/** math functions **/
#define LTC_MP_LT -1
#define LTC_MP_EQ 0
#define LTC_MP_GT 1
#define LTC_MP_NO 0
#define LTC_MP_YES 1
#ifndef MECC
typedef
void
ecc_point;
#endif
#ifndef MRSA
typedef
void
rsa_key;
#endif
/** math descriptor */
typedef
struct
{
/** Name of the math provider */
char
*name;
/** Bits per digit, amount of bits must fit in an unsigned long */
int
bits_per_digit;
/* ---- init/deinit functions ---- */
/** initialize a bignum
@param a The number to initialize
@return CRYPT_OK on success
*/
int
(*init)(
void
**a);
/** init copy
@param dst The number to initialize and write to
@param src The number to copy from
@return CRYPT_OK on success
*/
int
(*init_copy)(
void
**dst,
void
*src);
/** deinit
@param a The number to free
@return CRYPT_OK on success
*/
void
(*deinit)(
void
*a);
/* ---- data movement ---- */
/** negate
@param src The number to negate
@param dst The destination
@return CRYPT_OK on success
*/
int
(*neg)(
void
*src,
void
*dst);
/** copy
@param src The number to copy from
@param dst The number to write to
@return CRYPT_OK on success
*/
int
(*copy)(
void
*src,
void
*dst);
/* ---- trivial low level functions ---- */
/** set small constant
@param a Number to write to
@param n Source upto bits_per_digit (actually meant for very small constants)
@return CRYPT_OK on succcess
*/
int
(*set_int)(
void
*a, unsigned
long
n);
/** get small constant
@param a Number to read, only fetches upto bits_per_digit from the number
@return The lower bits_per_digit of the integer (unsigned)
*/
unsigned
long
(*get_int)(
void
*a);
/** get digit n
@param a The number to read from
@param n The number of the digit to fetch
@return The bits_per_digit sized n'th digit of a
*/
unsigned
long
(*get_digit)(
void
*a,
int
n);
/** Get the number of digits that represent the number
@param a The number to count
@return The number of digits used to represent the number
*/
int
(*get_digit_count)(
void
*a);
/** compare two integers
@param a The left side integer
@param b The right side integer
@return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison)
*/
int
(*compare)(
void
*a,
void
*b);
/** compare against int
@param a The left side integer
@param b The right side integer (upto bits_per_digit)
@return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison)
*/
int
(*compare_d)(
void
*a, unsigned
long
n);
/** Count the number of bits used to represent the integer
@param a The integer to count
@return The number of bits required to represent the integer
*/
int
(*count_bits)(
void
* a);
/** Count the number of LSB bits which are zero
@param a The integer to count
@return The number of contiguous zero LSB bits
*/
int
(*count_lsb_bits)(
void
*a);
/** Compute a power of two
@param a The integer to store the power in
@param n The power of two you want to store (a = 2^n)
@return CRYPT_OK on success
*/
int
(*twoexpt)(
void
*a ,
int
n);
/* ---- radix conversions ---- */
/** read ascii string
@param a The integer to store into
@param str The string to read
@param radix The radix the integer has been represented in (2-64)
@return CRYPT_OK on success
*/
int
(*read_radix)(
void
*a,
const
char
*str,
int
radix);
/** write number to string
@param a The integer to store
@param str The destination for the string
@param radix The radix the integer is to be represented in (2-64)
@return CRYPT_OK on success
*/
int
(*write_radix)(
void
*a,
char
*str,
int
radix);
/** get size as unsigned char string
@param a The integer to get the size (when stored in array of octets)
@return The length of the integer
*/
unsigned
long
(*unsigned_size)(
void
*a);
/** store an integer as an array of octets
@param src The integer to store
@param dst The buffer to store the integer in
@return CRYPT_OK on success
*/
int
(*unsigned_write)(
void
*src, unsigned
char
*dst);
/** read an array of octets and store as integer
@param dst The integer to load
@param src The array of octets
@param len The number of octets
@return CRYPT_OK on success
*/
int
(*unsigned_read)(
void
*dst, unsigned
char
*src, unsigned
long
len);
/* ---- basic math ---- */
/** add two integers
@param a The first source integer
@param b The second source integer
@param c The destination of "a + b"
@return CRYPT_OK on success
*/
int
(*add)(
void
*a,
void
*b,
void
*c);
/** add two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param c The destination of "a + b"
@return CRYPT_OK on success
*/
int
(*addi)(
void
*a, unsigned
long
b,
void
*c);
/** subtract two integers
@param a The first source integer
@param b The second source integer
@param c The destination of "a - b"
@return CRYPT_OK on success
*/
int
(*sub)(
void
*a,
void
*b,
void
*c);
