—————————————#
# BioPerl module for FAST::Bio::SeqUtils
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Heikki Lehvaslaiho <heikki-at-bioperl-dot-org>
#
# Copyright Heikki Lehvaslaiho
#
# You may distribute this module under the same terms as perl itself
# POD documentation - main docs before the code
=head1 NAME
FAST::Bio::SeqUtils - Additional methods for PrimarySeq objects
=head1 SYNOPSIS
use FAST::Bio::SeqUtils;
# get a FAST::Bio::PrimarySeqI compliant object, $seq, somehow
$util = FAST::Bio::SeqUtils->new();
$polypeptide_3char = $util->seq3($seq);
# or
$polypeptide_3char = FAST::Bio::SeqUtils->seq3($seq);
# set the sequence string (stored in one char code in the object)
FAST::Bio::SeqUtils->seq3($seq, $polypeptide_3char);
# translate a sequence in all six frames
@seqs = FAST::Bio::SeqUtils->translate_6frames($seq);
# inplace editing of the sequence
FAST::Bio::SeqUtils->mutate($seq,
FAST::Bio::LiveSeq::Mutation->new(-seq => 'c',
-pos => 3
));
# mutate a sequence to desired similarity%
$newseq = FAST::Bio::SeqUtils-> evolve
($seq, $similarity, $transition_transversion_rate);
# concatenate two or more sequences with annotations and features,
# the first sequence will be modified
FAST::Bio::SeqUtils->cat(@seqs);
# truncate a sequence, retaining features and adjusting their
# coordinates if necessary
my $truncseq = FAST::Bio::SeqUtils->trunc_with_features($seq, 100, 200);
# reverse complement a sequence and its features
my $revcomseq = FAST::Bio::SeqUtils->revcom_with_features($seq);
=head1 DESCRIPTION
This class is a holder of methods that work on FAST::Bio::PrimarySeqI-
compliant sequence objects, e.g. FAST::Bio::PrimarySeq and
FAST::Bio::Seq. These methods are not part of the FAST::Bio::PrimarySeqI
interface and should in general not be essential to the primary function
of sequence objects. If you are thinking of adding essential
functions, it might be better to create your own sequence class.
See L<FAST::Bio::PrimarySeqI>, L<FAST::Bio::PrimarySeq>, and L<FAST::Bio::Seq> for more.
The methods take as their first argument a sequence object. It is
possible to use methods without first creating a SeqUtils object,
i.e. use it as an anonymous hash.
The first two methods, seq3() and seq3in(), give out or read in protein
sequences coded in three letter IUPAC amino acid codes.
The next two methods, translate_3frames() and translate_6frames(), wrap
around the standard translate method to give back an array of three
forward or all six frame translations.
The mutate() method mutates the sequence string with a mutation
description object.
The cat() method concatenates two or more sequences. The first sequence
is modified by addition of the remaining sequences. All annotations and
sequence features will be transferred.
The revcom_with_features() and trunc_with_features() methods are similar
to the revcom() and trunc() methods from FAST::Bio::Seq, but also adjust any
features associated with the sequence as appropriate.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to one
of the Bioperl mailing lists. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
the bugs and their resolution. Bug reports can be submitted via the
web:
