From Code to Community: Sponsoring The Perl and Raku Conference 2025 Learn more

/***********************************************************************
* Distributed under the MIT software license, see the accompanying *
***********************************************************************/
#ifndef SECP256K1_MODULE_ELLSWIFT_MAIN_H
#define SECP256K1_MODULE_ELLSWIFT_MAIN_H
#include "../../../include/secp256k1.h"
#include "../../../include/secp256k1_ellswift.h"
#include "../../eckey.h"
#include "../../hash.h"
/** c1 = (sqrt(-3)-1)/2 */
static const secp256k1_fe secp256k1_ellswift_c1 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
/** c2 = (-sqrt(-3)-1)/2 = -(c1+1) */
static const secp256k1_fe secp256k1_ellswift_c2 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ee);
/** c3 = (-sqrt(-3)+1)/2 = -c1 = c2+1 */
static const secp256k1_fe secp256k1_ellswift_c3 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ef);
/** c4 = (sqrt(-3)+1)/2 = -c2 = c1+1 */
static const secp256k1_fe secp256k1_ellswift_c4 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa41);
/** Decode ElligatorSwift encoding (u, t) to a fraction xn/xd representing a curve X coordinate. */
static void secp256k1_ellswift_xswiftec_frac_var(secp256k1_fe *xn, secp256k1_fe *xd, const secp256k1_fe *u, const secp256k1_fe *t) {
/* The implemented algorithm is the following (all operations in GF(p)):
*
* - Let c0 = sqrt(-3) = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852.
* - If u = 0, set u = 1.
* - If t = 0, set t = 1.
* - If u^3+7+t^2 = 0, set t = 2*t.
* - Let X = (u^3+7-t^2)/(2*t).
* - Let Y = (X+t)/(c0*u).
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
* - Return x1 = (X/Y-u)/2 (which is now guaranteed to be a valid x coordinate).
*
* Introducing s=t^2, g=u^3+7, and simplifying x1=-(x2+u) we get:
*
* - Let c0 = ...
* - If u = 0, set u = 1.
* - If t = 0, set t = 1.
* - Let s = t^2
* - Let g = u^3+7
* - If g+s = 0, set t = 2*t, s = 4*s
* - Let X = (g-s)/(2*t).
* - Let Y = (X+t)/(c0*u) = (g+s)/(2*c0*t*u).
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*
* Now substitute Y^2 = -(g+s)^2/(12*s*u^2) and X/Y = c0*u*(g-s)/(g+s). This
* means X and Y do not need to be evaluated explicitly anymore.
*
* - ...
* - If g+s = 0, set s = 4*s.
* - If x3 = u-(g+s)^2/(3*s*u^2) is a valid x coordinate, return it.
* - If x2 = (-c0*u*(g-s)/(g+s)-u)/2 is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*
* Simplifying x2 using 2 additional constants:
*
* - Let c1 = (c0-1)/2 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
* - Let c2 = (-c0-1)/2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
* - ...
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
* - ...
*
* Writing x3 as a fraction:
*
* - ...
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) ...
* - ...
* Overall, we get:
*
* - Let c1 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
* - Let c2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
* - If u = 0, set u = 1.
* - If t = 0, set s = 1, else set s = t^2.
* - Let g = u^3+7.
* - If g+s = 0, set s = 4*s.
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) is a valid x coordinate, return it.
