**Math::NumSeq::PlanePathTurn - turn sequence from PlanePath module**

This is a tie-in to present turns from a "Math::PlanePath" module in the form of a NumSeq sequence. The "turn_type" choices are "Left" 1=left, 0=right or straight "Right" 1=right, 0=left or straight "Straight" 1=straight, 0=left or right "NotStraight...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::Polynomial::Solve - Find the roots of polynomial equations.**

This package supplies a set of functions that find the roots of polynomials, along with some utility functions. Roots will be either real or of type Math::Complex. Functions making use of the Sturm sequence are also available, letting you find the nu...

JGAMBLE/Math-Polynomial-Solve-2.86 - 02 Nov 2018 01:10:27 GMT**Math::NumSeq::PlanePathCoord - sequence of coordinate values from a PlanePath module**

This is a tie-in to make a "NumSeq" sequence giving coordinate values from a "Math::PlanePath". The NumSeq "i" index is the PlanePath "N" value. The "coordinate_type" choices are as follows. Generally they have some sort of geometric interpretation o...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::Fractal::Noisemaker - Visual noise generator**

Math::Fractal::Noisemaker provides a simple functional interface for generating several types of two-dimensional grayscale noise, which may be combined in interesting and novel ways. This module isn't fast, but it can output production-quality noise ...

AAYARS/Math-Fractal-Noisemaker-0.105 - 27 Feb 2011 19:14:06 GMT**Math::Cephes::Polynomial - Perl interface to the cephes math polynomial routines**

This module is a layer on top of the basic routines in the cephes math library to handle polynomials. In the following, a Math::Cephes::Polynomial object is created as my $p = Math::Cephes::Polynomial->new($arr_ref); where $arr_ref is a reference to ...

SHLOMIF/Math-Cephes-0.5305 - 06 May 2016 15:18:54 GMT**Math::PlanePath::Flowsnake - self-similar path through hexagons**

This path is an integer version of the flowsnake curve by William Gosper. A single arm of the curve fills 1/3 of the plane, spiralling around anti-clockwise ever fatter and with jagged self-similar edges....

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::Symbolic::Derivative - Derive Math::Symbolic trees**

This module implements derivatives for Math::Symbolic trees. Derivatives are Math::Symbolic::Operators, but their implementation is drawn from this module because it is significantly more complex than the implementation of most operators. Derivatives...

SMUELLER/Math-Symbolic-0.612 - 17 Jun 2013 07:19:34 GMT**Math::String::Charset::Nested - A charset for Math::String objects.**

This module lets you create an charset object, which is used to contruct Math::String objects. This object knows how to handle charsets with bi-grams....

PJACKLAM/Math-String-1.29 - 01 Feb 2017 18:48:59 GMT**Math::PlanePath::CellularRule - cellular automaton points of binary rule**

This is the patterns of Stephen Wolfram's bit-rule based cellular automatons <http://mathworld.wolfram.com/ElementaryCellularAutomaton.html> Points are numbered left to right in rows so for example rule => 30 51 52 53 54 55 56 57 58 59 60 61 62 9 44 ...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::Symbolic::AuxFunctions - Auxiliary functions for Math::Symbolic hierarchy**

This module contains implementations of some auxiliary functions that are used within the Math::Symbolic hierarchy of modules. In particular, this module holds all trigonometric functions used for numeric evaluation of trees by Math::Symbolic::Operat...

SMUELLER/Math-Symbolic-0.612 - 17 Jun 2013 07:19:34 GMT**Math::PlanePath::ImaginaryBase - replications in four directions**

This is a simple pattern arising from complex numbers expressed in a base i*sqrt(2) or other i*sqrt(r) base. Or equivalently by negabinary encoded X,Y digits interleaved. The default radix=2 is 38 39 34 35 54 55 50 51 5 36 37 32 33 52 53 48 49 4 46 4...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::PlanePath::TerdragonCurve - triangular dragon curve**

This is the terdragon curve by Davis and Knuth, Chandler Davis and Donald Knuth, "Number Representations and Dragon Curves -- I", Journal Recreational Mathematics, volume 3, number 2 (April 1970), pages 66-81 and "Number Representations and Dragon Cu...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::PlanePath::DragonMidpoint - dragon curve midpoints**

This is the midpoint of each segment of the dragon curve of Heighway, Harter, et al, per Math::PlanePath::DragonCurve. 17--16 9---8 5 | | | | 18 15 10 7 4 | | | | 19 14--13--12--11 6---5---4 3 | | 20--21--22 3 2 | | 33--32 25--24--23 2 1 | | | | 34 3...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::PlanePath::QuintetCentres - self-similar "plus" shape centres**

This a self-similar curve tracing out a "+" shape like the "QuintetCurve" but taking the centre of each square visited by that curve. 92 12 / | 124-... 93 91--90 88 11 | \ \ / \ 122-123 120 102 94 82 89 86--87 10 \ / | / | / / | | 121 119 103 101-100...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::MatrixDecomposition::Util - utility functions**

This module contains a colorful collection of utility functions. Nothing is exported by default. Utility Functions "eps" Return the machine precision. "mod" (*num*, *den*) Return the remainder of a division. Any argument can be either an integral num...

RALPH/Math-MatrixDecomposition-1.03 - 30 Jul 2014 20:57:53 GMT**Math::PlanePath::GosperReplicate - self-similar hexagon replications**

This is a self-similar hexagonal tiling of the plane. At each level the shape is the Gosper island. 17----16 4 / \ 24----23 18 14----15 3 / \ \ 25 21----22 19----20 10---- 9 2 \ / \ 26----27 3---- 2 11 7---- 8 1 / \ \ 31----30 4 0---- 1 12----13 <- Y...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::PlanePath::SquareReplicate - replicating squares**

This path is a self-similar replicating square, 40--39--38 31--30--29 22--21--20 4 | | | | | | 41 36--37 32 27--28 23 18--19 3 | | | 42--43--44 33--34--35 24--25--26 2 49--48--47 4-- 3-- 2 13--12--11 1 | | | | | | 50 45--46 5 0-- 1 14 9--10 <- Y=0 | ...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT**Math::MatrixDecomposition::Eigen - eigenvalues and eigenvectors**

Object Instantiation "eig" (...) The "eig" function is the short form of "Math::MatrixDecomposition::Eigen->new" (which see). The "eig" function has to be used as a subroutine. It is not exported by default. "new" (...) Create a new object. Any argum...

RALPH/Math-MatrixDecomposition-1.03 - 30 Jul 2014 20:57:53 GMT**Math::PlanePath::R5DragonMidpoint - R5 dragon curve midpoints**

This is midpoints of the R5 dragon curve by Jorg Arndt, 31--30 11 | | 32 29 10 | | 51--50 35--34--33 28--27--26 9 | | | | 52 49 36--37--38 23--24--25 8 | | | | 55--54--53 48--47--46 41--40--39 22 7 | | | | 56--57--58 63--64 45 42 19--20--21 6 | | | |...

KRYDE/Math-PlanePath-127 - 17 Aug 2019 13:14:00 GMT