=head1 AUTHOR - Heikki Lehvaslaiho
Email: heikki-at-bioperl-dot-org
=head1 CONTRIBUTORS
Roy R. Chaudhuri - roy.chaudhuri at gmail.com
=head1 APPENDIX
The rest of the documentation details each of the object
methods. Internal methods are usually preceded with a _
=cut
# Let the code begin...
package
FAST::Bio::SeqUtils;
use
strict;
use
Carp;
# new inherited from RootI
BEGIN {
# Note : Ambiguity code 'J' = I/L (used for ambiguities in mass-spec data)
%ONECODE
=
(
'Ala'
=>
'A'
,
'Asx'
=>
'B'
,
'Cys'
=>
'C'
,
'Asp'
=>
'D'
,
'Glu'
=>
'E'
,
'Phe'
=>
'F'
,
'Gly'
=>
'G'
,
'His'
=>
'H'
,
'Ile'
=>
'I'
,
'Lys'
=>
'K'
,
'Leu'
=>
'L'
,
'Met'
=>
'M'
,
'Asn'
=>
'N'
,
'Pro'
=>
'P'
,
'Gln'
=>
'Q'
,
'Arg'
=>
'R'
,
'Ser'
=>
'S'
,
'Thr'
=>
'T'
,
'Val'
=>
'V'
,
'Trp'
=>
'W'
,
'Xaa'
=>
'X'
,
'Tyr'
=>
'Y'
,
'Glx'
=>
'Z'
,
'Ter'
=>
'*'
,
'Sec'
=>
'U'
,
'Pyl'
=>
'O'
,
'Xle'
=>
'J'
);
%THREECODE
=
(
'A'
=>
'Ala'
,
'B'
=>
'Asx'
,
'C'
=>
'Cys'
,
'D'
=>
'Asp'
,
'E'
=>
'Glu'
,
'F'
=>
'Phe'
,
'G'
=>
'Gly'
,
'H'
=>
'His'
,
'I'
=>
'Ile'
,
'K'
=>
'Lys'
,
'L'
=>
'Leu'
,
'M'
=>
'Met'
,
'N'
=>
'Asn'
,
'P'
=>
'Pro'
,
'Q'
=>
'Gln'
,
'R'
=>
'Arg'
,
'S'
=>
'Ser'
,
'T'
=>
'Thr'
,
'V'
=>
'Val'
,
'W'
=>
'Trp'
,
'Y'
=>
'Tyr'
,
'Z'
=>
'Glx'
,
'X'
=>
'Xaa'
,
'*'
=>
'Ter'
,
'U'
=>
'Sec'
,
'O'
=>
'Pyl'
,
'J'
=>
'Xle'
);
}
=head2 seq3
Title : seq3
Usage : $string = FAST::Bio::SeqUtils->seq3($seq)
Function: Read only method that returns the amino acid sequence as a
string of three letter codes. alphabet has to be
'protein'. Output follows the IUPAC standard plus 'Ter' for
terminator. Any unknown character, including the default
unknown character 'X', is changed into 'Xaa'. A noncoded
aminoacid selenocystein is recognized (Sec, U).
Returns : A scalar
Args : character used for stop in the protein sequence optional,
defaults to '*' string used to separate the output amino
acid codes, optional, defaults to ''
=cut
sub
seq3 {
my
(
$self
,
$seq
,
$stop
,
$sep
) =
@_
;
$seq
->isa(
'FAST::Bio::PrimarySeqI'
) ||
$self
->throw(
'Not a FAST::Bio::PrimarySeqI object but [$self]'
);
$seq
->alphabet eq
'protein'
||
$self
->throw(
'Not a protein sequence'
);
if
(
defined
$stop
) {
length
$stop
!= 1 and
$self
->throw(
'One character stop needed, not [$stop]'
);
$THREECODE
{
$stop
} =
"Ter"
;
}
$sep
||=
''
;
my
$aa3s
;
foreach
my
$aa
(
split
//,
uc
$seq
->seq) {
$THREECODE
{
$aa
} and
$aa3s
.=
$THREECODE
{
$aa
}.
$sep
,
next
;
$aa3s
.=
'Xaa'
.
$sep
;
}
$sep
and
substr
(
$aa3s
, -(
length
$sep
),
length
$sep
) =
''
;
return
$aa3s
;
}
=head2 seq3in
Title : seq3in
Usage : $seq = FAST::Bio::SeqUtils->seq3in($seq, 'MetGlyTer')
Function: Method for changing of the sequence of a
FAST::Bio::PrimarySeqI sequence object. The three letter amino
acid input string is converted into one letter code. Any
unknown character triplet, including the default 'Xaa', is
converted into 'X'.
Returns : FAST::Bio::PrimarySeq object
Args : sequence string
optional character to be used for stop in the protein sequence,
defaults to '*'
optional character to be used for unknown in the protein sequence,
defaults to 'X'
=cut
sub
seq3in {
my
(
$self
,
$seq
,
$string
,
$stop
,
$unknown
) =
@_
;
$seq
->isa(
'FAST::Bio::PrimarySeqI'
) ||
$self
->throw(
"Not a FAST::Bio::PrimarySeqI object but [$self]"
);
$seq
->alphabet eq
'protein'
||
$self
->throw(
'Not a protein sequence'
);
if
(
defined
$stop
) {
length
$stop
!= 1 and
$self
->throw(
"One character stop needed, not [$stop]"
);
$ONECODE
{
'Ter'
} =
$stop
;
}
if
(
defined
$unknown
) {
length
$unknown
!= 1 and
$self
->throw(
"One character stop needed, not [$unknown]"
);
$ONECODE
{
'Xaa'
} =
$unknown
;
}
my
(
$aas
,
$aa3
);
my
$length
= (
length
$string
) - 2;
for
(
my
$i
= 0 ;
$i
<
$length
;
$i
+= 3) {
$aa3
=
substr
(
$string
,
$i
, 3);
$aa3
=
ucfirst
(
lc
(
$aa3
));
$ONECODE
{
$aa3
} and
$aas
.=
$ONECODE
{
$aa3
},
next
;
$aas
.=
$ONECODE
{
'Xaa'
};
}
$seq
->seq(
$aas
);
return
$seq
;
}
=head2 translate_3frames
Title : translate_3frames
Usage : @prots = FAST::Bio::SeqUtils->translate_3frames($seq)
Function: Translate a nucleotide sequence in three forward frames.
