// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_OVERLAY_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_OVERLAY_HPP
#include <deque>
#include <map>
#include <boost/range.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/geometry/algorithms/detail/overlay/calculate_distance_policy.hpp>
#include <boost/geometry/algorithms/detail/overlay/enrich_intersection_points.hpp>
#include <boost/geometry/algorithms/detail/overlay/enrichment_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/get_turns.hpp>
#include <boost/geometry/algorithms/detail/overlay/overlay_type.hpp>
#include <boost/geometry/algorithms/detail/overlay/traverse.hpp>
#include <boost/geometry/algorithms/detail/overlay/traversal_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/turn_info.hpp>
#include <boost/geometry/algorithms/num_points.hpp>
#include <boost/geometry/algorithms/reverse.hpp>
#include <boost/geometry/algorithms/detail/overlay/add_rings.hpp>
#include <boost/geometry/algorithms/detail/overlay/assign_parents.hpp>
#include <boost/geometry/algorithms/detail/overlay/ring_properties.hpp>
#include <boost/geometry/algorithms/detail/overlay/select_rings.hpp>
#ifdef BOOST_GEOMETRY_DEBUG_ASSEMBLE
# include <boost/geometry/io/dsv/write.hpp>
#endif
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace overlay
{
// Skip for assemble process
template <typename TurnInfo>
inline bool skip(TurnInfo const& turn_info)
{
return (turn_info.discarded || turn_info.both(operation_union))
&& ! turn_info.any_blocked()
&& ! turn_info.both(operation_intersection)
;
}
template <typename TurnPoints, typename Map>
inline void map_turns(Map& map, TurnPoints const& turn_points)
{
typedef typename boost::range_value<TurnPoints>::type turn_point_type;
typedef typename turn_point_type::container_type container_type;
int index = 0;
for (typename boost::range_iterator<TurnPoints const>::type
it = boost::begin(turn_points);
it != boost::end(turn_points);
++it, ++index)
{
if (! skip(*it))
{
int op_index = 0;
for (typename boost::range_iterator<container_type const>::type
op_it = boost::begin(it->operations);
op_it != boost::end(it->operations);
++op_it, ++op_index)
{
ring_identifier ring_id
(
op_it->seg_id.source_index,
op_it->seg_id.multi_index,
op_it->seg_id.ring_index
);
map[ring_id]++;
}
}
}
}
template
<
typename GeometryOut, overlay_type Direction, bool ReverseOut,
typename Geometry1, typename Geometry2,
typename OutputIterator
>
inline OutputIterator return_if_one_input_is_empty(Geometry1 const& geometry1,
Geometry2 const& geometry2,
OutputIterator out)
{
typedef std::deque
<
typename geometry::ring_type<GeometryOut>::type
> ring_container_type;
typedef ring_properties<typename geometry::point_type<Geometry1>::type> properties;
// Union: return either of them
// Intersection: return nothing
// Difference: return first of them
if (Direction == overlay_intersection
|| (Direction == overlay_difference
&& geometry::num_points(geometry1) == 0))
{
return out;
}
std::map<ring_identifier, int> empty;
std::map<ring_identifier, properties> all_of_one_of_them;
select_rings<Direction>(geometry1, geometry2, empty, all_of_one_of_them, false);
ring_container_type rings;
assign_parents(geometry1, geometry2, rings, all_of_one_of_them);
return add_rings<GeometryOut>(all_of_one_of_them, geometry1, geometry2, rings, out);
}
template
<
typename Geometry1, typename Geometry2,
bool Reverse1, bool Reverse2, bool ReverseOut,
typename GeometryOut,
overlay_type Direction
>
struct overlay
{
template <typename OutputIterator, typename Strategy>
static inline OutputIterator apply(
Geometry1 const& geometry1, Geometry2 const& geometry2,
OutputIterator out,
Strategy const& )
{
if (geometry::num_points(geometry1) == 0