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*/
secp256k1_fe u1, s, g, p, d, n, l;
u1 = *u;
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&u1), 0)) u1 = secp256k1_fe_one;
secp256k1_fe_sqr(&s, t);
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(t), 0)) s = secp256k1_fe_one;
secp256k1_fe_sqr(&l, &u1); /* l = u^2 */
secp256k1_fe_mul(&g, &l, &u1); /* g = u^3 */
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3 + 7 */
p = g; /* p = g */
secp256k1_fe_add(&p, &s); /* p = g+s */
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&p), 0)) {
secp256k1_fe_mul_int(&s, 4);
/* Recompute p = g+s */
p = g; /* p = g */
secp256k1_fe_add(&p, &s); /* p = g+s */
}
secp256k1_fe_mul(&d, &s, &l); /* d = s*u^2 */
secp256k1_fe_mul_int(&d, 3); /* d = 3*s*u^2 */
secp256k1_fe_sqr(&l, &p); /* l = (g+s)^2 */
secp256k1_fe_negate(&l, &l, 1); /* l = -(g+s)^2 */
secp256k1_fe_mul(&n, &d, &u1); /* n = 3*s*u^3 */
secp256k1_fe_add(&n, &l); /* n = 3*s*u^3-(g+s)^2 */
if (secp256k1_ge_x_frac_on_curve_var(&n, &d)) {
/* Return x3 = n/d = (3*s*u^3-(g+s)^2)/(3*s*u^2) */
*xn = n;
*xd = d;
return;
}
*xd = p;
secp256k1_fe_mul(&l, &secp256k1_ellswift_c1, &s); /* l = c1*s */
secp256k1_fe_mul(&n, &secp256k1_ellswift_c2, &g); /* n = c2*g */
secp256k1_fe_add(&n, &l); /* n = c1*s+c2*g */
secp256k1_fe_mul(&n, &n, &u1); /* n = u*(c1*s+c2*g) */
/* Possible optimization: in the invocation below, p^2 = (g+s)^2 is computed,
* which we already have computed above. This could be deduplicated. */
if (secp256k1_ge_x_frac_on_curve_var(&n, &p)) {
/* Return x2 = n/p = u*(c1*s+c2*g)/(g+s) */
*xn = n;
return;
}
secp256k1_fe_mul(&l, &p, &u1); /* l = u*(g+s) */
secp256k1_fe_add(&n, &l); /* n = u*(c1*s+c2*g)+u*(g+s) */
secp256k1_fe_negate(xn, &n, 2); /* n = -u*(c1*s+c2*g)-u*(g+s) */
VERIFY_CHECK(secp256k1_ge_x_frac_on_curve_var(xn, &p));
/* Return x3 = n/p = -(u*(c1*s+c2*g)/(g+s)+u) */
}
/** Decode ElligatorSwift encoding (u, t) to X coordinate. */
static void secp256k1_ellswift_xswiftec_var(secp256k1_fe *x, const secp256k1_fe *u, const secp256k1_fe *t) {
secp256k1_fe xn, xd;
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, u, t);
secp256k1_fe_inv_var(&xd, &xd);
secp256k1_fe_mul(x, &xn, &xd);
}
/** Decode ElligatorSwift encoding (u, t) to point P. */
static void secp256k1_ellswift_swiftec_var(secp256k1_ge *p, const secp256k1_fe *u, const secp256k1_fe *t) {
secp256k1_fe x;
secp256k1_ellswift_xswiftec_var(&x, u, t);
secp256k1_ge_set_xo_var(p, &x, secp256k1_fe_is_odd(t));
}
/* Try to complete an ElligatorSwift encoding (u, t) for X coordinate x, given u and x.
*
* There may be up to 8 distinct t values such that (u, t) decodes back to x, but also
* fewer, or none at all. Each such partial inverse can be accessed individually using a
* distinct input argument c (in range 0-7), and some or all of these may return failure.
* The following guarantees exist:
* - Given (x, u), no two distinct c values give the same successful result t.
* - Every successful result maps back to x through secp256k1_ellswift_xswiftec_var.
* - Given (x, u), all t values that map back to x can be reached by combining the
* successful results from this function over all c values, with the exception of:
* - this function cannot be called with u=0
* - no result with t=0 will be returned
* - no result for which u^3 + t^2 + 7 = 0 will be returned.
*
* The rather unusual encoding of bits in c (a large "if" based on the middle bit, and then
* using the low and high bits to pick signs of square roots) is to match the paper's
* encoding more closely: c=0 through c=3 match branches 1..4 in the paper, while c=4 through
* c=7 are copies of those with an additional negation of sqrt(w).
*/
static int secp256k1_ellswift_xswiftec_inv_var(secp256k1_fe *t, const secp256k1_fe *x_in, const secp256k1_fe *u_in, int c) {
/* The implemented algorithm is this (all arithmetic, except involving c, is mod p):
*
* - If (c & 2) = 0:
* - If (-x-u) is a valid X coordinate, fail.
* - Let s=-(u^3+7)/(u^2+u*x+x^2).
* - If s is not square, fail.
* - Let v=x.
* - If (c & 2) = 2:
* - Let s=x-u.
* - If s is not square, fail.
* - Let r=sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist.
* - If (c & 1) = 1 and r = 0, fail.
* - If s=0, fail.