The IDs of the sequences are appended with '-0F', '-1F', '-2F'.
Returns : An array of seq objects
Args : sequence object
same arguments as to FAST::Bio::PrimarySeqI::translate
=cut
sub
translate_3frames {
my
(
$self
,
$seq
,
@args
) =
@_
;
$self
->throw(
'Object [$seq] '
.
'of class ['
.
ref
(
$seq
).
'] can not be translated.'
)
unless
$seq
->can(
'translate'
);
my
(
$stop
,
$unknown
,
$frame
,
$tableid
,
$fullCDS
,
$throw
) =
@args
;
my
@seqs
;
my
$f
= 0;
while
(
$f
!= 3) {
my
$translation
=
$seq
->translate(
$stop
,
$unknown
,
$f
,
$tableid
,
$fullCDS
,
$throw
);
$translation
->id(
$seq
->id.
"-"
.
$f
.
"F"
);
push
@seqs
,
$translation
;
$f
++;
}
return
@seqs
;
}
=head2 translate_6frames
Title : translate_6frames
Usage : @prots = FAST::Bio::SeqUtils->translate_6frames($seq)
Function: translate a nucleotide sequence in all six frames
The IDs of the sequences are appended with '-0F', '-1F', '-2F',
'-0R', '-1R', '-2R'.
Returns : An array of seq objects
Args : sequence object
same arguments as to FAST::Bio::PrimarySeqI::translate
=cut
sub
translate_6frames {
my
(
$self
,
$seq
,
@args
) =
@_
;
my
@seqs
=
$self
->translate_3frames(
$seq
,
@args
);
my
@seqs2
=
$self
->translate_3frames(
$seq
->revcom,
@args
);
foreach
my
$seq2
(
@seqs2
) {
my
(
$tmp
) =
$seq2
->id;
$tmp
=~ s/F$/R/g;
$seq2
->id(
$tmp
);
}
return
@seqs
,
@seqs2
;
}
=head2 valid_aa
Title : valid_aa
Usage : my @aa = $table->valid_aa
Function: Retrieves a list of the valid amino acid codes.
The list is ordered so that first 21 codes are for unique
amino acids. The rest are ['B', 'Z', 'X', '*'].
Returns : array of all the valid amino acid codes
Args : [optional] $code => [0 -> return list of 1 letter aa codes,
1 -> return list of 3 letter aa codes,
2 -> return associative array of both ]
=cut
sub
valid_aa{
my
(
$self
,
$code
) =
@_
;
if
( !
$code
) {
my
@codes
;
foreach
my
$c
(
sort
values
%ONECODE
) {
push
@codes
,
$c
unless
(
$c
=~ /[BZX\*]/ );
}
push
@codes
,
qw(B Z X *)
;
# so they are in correct order ?
return
@codes
;
}
elsif
(
$code
== 1 ) {
my
@codes
;
foreach
my
$c
(
sort
keys
%ONECODE
) {
push
@codes
,
$c
unless
(
$c
=~ /(Asx|Glx|Xaa|Ter)/ );
}
push
@codes
, (
'Asx'
,
'Glx'
,
'Xaa'
,
'Ter'
);
return
@codes
;
}
elsif
(
$code
== 2 ) {
my
%codes
=
%ONECODE
;
foreach
my
$c
(
keys
%ONECODE
) {
my
$aa
=
$ONECODE
{
$c
};
$codes
{
$aa
} =
$c
;
}
return
%codes
;
}
else
{
$self
->
warn
(
"unrecognized code in "
.
ref
(
$self
).