/** subtract two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param c The destination of "a - b"
@return CRYPT_OK on success
*/
int
(*subi)(
void
*a, unsigned
long
b,
void
*c);
/** multiply two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param c The destination of "a * b"
@return CRYPT_OK on success
*/
int
(*mul)(
void
*a,
void
*b,
void
*c);
/** multiply two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param c The destination of "a * b"
@return CRYPT_OK on success
*/
int
(*muli)(
void
*a, unsigned
long
b,
void
*c);
/** Square an integer
@param a The integer to square
@param b The destination
@return CRYPT_OK on success
*/
int
(*sqr)(
void
*a,
void
*b);
/** Divide an integer
@param a The dividend
@param b The divisor
@param c The quotient (can be NULL to signify don't care)
@param d The remainder (can be NULL to signify don't care)
@return CRYPT_OK on success
*/
int
(*mpdiv)(
void
*a,
void
*b,
void
*c,
void
*d);
/** divide by two
@param a The integer to divide (shift right)
@param b The destination
@return CRYPT_OK on success
*/
int
(*div_2)(
void
*a,
void
*b);
/** Get remainder (small value)
@param a The integer to reduce
@param b The modulus (upto bits_per_digit in length)
@param c The destination for the residue
@return CRYPT_OK on success
*/
int
(*modi)(
void
*a, unsigned
long
b, unsigned
long
*c);
/** gcd
@param a The first integer
@param b The second integer
@param c The destination for (a, b)
@return CRYPT_OK on success
*/
int
(*gcd)(
void
*a,
void
*b,
void
*c);
/** lcm
@param a The first integer
@param b The second integer
@param c The destination for [a, b]
@return CRYPT_OK on success
*/
int
(*lcm)(
void
*a,
void
*b,
void
*c);
/** Modular multiplication
@param a The first source
@param b The second source
@param c The modulus
@param d The destination (a*b mod c)
@return CRYPT_OK on success
*/
int
(*mulmod)(
void
*a,
void
*b,
void
*c,
void
*d);
/** Modular squaring
@param a The first source
@param b The modulus
@param c The destination (a*a mod b)
@return CRYPT_OK on success
*/
int
(*sqrmod)(
void
*a,
void
*b,
void
*c);
/** Modular inversion
@param a The value to invert
@param b The modulus
@param c The destination (1/a mod b)
@return CRYPT_OK on success
*/
int
(*invmod)(
void
*,
void
*,
void
*);
/* ---- reduction ---- */
/** setup montgomery
@param a The modulus
@param b The destination for the reduction digit
@return CRYPT_OK on success
*/
int
(*montgomery_setup)(
void
*a,
void
**b);
/** get normalization value
@param a The destination for the normalization value
@param b The modulus
@return CRYPT_OK on success
*/
int
(*montgomery_normalization)(
void
*a,
void
*b);
/** reduce a number
@param a The number [and dest] to reduce
@param b The modulus
@param c The value "b" from montgomery_setup()
@return CRYPT_OK on success
*/
int
(*montgomery_reduce)(
void
*a,
void
*b,
void
*c);
/** clean up (frees memory)
@param a The value "b" from montgomery_setup()
@return CRYPT_OK on success
*/
void
(*montgomery_deinit)(
void
*a);
/* ---- exponentiation ---- */
/** Modular exponentiation
@param a The base integer
@param b The power (can be negative) integer
@param c The modulus integer
@param d The destination
@return CRYPT_OK on success
*/
int
(*exptmod)(
void
*a,
void
*b,
void
*c,
void
*d);
/** Primality testing
@param a The integer to test
@param b The destination of the result (FP_YES if prime)
@return CRYPT_OK on success
*/
int
(*isprime)(
void
*a,
int
*b);
/* ---- (optional) ecc point math ---- */
/** ECC GF(p) point multiplication (from the NIST curves)
@param k The integer to multiply the point by
@param G The point to multiply
@param R The destination for kG
@param modulus The modulus for the field
@param map Boolean indicated whether to map back to affine or not (can be ignored if you work in affine only)
@return CRYPT_OK on success
*/
int
(*ecc_ptmul)(
void
*k, ecc_point *G, ecc_point *R,
void
*modulus,
int
map);
/** ECC GF(p) point addition
@param P The first point
@param Q The second point
@param R The destination of P + Q
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int
(*ecc_ptadd)(ecc_point *P, ecc_point *Q, ecc_point *R,
void
*modulus,
void
*mp);
/** ECC GF(p) point double
@param P The first point
@param R The destination of 2P
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int
(*ecc_ptdbl)(ecc_point *P, ecc_point *R,
void
*modulus,
void
*mp);
/** ECC mapping from projective to affine, currently uses (x,y,z) => (x/z^2, y/z^3, 1)
@param P The point to map
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
@remark The mapping can be different but keep in mind a ecc_point only has three
integers (x,y,z) so if you use a different mapping you have to make it fit.