* - Let v=(r/s-u)/2.
* - Let w=sqrt(s).
* - If (c & 5) = 0: return -w*(c3*u + v).
* - If (c & 5) = 1: return w*(c4*u + v).
* - If (c & 5) = 4: return w*(c3*u + v).
* - If (c & 5) = 5: return -w*(c4*u + v).
*/
secp256k1_fe x = *x_in, u = *u_in, g, v, s, m, r, q;
int ret;
secp256k1_fe_normalize_weak(&x);
secp256k1_fe_normalize_weak(&u);
VERIFY_CHECK(c >= 0 && c < 8);
VERIFY_CHECK(secp256k1_ge_x_on_curve_var(&x));
if (!(c & 2)) {
/* c is in {0, 1, 4, 5}. In this case we look for an inverse under the x1 (if c=0 or
* c=4) formula, or x2 (if c=1 or c=5) formula. */
/* If -u-x is a valid X coordinate, fail. This would yield an encoding that roundtrips
* back under the x3 formula instead (which has priority over x1 and x2, so the decoding
* would not match x). */
m = x; /* m = x */
secp256k1_fe_add(&m, &u); /* m = u+x */
secp256k1_fe_negate(&m, &m, 2); /* m = -u-x */
/* Test if (-u-x) is a valid X coordinate. If so, fail. */
if (secp256k1_ge_x_on_curve_var(&m)) return 0;
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [first part] */
secp256k1_fe_sqr(&s, &m); /* s = (u+x)^2 */
secp256k1_fe_negate(&s, &s, 1); /* s = -(u+x)^2 */
secp256k1_fe_mul(&m, &u, &x); /* m = u*x */
secp256k1_fe_add(&s, &m); /* s = -(u^2 + u*x + x^2) */
/* Note that at this point, s = 0 is impossible. If it were the case:
* s = -(u^2 + u*x + x^2) = 0
* => u^2 + u*x + x^2 = 0
* => (u + 2*x) * (u^2 + u*x + x^2) = 0
* => 2*x^3 + 3*x^2*u + 3*x*u^2 + u^3 = 0
* => (x + u)^3 + x^3 = 0
* => x^3 = -(x + u)^3
* => x^3 + B = (-u - x)^3 + B
*
* However, we know x^3 + B is square (because x is on the curve) and
* that (-u-x)^3 + B is not square (the secp256k1_ge_x_on_curve_var(&m)
* test above would have failed). This is a contradiction, and thus the
* assumption s=0 is false. */
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&s));
/* If s is not square, fail. We have not fully computed s yet, but s is square iff
* -(u^3+7)*(u^2+u*x+x^2) is square (because a/b is square iff a*b is square and b is
* nonzero). */
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3+7 */
secp256k1_fe_mul(&m, &s, &g); /* m = -(u^3 + 7)*(u^2 + u*x + x^2) */
if (!secp256k1_fe_is_square_var(&m)) return 0;
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [second part] */
secp256k1_fe_inv_var(&s, &s); /* s = -1/(u^2 + u*x + x^2) [no div by 0] */
secp256k1_fe_mul(&s, &s, &g); /* s = -(u^3 + 7)/(u^2 + u*x + x^2) */
/* Let v = x. */
v = x;
} else {
/* c is in {2, 3, 6, 7}. In this case we look for an inverse under the x3 formula. */
/* Let s = x-u. */
secp256k1_fe_negate(&m, &u, 1); /* m = -u */
s = m; /* s = -u */
secp256k1_fe_add(&s, &x); /* s = x-u */
/* If s is not square, fail. */
if (!secp256k1_fe_is_square_var(&s)) return 0;
/* Let r = sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist. */
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
secp256k1_fe_mul(&q, &s, &g); /* q = s*u^2 */
secp256k1_fe_mul_int(&q, 3); /* q = 3*s*u^2 */
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
secp256k1_fe_mul_int(&g, 4); /* g = 4*u^3 */
secp256k1_fe_add_int(&g, 4 * SECP256K1_B); /* g = 4*(u^3+7) */