" method valid_aa()"
);
return
();
}
}
=head2 mutate
Title : mutate
Usage : FAST::Bio::SeqUtils->mutate($seq,$mutation1, $mutation2);
Function: Inplace editing of the sequence.
The second argument can be a FAST::Bio::LiveSeq::Mutation object
or an array of them. The mutations are applied sequentially
checking only that their position is within the current
sequence. Insertions are inserted before the given
position.
Returns : boolean
Args : sequence object
mutation, a FAST::Bio::LiveSeq::Mutation object, or an array of them
See L<FAST::Bio::LiveSeq::Mutation>.
=cut
sub
mutate {
my
(
$self
,
$seq
,
@mutations
) =
@_
;
$self
->throw(
'Object [$seq] '
.
'of class ['
.
ref
(
$seq
).
'] should be a FAST::Bio::PrimarySeqI '
)
unless
$seq
->isa(
'FAST::Bio::PrimarySeqI'
);
$self
->throw(
'Object [$mutations[0]] '
.
'of class ['
.
ref
(
$mutations
[0]).
'] should be a FAST::Bio::LiveSeq::Mutation'
)
unless
$mutations
[0]->isa(
'FAST::Bio::LiveSeq::Mutation'
);
foreach
my
$mutation
(
@mutations
) {
$self
->throw(
'Attempting to mutate sequence beyond its length'
)
unless
$mutation
->
pos
- 1 <=
$seq
->
length
;
my
$string
=
$seq
->seq;
substr
$string
,
$mutation
->
pos
- 1,
$mutation
->len,
$mutation
->seq;
$seq
->seq(
$string
);
}
1;
}
=head2 cat
Title : cat
Usage : my $catseq = FAST::Bio::SeqUtils->cat(@seqs)
Function: Concatenates an array of FAST::Bio::Seq objects, using the first sequence
as a target. Annotations and sequence features are copied over
from any additional objects. Adjusts the coordinates of copied
features.
Returns : a boolean
Args : array of sequence objects
Note that annotations have no sequence locations. If you concatenate
sequences with the same annotations they will all be added.
=cut
sub
cat {
my
(
$self
,
$seq
,
@seqs
) =
@_
;
$self
->throw(
'Object [$seq] '
.
'of class ['
.
ref
(
$seq
).
'] should be a FAST::Bio::PrimarySeqI '
)
unless
$seq
->isa(
'FAST::Bio::PrimarySeqI'
);
for
my
$catseq
(
@seqs
) {
$self
->throw(
'Object [$catseq] '
.
'of class ['
.
ref
(
$catseq
).
'] should be a FAST::Bio::PrimarySeqI '
)
unless
$catseq
->isa(
'FAST::Bio::PrimarySeqI'
);
$self
->throw(
'Trying to concatenate sequences with different alphabets: '
.
$seq
->display_id.
'('
.
$seq
->alphabet.
') and '
.
$catseq
->display_id.
'('
.
$catseq
->alphabet.
')'
)
unless
$catseq
->alphabet eq
$seq
->alphabet;
my
$length
=
$seq
->
length
;
$seq
->seq(
$seq
->seq.
$catseq
->seq);
# move annotations
if
(
$seq
->isa(
"FAST::Bio::AnnotatableI"
) and
$catseq
->isa(
"FAST::Bio::AnnotatableI"
)) {
foreach
my
$key
(
$catseq
->annotation->get_all_annotation_keys() ) {
foreach
my
$value
(
$catseq
->annotation->get_Annotations(
$key
) ) {
$seq
->annotation->add_Annotation(
$key
,
$value
);
}
}
}
# move SeqFeatures
if
(
$seq
->isa(
'FAST::Bio::SeqI'
) and
$catseq
->isa(
'FAST::Bio::SeqI'
)) {
for
my
$feat
(
$catseq
->get_SeqFeatures) {
$seq
->add_SeqFeature(
$self
->_coord_adjust(
$feat
,
$length
));
}
}
}
1;
}
=head2 trunc_with_features
Title : trunc_with_features
Usage : $trunc=FAST::Bio::SeqUtils->trunc_with_features($seq, $start, $end);
Function: Like FAST::Bio::Seq::trunc, but keeps features (adjusting coordinates
where necessary. Features that partially overlap the region have
their location changed to a FAST::Bio::Location::Fuzzy.