*/
int
(*ecc_map)(ecc_point *P,
void
*modulus,
void
*mp);
/** Computes kA*A + kB*B = C using Shamir's Trick
@param A First point to multiply
@param kA What to multiple A by
@param B Second point to multiply
@param kB What to multiple B by
@param C [out] Destination point (can overlap with A or B
@param modulus Modulus for curve
@return CRYPT_OK on success
*/
int
(*ecc_mul2add)(ecc_point *A,
void
*kA,
ecc_point *B,
void
*kB,
ecc_point *C,
void
*modulus);
/* ---- (optional) rsa optimized math (for internal CRT) ---- */
/** RSA Key Generation
@param prng An active PRNG state
@param wprng The index of the PRNG desired
@param size The size of the modulus (key size) desired (octets)
@param e The "e" value (public key). e==65537 is a good choice
@param key [out] Destination of a newly created private key pair
@return CRYPT_OK if successful, upon error all allocated ram is freed
*/
int
(*rsa_keygen)(prng_state *prng,
int
wprng,
int
size,
long
e, rsa_key *key);
/** RSA exponentiation
@param in The octet array representing the base
@param inlen The length of the input
@param out The destination (to be stored in an octet array format)
@param outlen The length of the output buffer and the resulting size (zero padded to the size of the modulus)
@param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA
@param key The RSA key to use
@return CRYPT_OK on success
*/
int
(*rsa_me)(
const
unsigned
char
*in, unsigned
long
inlen,
unsigned
char
*out, unsigned
long
*outlen,
int
which,
rsa_key *key);
} ltc_math_descriptor;
extern
ltc_math_descriptor ltc_mp;
int
ltc_init_multi(
void
**a, ...);
void
ltc_deinit_multi(
void
*a, ...);
#ifdef LTM_DESC
extern
const
ltc_math_descriptor ltm_desc;
#endif
#ifdef TFM_DESC
extern
const
ltc_math_descriptor tfm_desc;
#endif
#ifdef GMP_DESC
extern
const
ltc_math_descriptor gmp_desc;
#endif
#if !defined(DESC_DEF_ONLY) && defined(LTC_SOURCE)
#define MP_DIGIT_BIT ltc_mp.bits_per_digit
/* some handy macros */
#define mp_init(a) ltc_mp.init(a)
#define mp_init_multi ltc_init_multi
#define mp_clear(a) ltc_mp.deinit(a)
#define mp_clear_multi ltc_deinit_multi
#define mp_init_copy(a, b) ltc_mp.init_copy(a, b)
#define mp_neg(a, b) ltc_mp.neg(a, b)
#define mp_copy(a, b) ltc_mp.copy(a, b)
#define mp_set(a, b) ltc_mp.set_int(a, b)
#define mp_set_int(a, b) ltc_mp.set_int(a, b)
#define mp_get_int(a) ltc_mp.get_int(a)
#define mp_get_digit(a, n) ltc_mp.get_digit(a, n)
#define mp_get_digit_count(a) ltc_mp.get_digit_count(a)
#define mp_cmp(a, b) ltc_mp.compare(a, b)
#define mp_cmp_d(a, b) ltc_mp.compare_d(a, b)
#define mp_count_bits(a) ltc_mp.count_bits(a)
#define mp_cnt_lsb(a) ltc_mp.count_lsb_bits(a)
#define mp_2expt(a, b) ltc_mp.twoexpt(a, b)
#define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c)
#define mp_toradix(a, b, c) ltc_mp.write_radix(a, b, c)
#define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a)
#define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b)
#define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c)
#define mp_add(a, b, c) ltc_mp.add(a, b, c)
#define mp_add_d(a, b, c) ltc_mp.addi(a, b, c)
#define mp_sub(a, b, c) ltc_mp.sub(a, b, c)
#define mp_sub_d(a, b, c) ltc_mp.subi(a, b, c)
#define mp_mul(a, b, c) ltc_mp.mul(a, b, c)
#define mp_mul_d(a, b, c) ltc_mp.muli(a, b, c)
#define mp_sqr(a, b) ltc_mp.sqr(a, b)
#define mp_div(a, b, c, d) ltc_mp.mpdiv(a, b, c, d)
#define mp_div_2(a, b) ltc_mp.div_2(a, b)
#define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c)
#define mp_mod_d(a, b, c) ltc_mp.modi(a, b, c)
#define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c)
#define mp_lcm(a, b, c) ltc_mp.lcm(a, b, c)
#define mp_mulmod(a, b, c, d) ltc_mp.mulmod(a, b, c, d)
#define mp_sqrmod(a, b, c) ltc_mp.sqrmod(a, b, c)
#define mp_invmod(a, b, c) ltc_mp.invmod(a, b, c)
#define mp_montgomery_setup(a, b) ltc_mp.montgomery_setup(a, b)
#define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b)
#define mp_montgomery_reduce(a, b, c) ltc_mp.montgomery_reduce(a, b, c)
#define mp_montgomery_free(a) ltc_mp.montgomery_deinit(a)
#define mp_exptmod(a,b,c,d) ltc_mp.exptmod(a,b,c,d)
#define mp_prime_is_prime(a, b, c) ltc_mp.isprime(a, c)
#define mp_iszero(a) (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO)
#define mp_isodd(a) (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO)
#define mp_exch(a, b) do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while(0);
#define mp_tohex(a, b) mp_toradix(a, b, 16)
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_math.h,v $ */
/* $Revision: 1.43 $ */
/* $Date: 2006/12/02 19:23:13 $ */