird parameter\n'" . Dumper($p) . "' Should have the format\n" . "[ NAME_STRING, GUESSED_VALUE, ACCURACY ]\n" . "With the accuracy being optional. See docs." ) if @$p > 3 or @$p < 2 or grep { not defined $_ } @$p; confess("Formula '" . $args{formula} . "' not explicitly dependent on " . "parameter '" . $p->[0] . "'." ) if not grep { $_ eq $p->[0] } $formula->explicit_signature(); } # XData my $xdata = $args{xdata}; confess('X-Data missing.') if not defined $xdata or not ref($xdata) eq 'ARRAY' or not @$xdata; my @xdata = @$xdata; # YData my $ydata = $args{ydata}; confess('Y-Data missing.') if not defined $ydata or not ref($ydata) eq 'ARRAY' or not @$ydata; confess('Y-Data and X-Data need to have the same number of elements.') if not @$ydata == @xdata; my @ydata = @$ydata; # Max_Iter (optional) my $max_iter = $args{maximum_iterations}; $max_iter = 0 if not defined $max_iter; # Add third element (dlamda) to parameter arrays in case they're missing. foreach my $param (@parameters) { push @$param, 0 if @$param < 3; } # Array holding all first order partial derivatives of the function in respect # to the parameters in order. my @derivatives; my @param_names = ($variable, map {$_->[0]} @parameters); foreach my $param (@parameters) { my $deriv = Math::Symbolic::Operator->new( 'partial_derivative', $formula, $param->[0] ); $deriv = $deriv->simplify()->apply_derivatives()->simplify(); my ($sub, $trees) = Math::Symbolic::Compiler->compile_to_sub($deriv, \@param_names); if ($trees) { push @derivatives, $deriv; # residual trees, need to evaluate } else { push @derivatives, $sub; } } # if not compilable, close over a ->value call for convenience later on my $formula_sub = do { my ($sub, $trees) = Math::Symbolic::Compiler->compile_to_sub($formula, \@param_names); $trees ? sub { $formula->value( map { ($param_names[$_] => $_[$_]) } 0..$#param_names ) } : $sub }; my $dbeta; # Iterative approximation of the parameters my $iteration = 0; # As long as we're under max_iter or maxiter==0 while ( !$max_iter || ++$iteration < $max_iter ) { # Generate Matrix A my @cols; my $pno = 0; my @par_values = map {$_->[1]} @parameters; foreach my $param (@parameters) { my $deriv = $derivatives[ $pno++ ]; my @ary; if (ref $deriv eq 'CODE') { foreach my $x ( 0 .. $#xdata ) { my $xv = $xdata[$x]; my $value = $deriv->($xv, @par_values); if (not defined $value) { # fall back to numeric five-point stencil my $h = SQRT_EPS*$xv; my $t = $xv + $h; $h = $t-$xv; # numerics. Cf. NR $value = $formula_sub->($xv, map { $_->[1] } @parameters) } push @ary, $value; } } else { $deriv = $deriv->new; # better safe than sorry foreach my $x ( 0 .. $#xdata ) { my $xv = $xdata[$x]; my $value = $deriv->value( $variable => $xv, map { ( @{$_}[ 0, 1 ] ) } @parameters # a, guess ); if (not defined $value) { # fall back to numeric five-point stencil my $h = SQRT_EPS*$xv; my $t = $xv + $h; $h = $t-$xv; # numerics. Cf. NR $value = $formula_sub->($xv, map { $_->[1] } @parameters) } push @ary, $value; } } push @cols, \@ary; } # Prepare matrix of datapoints X parameters my $A = Math::MatrixReal->new_from_cols( \@cols ); # transpose my $AT = ~$A; my $M = $AT * $A; # residuals my @beta = map { $ydata[$_] - $formula_sub->( $xdata[$_], map { $_->[1] } @parameters ) } 0 .. $#xdata; $dbeta = Math::MatrixReal->new_from_cols( [ \@beta ] ); my $N = $AT * $dbeta; # Normalize before solving => better accuracy. my ( $matrix, $vector ) = $M->normalize($N); # solve my $LR = $matrix->decompose_LR(); my ( $dim, $x, $B ) = $LR->solve_LR($vector); # extract parameter modifications and test for convergence my $last = 1; foreach my $pno ( 1 .. @parameters ) { my $dlambda = $x->element( $pno, 1 ); $last = 0 if abs($dlambda) > $parameters[ $pno - 1 ][2]; $parameters[ $pno - 1 ][1] += $dlambda; } last if $last; } # Recalculate dbeta for the squared residuals. my @beta = map { $ydata[$_] - $formula_sub->( $xdata[$_], map { $_->[1] } @parameters ) } 0 .. $#xdata; $dbeta = Math::MatrixReal->new_from_cols( [ \@beta ] ); my $square_residual = $dbeta->scalar_product($dbeta); return $square_residual; } 1; __END__ =head1 NAME Algorithm::CurveFit - Nonlinear Least Squares Fitting =head1 SYNOPSIS use Algorithm::CurveFit; # Known form of the formula my $formula = 'c + a * x^2'; my $variable = 'x'; my @xdata = read_file('xdata'); # The data corresponsing to $variable my @ydata = read_file('ydata'); # The data on the other axis my @parameters = ( # Name Guess Accuracy ['a', 0.9, 0.00001], # If an iteration introduces smaller ['c', 20, 0.00005], # changes that the accuracy, end. ); my $max_iter = 100; # maximum iterations my $square_residual = Algorithm::CurveFit->curve_fit( formula => $formula, # may be a Math::Symbolic tree instead params => \@parameters, variable => $variable, xdata => \@xdata, ydata => \@ydata, maximum_iterations => $max_iter, ); use Data::Dumper; print Dumper \@parameters; # Prints # $VAR1 = [ # [ # 'a', # '0.201366784209602', # '1e-05' # ], # [ # 'c', # '1.94690440147554', # '5e-05' # ] # ]; # # Real values of the parameters (as demonstrated by noisy input data): # a = 0.2 # c = 2 =head1 DESCRIPTION C<Algorithm::CurveFit> implements a