Returns : A new sequence object
Args : A sequence object, start coordinate, end coordinate (inclusive)
=cut
sub
trunc_with_features{
my
(
$self
,
$seq
,
$start
,
$end
) =
@_
;
$self
->throw(
'Object [$seq] '
.
'of class ['
.
ref
(
$seq
).
'] should be a FAST::Bio::SeqI '
)
unless
$seq
->isa(
'FAST::Bio::SeqI'
);
my
$trunc
=
$seq
->trunc(
$start
,
$end
);
my
$truncrange
=FAST::Bio::Range->new(
-start
=>
$start
,
-end
=>
$end
,
-strand
=>0);
#move annotations
foreach
my
$key
(
$seq
->annotation->get_all_annotation_keys() ) {
foreach
my
$value
(
$seq
->annotation->get_Annotations(
$key
) ) {
$trunc
->annotation->add_Annotation(
$key
,
$value
);
}
}
#move features
$trunc
->add_SeqFeature(
grep
{
$_
=
$self
->_coord_adjust(
$_
, 1-
$start
,
$end
+1-
$start
)
if
$_
->overlaps(
$truncrange
)}
$seq
->get_SeqFeatures);
return
$trunc
;
}
=head2 _coord_adjust
Title : _coord_adjust
Usage : my $newfeat=FAST::Bio::SeqUtils->_coord_adjust($feature, 100, $seq->length);
Function: Recursive subroutine to adjust the coordinates of a feature
and all its subfeatures. If a sequence length is specified, then
any adjusted features that have locations beyond the boundaries
of the sequence are converted to FAST::Bio::Location::Fuzzy objects.
Returns : A FAST::Bio::SeqFeatureI compliant object.
Args : A FAST::Bio::SeqFeatureI compliant object,
the number of bases to add to the coordinates
(optional) the length of the parent sequence
=cut
sub
_coord_adjust {
my
(
$self
,
$feat
,
$add
,
$length
)=
@_
;
$self
->throw(
'Object [$feat] '
.
'of class ['
.
ref
(
$feat
).
'] should be a FAST::Bio::SeqFeatureI '
)
unless
$feat
->isa(
'FAST::Bio::SeqFeatureI'
);
my
@adjsubfeat
;
for
my
$subfeat
(
$feat
->remove_SeqFeatures) {
push
@adjsubfeat
,
$self
->_coord_adjust(
$subfeat
,
$add
,
$length
);
}
my
@loc
;
for
(
$feat
->location->each_Location) {
my
@coords
=(
$_
->start,
$_
->end);
my
$strand
=
$_
->strand;
my
$type
=
$_
->location_type;
map
s/(\d+)/
if
(
$add
+$1<1) {
'<1'
}
elsif
(
defined
$length
and
$add
+$1>
$length
) {
">$length"
}
else
{
$add
+$1}/ge,
@coords
;
my
(
$newstart
,
$newend
)=
@coords
;
unless
(
$type
eq
'IN-BETWEEN'
) {
push
@loc
, FAST::Bio::Location::Fuzzy->new(
-start
=>
$newstart
,
-end
=>
$newend
,
-strand
=>
$strand
,
-location_type
=>
$type
);
}
else
{
push
@loc
, FAST::Bio::Location::Simple->new(
-start
=>
$newstart
,
-end
=>
$newend
,
-strand
=>
$strand
,
-location_type
=>
$type
);
}
}
my
$newfeat
=FAST::Bio::SeqFeature::Generic->new(
-primary
=>
$feat
->primary_tag);
foreach
my
$key
(
$feat
->annotation->get_all_annotation_keys() ) {
foreach
my
$value
(
$feat
->annotation->get_Annotations(
$key
) ) {
$newfeat
->annotation->add_Annotation(
$key
,
$value
);
}
}
foreach
my
$key
(
$feat
->get_all_tags() ) {
$newfeat
->add_tag_value(
$key
,
$feat
->get_tag_values(
$key
));
}
if
(
@loc
==1) {
$newfeat
->location(
$loc
[0])
}
else
{
my
$loc
=FAST::Bio::Location::Split->new;
$loc
->add_sub_Location(
@loc
);
$newfeat
->location(
$loc
);
}
$newfeat
->add_SeqFeature(
$_
)
for
@adjsubfeat
;
return
$newfeat
;
}
=head2 revcom_with_features
Title : revcom_with_features
Usage : $revcom=FAST::Bio::SeqUtils->revcom_with_features($seq);
Function: Like FAST::Bio::Seq::revcom, but keeps features (adjusting coordinates
as appropriate.