secp256k1_fe_add(&q, &g); /* q = 4*(u^3+7)+3*s*u^2 */
secp256k1_fe_mul(&q, &q, &s); /* q = s*(4*(u^3+7)+3*u^2*s) */
secp256k1_fe_negate(&q, &q, 1); /* q = -s*(4*(u^3+7)+3*u^2*s) */
if (!secp256k1_fe_is_square_var(&q)) return 0;
ret = secp256k1_fe_sqrt(&r, &q); /* r = sqrt(-s*(4*(u^3+7)+3*u^2*s)) */
#ifdef VERIFY
VERIFY_CHECK(ret);
#else
(void)ret;
#endif
/* If (c & 1) = 1 and r = 0, fail. */
if (EXPECT((c & 1) && secp256k1_fe_normalizes_to_zero_var(&r), 0)) return 0;
/* If s = 0, fail. */
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&s), 0)) return 0;
/* Let v = (r/s-u)/2. */
secp256k1_fe_inv_var(&v, &s); /* v = 1/s [no div by 0] */
secp256k1_fe_mul(&v, &v, &r); /* v = r/s */
secp256k1_fe_add(&v, &m); /* v = r/s-u */
secp256k1_fe_half(&v); /* v = (r/s-u)/2 */
}
/* Let w = sqrt(s). */
ret = secp256k1_fe_sqrt(&m, &s); /* m = sqrt(s) = w */
VERIFY_CHECK(ret);
/* Return logic. */
if ((c & 5) == 0 || (c & 5) == 5) {
secp256k1_fe_negate(&m, &m, 1); /* m = -w */
}
/* Now m = {-w if c&5=0 or c&5=5; w otherwise}. */
secp256k1_fe_mul(&u, &u, c&1 ? &secp256k1_ellswift_c4 : &secp256k1_ellswift_c3);
/* u = {c4 if c&1=1; c3 otherwise}*u */
secp256k1_fe_add(&u, &v); /* u = {c4 if c&1=1; c3 otherwise}*u + v */
secp256k1_fe_mul(t, &m, &u);
return 1;
}
/** Use SHA256 as a PRNG, returning SHA256(hasher || cnt).
*
* hasher is a SHA256 object to which an incrementing 4-byte counter is written to generate randomness.
* Writing 13 bytes (4 bytes for counter, plus 9 bytes for the SHA256 padding) cannot cross a
* 64-byte block size boundary (to make sure it only triggers a single SHA256 compression). */
static void secp256k1_ellswift_prng(unsigned char* out32, const secp256k1_sha256 *hasher, uint32_t cnt) {
secp256k1_sha256 hash = *hasher;
unsigned char buf4[4];
#ifdef VERIFY
size_t blocks = hash.bytes >> 6;
#endif
buf4[0] = cnt;
buf4[1] = cnt >> 8;
buf4[2] = cnt >> 16;
buf4[3] = cnt >> 24;
secp256k1_sha256_write(&hash, buf4, 4);
secp256k1_sha256_finalize(&hash, out32);
/* Writing and finalizing together should trigger exactly one SHA256 compression. */
VERIFY_CHECK(((hash.bytes) >> 6) == (blocks + 1));
}
/** Find an ElligatorSwift encoding (u, t) for X coordinate x, and random Y coordinate.
*
* u32 is the 32-byte big endian encoding of u; t is the output field element t that still
* needs encoding.
*
* hasher is a hasher in the secp256k1_ellswift_prng sense, with the same restrictions. */
static void secp256k1_ellswift_xelligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_fe *x, const secp256k1_sha256 *hasher) {
/* Pool of 3-bit branch values. */
unsigned char branch_hash[32];
/* Number of 3-bit values in branch_hash left. */
int branches_left = 0;
/* Field elements u and branch values are extracted from RNG based on hasher for consecutive
* values of cnt. cnt==0 is first used to populate a pool of 64 4-bit branch values. The 64
* cnt values that follow are used to generate field elements u. cnt==65 (and multiples
* thereof) are used to repopulate the pool and start over, if that were ever necessary.