&& geometry::num_points(geometry2) == 0)
{
return out;
}
if (geometry::num_points(geometry1) == 0
|| geometry::num_points(geometry2) == 0)
{
return return_if_one_input_is_empty
<
GeometryOut, Direction, ReverseOut
>(geometry1, geometry2, out);
}
typedef typename geometry::point_type<GeometryOut>::type point_type;
typedef detail::overlay::traversal_turn_info<point_type> turn_info;
typedef std::deque<turn_info> container_type;
typedef std::deque
<
typename geometry::ring_type<GeometryOut>::type
> ring_container_type;
container_type turn_points;
#ifdef BOOST_GEOMETRY_TIME_OVERLAY
boost::timer timer;
#endif
#ifdef BOOST_GEOMETRY_DEBUG_ASSEMBLE
std::cout << "get turns" << std::endl;
#endif
detail::get_turns::no_interrupt_policy policy;
geometry::get_turns
<
Reverse1, Reverse2,
detail::overlay::calculate_distance_policy
>(geometry1, geometry2, turn_points, policy);
#ifdef BOOST_GEOMETRY_TIME_OVERLAY
std::cout << "get_turns: " << timer.elapsed() << std::endl;
#endif
#ifdef BOOST_GEOMETRY_DEBUG_ASSEMBLE
std::cout << "enrich" << std::endl;
#endif
typename Strategy::side_strategy_type side_strategy;
geometry::enrich_intersection_points<Reverse1, Reverse2>(turn_points,
Direction == overlay_union
? geometry::detail::overlay::operation_union
: geometry::detail::overlay::operation_intersection,
geometry1, geometry2,
side_strategy);
#ifdef BOOST_GEOMETRY_TIME_OVERLAY
std::cout << "enrich_intersection_points: " << timer.elapsed() << std::endl;
#endif
#ifdef BOOST_GEOMETRY_DEBUG_ASSEMBLE
std::cout << "traverse" << std::endl;
#endif
// Traverse through intersection/turn points and create rings of them.
// Note that these rings are always in clockwise order, even in CCW polygons,
// and are marked as "to be reversed" below
ring_container_type rings;
traverse<Reverse1, Reverse2, Geometry1, Geometry2>::apply
(
geometry1, geometry2,
Direction == overlay_union
? geometry::detail::overlay::operation_union
: geometry::detail::overlay::operation_intersection,
turn_points, rings
);
#ifdef BOOST_GEOMETRY_TIME_OVERLAY
std::cout << "traverse: " << timer.elapsed() << std::endl;
#endif
std::map<ring_identifier, int> map;
map_turns(map, turn_points);
#ifdef BOOST_GEOMETRY_TIME_OVERLAY
std::cout << "map_turns: " << timer.elapsed() << std::endl;
#endif
typedef ring_properties<typename geometry::point_type<GeometryOut>::type> properties;
std::map<ring_identifier, properties> selected;
select_rings<Direction>(geometry1, geometry2, map, selected, ! turn_points.empty());
#ifdef BOOST_GEOMETRY_TIME_OVERLAY
std::cout << "select_rings: " << timer.elapsed() << std::endl;
#endif
// Add rings created during traversal
{
ring_identifier id(2, 0, -1);
for (typename boost::range_iterator<ring_container_type>::type
it = boost::begin(rings);
it != boost::end(rings);
++it)
{
selected[id] = properties(*it, true);
selected[id].reversed = ReverseOut;
id.multi_index++;
}
}
#ifdef BOOST_GEOMETRY_TIME_OVERLAY
std::cout << "add traversal rings: " << timer.elapsed() << std::endl;
#endif
assign_parents(geometry1, geometry2, rings, selected);
#ifdef BOOST_GEOMETRY_TIME_OVERLAY
std::cout << "assign_parents: " << timer.elapsed() << std::endl;
#endif
return add_rings<GeometryOut>(selected, geometry1, geometry2, rings, out);
}
};
// Metafunction helper for intersection and union
template <order_selector Selector, bool Reverse = false>
struct do_reverse {};
template <>
struct do_reverse<clockwise, false> : boost::false_type {};
template <>
struct do_reverse<clockwise, true> : boost::true_type {};
template <>
struct do_reverse<counterclockwise, false> : boost::true_type {};
template <>
struct do_reverse<counterclockwise, true> : boost::false_type {};
}} // namespace detail::overlay
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_OVERLAY_HPP