Returns : A new sequence object
Args : A sequence object
=cut
sub
revcom_with_features{
my
(
$self
,
$seq
) =
@_
;
$self
->throw(
'Object [$seq] '
.
'of class ['
.
ref
(
$seq
).
'] should be a FAST::Bio::SeqI '
)
unless
$seq
->isa(
'FAST::Bio::SeqI'
);
my
$revcom
=
$seq
->revcom;
#move annotations
foreach
my
$key
(
$seq
->annotation->get_all_annotation_keys() ) {
foreach
my
$value
(
$seq
->annotation->get_Annotations(
$key
) ) {
$revcom
->annotation->add_Annotation(
$key
,
$value
);
}
}
#move features
$revcom
->add_SeqFeature(
map
{
$self
->_feature_revcom(
$_
,
$seq
->
length
)}
reverse
$seq
->get_SeqFeatures);
return
$revcom
;
}
=head2 _feature_revcom
Title : _feature_revcom
Usage : my $newfeat=FAST::Bio::SeqUtils->_feature_revcom($feature, $seq->length);
Function: Recursive subroutine to reverse complement a feature and
all its subfeatures. The length of the parent sequence must be
specified.
Returns : A FAST::Bio::SeqFeatureI compliant object.
Args : A FAST::Bio::SeqFeatureI compliant object,
the length of the parent sequence
=cut
sub
_feature_revcom {
my
(
$self
,
$feat
,
$length
)=
@_
;
$self
->throw(
'Object [$feat] '
.
'of class ['
.
ref
(
$feat
).
'] should be a FAST::Bio::SeqFeatureI '
)
unless
$feat
->isa(
'FAST::Bio::SeqFeatureI'
);
my
@adjsubfeat
;
for
my
$subfeat
(
$feat
->remove_SeqFeatures) {
push
@adjsubfeat
,
$self
->_feature_revcom(
$subfeat
,
$length
);
}
my
@loc
;
for
(
$feat
->location->each_Location) {
my
$type
=
$_
->location_type;
my
$strand
;
if
(
$_
->strand==-1) {
$strand
=1}
elsif
(
$_
->strand==1) {
$strand
=-1}
else
{
$strand
=
$_
->strand}
my
$newend
=
$self
->_coord_revcom(
$_
->start,
$_
->start_pos_type,
$length
);
my
$newstart
=
$self
->_coord_revcom(
$_
->end,
$_
->end_pos_type,
$length
);
unless
(
$type
eq
'IN-BETWEEN'
) {
push
@loc
, FAST::Bio::Location::Fuzzy->new(
-start
=>
$newstart
,
-end
=>
$newend
,
-strand
=>
$strand
,
-location_type
=>
$type
);
}
else
{
push
@loc
, FAST::Bio::Location::Simple->new(
-start
=>
$newstart
,
-end
=>
$newend
,
-strand
=>
$strand
,
-location_type
=>
$type
);
}
}
my
$newfeat
=FAST::Bio::SeqFeature::Generic->new(
-primary
=>
$feat
->primary_tag);
foreach
my
$key
(
$feat
->annotation->get_all_annotation_keys() ) {
foreach
my
$value
(
$feat
->annotation->get_Annotations(
$key
) ) {
$newfeat
->annotation->add_Annotation(
$key
,
$value
);
}
}
foreach
my
$key
(
$feat
->get_all_tags() ) {
$newfeat
->add_tag_value(
$key
,
$feat
->get_tag_values(
$key
));
}
if
(
@loc
==1) {
$newfeat
->location(
$loc
[0])
}
else
{
my
$loc
=FAST::Bio::Location::Split->new;
$loc
->add_sub_Location(
@loc
);
$newfeat
->location(
$loc
);
}
$newfeat
->add_SeqFeature(
$_
)
for
@adjsubfeat
;
return
$newfeat
;
}
sub
_coord_revcom {
my
(
$self
,
$coord
,
$type
,
$length
)=
@_
;
if
(
$type
eq
'BETWEEN'
or
$type
eq
'WITHIN'
) {
$coord
=~s/(\d+)(.*)(\d+)/
$length
+1-$3.$2.
$length
+1-$1/ge;
}
else
{
$coord
=~s/(\d+)/
$length
+1-$1/ge;
$coord
=
'>'
.