* On average, 4 iterations are needed. */
uint32_t cnt = 0;
while (1) {
int branch;
secp256k1_fe u;
/* If the pool of branch values is empty, populate it. */
if (branches_left == 0) {
secp256k1_ellswift_prng(branch_hash, hasher, cnt++);
branches_left = 64;
}
/* Take a 3-bit branch value from the branch pool (top bit is discarded). */
--branches_left;
branch = (branch_hash[branches_left >> 1] >> ((branches_left & 1) << 2)) & 7;
/* Compute a new u value by hashing. */
secp256k1_ellswift_prng(u32, hasher, cnt++);
/* overflow is not a problem (we prefer uniform u32 over uniform u). */
secp256k1_fe_set_b32_mod(&u, u32);
/* Since u is the output of a hash, it should practically never be 0. We could apply the
* u=0 to u=1 correction here too to deal with that case still, but it's such a low
* probability event that we do not bother. */
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&u));
/* Find a remainder t, and return it if found. */
if (EXPECT(secp256k1_ellswift_xswiftec_inv_var(t, x, &u, branch), 0)) break;
}
}
/** Find an ElligatorSwift encoding (u, t) for point P.
*
* This is similar secp256k1_ellswift_xelligatorswift_var, except it takes a full group element p
* as input, and returns an encoding that matches the provided Y coordinate rather than a random
* one.
*/
static void secp256k1_ellswift_elligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_ge *p, const secp256k1_sha256 *hasher) {
secp256k1_ellswift_xelligatorswift_var(u32, t, &p->x, hasher);
secp256k1_fe_normalize_var(t);
if (secp256k1_fe_is_odd(t) != secp256k1_fe_is_odd(&p->y)) {
secp256k1_fe_negate(t, t, 1);
secp256k1_fe_normalize_var(t);
}
}
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_encode". */
static void secp256k1_ellswift_sha256_init_encode(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0xd1a6524bul;
hash->s[1] = 0x028594b3ul;
hash->s[2] = 0x96e42f4eul;
hash->s[3] = 0x1037a177ul;
hash->s[4] = 0x1b8fcb8bul;
hash->s[5] = 0x56023885ul;
hash->s[6] = 0x2560ede1ul;
hash->s[7] = 0xd626b715ul;
hash->bytes = 64;
}
int secp256k1_ellswift_encode(const secp256k1_context *ctx, unsigned char *ell64, const secp256k1_pubkey *pubkey, const unsigned char *rnd32) {
secp256k1_ge p;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(ell64 != NULL);
ARG_CHECK(pubkey != NULL);
ARG_CHECK(rnd32 != NULL);
if (secp256k1_pubkey_load(ctx, &p, pubkey)) {
secp256k1_fe t;
unsigned char p64[64] = {0};
size_t ser_size;
int ser_ret;
secp256k1_sha256 hash;
/* Set up hasher state; the used RNG is H(pubkey || "\x00"*31 || rnd32 || cnt++), using
* BIP340 tagged hash with tag "secp256k1_ellswift_encode". */
secp256k1_ellswift_sha256_init_encode(&hash);
ser_ret = secp256k1_eckey_pubkey_serialize(&p, p64, &ser_size, 1);
#ifdef VERIFY
VERIFY_CHECK(ser_ret && ser_size == 33);
#else
(void)ser_ret;
#endif
secp256k1_sha256_write(&hash, p64, sizeof(p64));
secp256k1_sha256_write(&hash, rnd32, 32);
/* Compute ElligatorSwift encoding and construct output. */
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
return 1;
}
/* Only reached in case the provided pubkey is invalid. */
memset(ell64, 0, 64);
return 0;
}
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_create". */
static void secp256k1_ellswift_sha256_init_create(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0xd29e1bf5ul;
hash->s[1] = 0xf7025f42ul;
hash->s[2] = 0x9b024773ul;
hash->s[3] = 0x094cb7d5ul;
hash->s[4] = 0xe59ed789ul;
hash->s[5] = 0x03bc9786ul;
hash->s[6] = 0x68335b35ul;
hash->s[7] = 0x4e363b53ul;
hash->bytes = 64;
}
int secp256k1_ellswift_create(const secp256k1_context *ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *auxrnd32) {
secp256k1_ge p;
secp256k1_fe t;
secp256k1_sha256 hash;
secp256k1_scalar seckey_scalar;
int ret;
static const unsigned char zero32[32] = {0};
/* Sanity check inputs. */
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(ell64 != NULL);
memset(ell64, 0, 64);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey32 != NULL);
/* Compute (affine) public key */