nonlinear least squares curve fitting algorithm. That means, it fits a curve of known form (sine-like, exponential, polynomial of degree n, etc.) to a given set of data points. For details about the algorithm and its capabilities and flaws, you're encouraged to read the MathWorld page referenced below. Note, however, that it is an iterative algorithm that improves the fit with each iteration until it converges. The following rule of thumb usually holds true: =over 2 =item A good guess improves the probability of convergence and the quality of the fit. =item Increasing the number of free parameters decreases the quality and convergence speed. =item Make sure that there are no correlated parameters such as in 'a + b * e^(c+x)'. (The example can be rewritten as 'a + b * e^c * e^x' in which 'c' and 'b' are basically equivalent parameters. =back The curve fitting algorithm is accessed via the 'curve_fit' subroutine. It requires the following parameters as 'key => value' pairs: =over 2 =item formula The formula should be a string that can be parsed by Math::Symbolic. Alternatively, it can be an existing Math::Symbolic tree. Please refer to the documentation of that module for the syntax. Evaluation of the formula for a specific value of the variable (X-Data) and the parameters (see below) should yield the associated Y-Data value in case of perfect fit. =item variable The 'variable' is the variable in the formula that will be replaced with the X-Data points for evaluation. If omitted in the call to C<curve_fit>, the name 'x' is default. (Hence 'xdata'.) =item params The parameters are the symbols in the formula whose value is varied by the algorithm to find the best fit of the curve to the data. There may be one or more parameters, but please keep in mind that the number of parameters not only increases processing time, but also decreases the quality of the fit. The value of this options should be an anonymous array. This array should hold one anonymous array for each parameter. That array should hold (in order) a parameter name, an initial guess, and optionally an accuracy measure. Example: $params = [ ['parameter1', 5, 0.00001], ['parameter2', 12, 0.0001 ], ... ]; Then later: curve_fit( ... params => $params, ... ); The accuracy measure means that if the change of parameters from one iteration to the next is below each accuracy measure for each parameter, convergence is assumed and the algorithm stops iterating. In order to prevent looping forever, you are strongly encouraged to make use of the accuracy measure (see also: maximum_iterations). The final set of parameters is B<not> returned from the subroutine but the parameters are modified in-place. That means the original data structure will hold the best estimate of the parameters. =item xdata This should be an array reference to an array holding the data for the variable of the function. (Which defaults to 'x'.) =item ydata This should be an array reference to an array holding the function values corresponding to the x-values in 'xdata'. =item maximum_iterations Optional parameter to make the process stop after a given number of iterations. Using the accuracy measure and this option together is encouraged to prevent the algorithm from going into an endless loop in some cases. =back The subroutine returns the sum of square residuals after the final iteration as a measure for the quality of the fit. =head2 EXPORT None by default, but you may choose to export C<curve_fit> using the standard Exporter semantics. =head2 SUBROUTINES This is a list of public subroutines =over 2 =item curve_fit This subroutine implements the curve fitting as explained in L<DESCRIPTION> above. =back =head1 NOTES AND CAVEATS =over 2 =item * When computing the derivative symbolically using C<Math::Symbolic>, the formula simplification algorithm can sometimes fail to find the equivalent of C<(x-x_0)/(x-x_0)>. Typically, these would be hidden in a more complex product. The effect is that for C<x -E<gt> x_0>, the evaluation of the derivative becomes undefined. Since version 1.05, we fall back to numeric differentiation using five-point stencil in such cases. This should help with one of the primary complaints about the reliability of the module. =item * This module is NOT fast. For slightly better performance, the formulas are compiled to Perl code if possible. =back =head1 SEE ALSO The algorithm implemented in this module was taken from: Eric W. Weisstein. "Nonlinear Least Squares Fitting." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NonlinearLeastSquaresFitting.html New versions of this module can be found on http://steffen-mueller.net or CPAN. This module uses the following modules. It might be a good idea to be familiar with them. L<Math::Symbolic>, L<Math::MatrixReal>, L<Test::More> =head1 AUTHORS Steffen Mueller, E<lt>smueller@cpan.orgE<gt> Paul Cochrane, E<lt>ptc@cpan.orgE<gt> (maintainer) =head1 COPYRIGHT AND LICENSE Copyright (C) 2005-2010, 2025 by Steffen Mueller This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself, either Perl version 5.6 or, at your option, any later version of Perl 5 you may have available. =cut