$coord
if
$type
eq
'BEFORE'
;
$coord
=
'<'
.
$coord
if
$type
eq
'AFTER'
;
}
return
$coord
;
}
=head2 evolve
Title : evolve
Usage : my $newseq = FAST::Bio::SeqUtils->
evolve($seq, $similarity, $transition_transversion_rate);
Function: Mutates the sequence by point mutations until the similarity of
the new sequence has decreased to the required level.
Transition/transversion rate is adjustable.
Returns : A new FAST::Bio::PrimarySeq object
Args : sequence object
percentage similarity (e.g. 80)
tr/tv rate, optional, defaults to 1 (= 1:1)
Set the verbosity of the FAST::Bio::SeqUtils object to positive integer to
see the mutations as they happen.
This method works only on nucleotide sequences. It prints a warning if
you set the target similarity to be less than 25%.
Transition/transversion ratio is an observed attribute of an sequence
comparison. We are dealing here with the transition/transversion rate
that we set for our model of sequence evolution.
=cut
sub
evolve {
my
(
$self
,
$seq
,
$sim
,
$rate
) =
@_
;
$rate
||= 1;
$self
->throw(
'Object [$seq] '
.
'of class ['
.
ref
(
$seq
).
'] should be a FAST::Bio::PrimarySeqI '
)
unless
$seq
->isa(
'FAST::Bio::PrimarySeqI'
);
$self
->throw(
"[$sim] "
.
' should be a positive integer or float under 100'
)
unless
$sim
=~ /^[+\d.]+$/ and
$sim
<= 100;
$self
->
warn
("Nucleotide sequences are 25% similar by chance.
Do you really want to set similarity to [
$sim
]%?\n")
unless
$sim
>25 ;
$self
->throw(
'Only nucleotide sequences are supported'
)
if
$seq
->alphabet eq
'protein'
;
# arrays of possible changes have transitions as first items
my
%changes
;
$changes
{
'a'
} = [
't'
,
'c'
,
'g'
];
$changes
{
't'
} = [
'a'
,
'c'
,
'g'
];
$changes
{
'c'
} = [
'g'
,
'a'
,
't'
];
$changes
{
'g'
} = [
'c'
,
'a'
,
't'
];
# given the desired rate, find out where cut off points need to be
# when random numbers are generated from 0 to 100
# we are ignoring identical mutations (e.g. A->A) to speed things up
my
$bin_size
= 100/(
$rate
+ 2);
my
$transition
= 100 - (2
*$bin_size
);
my
$first_transversion
=
$transition
+
$bin_size
;
# unify the look of sequence strings
my
$string
=
lc
$seq
->seq;
# lower case
$string
=~ s/u/t/;
# simplyfy our life; modules should deal with the change anyway
# store the original sequence string
my
$oristring
=
$string
;
my
$length
=
$seq
->
length
;
while
(1) {
# find the location in the string to change
my
$loc
=
int
(
rand
$length
) + 1;
# nucleotide to change
my
$oldnuc
=
substr
$string
,
$loc
-1, 1;
my
$newnuc
;
# nucleotide it is changed to
my
$choose
=
rand
(100);
if
(
$choose
<
$transition
) {
$newnuc
=
$changes
{
$oldnuc
}[0];
}
elsif
(
$choose
<
$first_transversion
) {
$newnuc
=
$changes
{
$oldnuc
}[1];
}
else
{
$newnuc
=
$changes
{
$oldnuc
}[2];
}
# do the change
substr
$string
,
$loc
-1, 1 ,
$newnuc
;
$self
->debug(
"$loc$oldnuc>$newnuc\n"
);
# stop evolving if the limit has been reached
last
if
$self
->_get_similarity(
$oristring
,
$string
) <=
$sim
;
}
return
new FAST::Bio::PrimarySeq(
-id
=>
$seq
->id.
"-$sim"
,
-description
=>
$seq
->description,
-seq
=>
$string
)
}
sub
_get_similarity {
my
(
$self
,
$oriseq
,
$seq
) =
@_
;
my
$len
=
length
(
$oriseq
);
my
$c
;
for
(
my
$i
= 0;
$i
<
$len
;
$i
++ ) {
$c
++
if
substr
(
$oriseq
,
$i
, 1) eq
substr
(
$seq
,
$i
, 1);
}
return
100 *
$c
/
$len
;
}
1;