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey32);
secp256k1_declassify(ctx, &p, sizeof(p)); /* not constant time in produced pubkey */
secp256k1_fe_normalize_var(&p.x);
secp256k1_fe_normalize_var(&p.y);
/* Set up hasher state. The used RNG is H(privkey || "\x00"*32 [|| auxrnd32] || cnt++),
* using BIP340 tagged hash with tag "secp256k1_ellswift_create". */
secp256k1_ellswift_sha256_init_create(&hash);
secp256k1_sha256_write(&hash, seckey32, 32);
secp256k1_sha256_write(&hash, zero32, sizeof(zero32));
secp256k1_declassify(ctx, &hash, sizeof(hash)); /* private key is hashed now */
if (auxrnd32) secp256k1_sha256_write(&hash, auxrnd32, 32);
/* Compute ElligatorSwift encoding and construct output. */
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
secp256k1_memczero(ell64, 64, !ret);
secp256k1_scalar_clear(&seckey_scalar);
return ret;
}
int secp256k1_ellswift_decode(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *ell64) {
secp256k1_fe u, t;
secp256k1_ge p;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
ARG_CHECK(ell64 != NULL);
secp256k1_fe_set_b32_mod(&u, ell64);
secp256k1_fe_set_b32_mod(&t, ell64 + 32);
secp256k1_fe_normalize_var(&t);
secp256k1_ellswift_swiftec_var(&p, &u, &t);
secp256k1_pubkey_save(pubkey, &p);
return 1;
}
static int ellswift_xdh_hash_function_prefix(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
secp256k1_sha256 sha;
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, data, 64);
secp256k1_sha256_write(&sha, ell_a64, 64);
secp256k1_sha256_write(&sha, ell_b64, 64);
secp256k1_sha256_write(&sha, x32, 32);
secp256k1_sha256_finalize(&sha, output);
secp256k1_sha256_clear(&sha);
return 1;
}
/** Set hash state to the BIP340 tagged hash midstate for "bip324_ellswift_xonly_ecdh". */
static void secp256k1_ellswift_sha256_init_bip324(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0x8c12d730ul;
hash->s[1] = 0x827bd392ul;
hash->s[2] = 0x9e4fb2eeul;
hash->s[3] = 0x207b373eul;
hash->s[4] = 0x2292bd7aul;
hash->s[5] = 0xaa5441bcul;
hash->s[6] = 0x15c3779ful;
hash->s[7] = 0xcfb52549ul;
hash->bytes = 64;
}
static int ellswift_xdh_hash_function_bip324(unsigned char* output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
secp256k1_sha256 sha;
(void)data;
secp256k1_ellswift_sha256_init_bip324(&sha);
secp256k1_sha256_write(&sha, ell_a64, 64);
secp256k1_sha256_write(&sha, ell_b64, 64);
secp256k1_sha256_write(&sha, x32, 32);
secp256k1_sha256_finalize(&sha, output);
secp256k1_sha256_clear(&sha);
return 1;
}
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix = ellswift_xdh_hash_function_prefix;
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324 = ellswift_xdh_hash_function_bip324;
int secp256k1_ellswift_xdh(const secp256k1_context *ctx, unsigned char *output, const unsigned char *ell_a64, const unsigned char *ell_b64, const unsigned char *seckey32, int party, secp256k1_ellswift_xdh_hash_function hashfp, void *data) {
int ret = 0;
int overflow;
secp256k1_scalar s;
secp256k1_fe xn, xd, px, u, t;
unsigned char sx[32];
const unsigned char* theirs64;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(ell_a64 != NULL);
ARG_CHECK(ell_b64 != NULL);
ARG_CHECK(seckey32 != NULL);
ARG_CHECK(hashfp != NULL);
/* Load remote public key (as fraction). */
theirs64 = party ? ell_a64 : ell_b64;
secp256k1_fe_set_b32_mod(&u, theirs64);
secp256k1_fe_set_b32_mod(&t, theirs64 + 32);
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, &u, &t);
/* Load private key (using one if invalid). */
secp256k1_scalar_set_b32(&s, seckey32, &overflow);
overflow = secp256k1_scalar_is_zero(&s);
secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
/* Compute shared X coordinate. */
secp256k1_ecmult_const_xonly(&px, &xn, &xd, &s, 1);
secp256k1_fe_normalize(&px);
secp256k1_fe_get_b32(sx, &px);
/* Invoke hasher */
ret = hashfp(output, sx, ell_a64, ell_b64, data);
secp256k1_memclear(sx, sizeof(sx));
secp256k1_fe_clear(&px);
secp256k1_scalar_clear(&s);
return !!ret & !overflow;
}
#endif