The Perl Toolchain Summit 2025 Needs You: You can help 🙏 Learn more

#ifndef DWARF_UTIL_H
#define DWARF_UTIL_H
/*
Copyright (C) 2000,2003,2004 Silicon Graphics, Inc. All Rights Reserved.
Portions Copyright (C) 2007-2012 David Anderson. All Rights Reserved.
Portions Copyright (C) 2010-2012 SN Systems Ltd. All Rights Reserved
This program is free software; you can redistribute it and/or modify it
under the terms of version 2.1 of the GNU Lesser General Public License
as published by the Free Software Foundation.
This program is distributed in the hope that it would be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Further, this software is distributed without any warranty that it is
free of the rightful claim of any third person regarding infringement
or the like. Any license provided herein, whether implied or
otherwise, applies only to this software file. Patent licenses, if
any, provided herein do not apply to combinations of this program with
other software, or any other product whatsoever.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston MA 02110-1301,
USA.
*/
/*
Decodes unsigned leb128 encoded numbers.
Make sure ptr is a pointer to a 1-byte type.
In 2003 and earlier this was a hand-inlined
version of _dwarf_decode_u_leb128() which did
not work correctly if Dwarf_Unsigned was 64 bits.
April 2016: now uses a reader that is careful.
'return' only in case of error
else falls through.
*/
#define DECODE_LEB128_UWORD_CK(ptr, value,dbg,errptr,endptr) \
do { \
Dwarf_Unsigned lu_leblen = 0; \
Dwarf_Unsigned lu_local = 0; \
int lu_res = 0; \
lu_res = _dwarf_decode_u_leb128_chk(ptr,&lu_leblen,&lu_local,endptr); \
if (lu_res == DW_DLV_ERROR) { \
_dwarf_error(dbg, errptr, DW_DLE_LEB_IMPROPER); \
return DW_DLV_ERROR; \
} \
value = lu_local; \
ptr += lu_leblen; \
} while (0)
#define DECODE_LEB128_UWORD_LEN_CK(ptr, value,leblen,dbg,errptr,endptr) \
do { \
Dwarf_Unsigned lu_leblen = 0; \
Dwarf_Unsigned lu_local = 0; \
int lu_res = 0; \
lu_res = _dwarf_decode_u_leb128_chk(ptr,&lu_leblen,&lu_local,endptr); \
if (lu_res == DW_DLV_ERROR) { \
_dwarf_error(dbg, errptr, DW_DLE_LEB_IMPROPER); \
return DW_DLV_ERROR; \
} \
value = lu_local; \
ptr += lu_leblen; \
leblen = lu_leblen; \
} while (0)
/*
Decodes signed leb128 encoded numbers.
Make sure ptr is a pointer to a 1-byte type.
In 2003 and earlier this was a hand-inlined
version of _dwarf_decode_s_leb128() which did
not work correctly if Dwarf_Unsigned was 64 bits.
*/
#define DECODE_LEB128_SWORD_CK(ptr, value,dbg,errptr,endptr) \
do { \
Dwarf_Unsigned uleblen = 0; \
Dwarf_Signed local = 0; \
int lu_res = 0; \
lu_res = _dwarf_decode_s_leb128_chk(ptr,&uleblen,&local,endptr); \
if (lu_res == DW_DLV_ERROR) { \
_dwarf_error(dbg, errptr, DW_DLE_LEB_IMPROPER); \
return DW_DLV_ERROR; \
} \
value = local; \
ptr += uleblen; \
} while (0)
#define DECODE_LEB128_SWORD_LEN_CK(ptr, value,leblen,dbg,errptr,endptr) \
do { \
Dwarf_Unsigned lu_leblen = 0; \
Dwarf_Signed lu_local = 0; \
int lu_res = 0; \
lu_res = _dwarf_decode_s_leb128_chk(ptr,&lu_leblen,\
&lu_local,endptr); \
if (lu_res == DW_DLV_ERROR) { \
_dwarf_error(dbg, errptr, DW_DLE_LEB_IMPROPER); \
return DW_DLV_ERROR; \
} \
leblen = lu_leblen; \
value = lu_local; \
ptr += lu_leblen; \
} while (0)
/*
Skips leb128_encoded numbers that are guaranteed
to be no more than 4 bytes long. Same for both
signed and unsigned numbers.
These seem bogus as they assume 4 bytes get a 4 byte
word. Wrong. FIXME
'return' only in case of error
else falls through.
*/
#define SKIP_LEB128_WORD_CK(ptr,dbg,errptr,endptr) \
do { \
if ((*(ptr++) & 0x80) != 0) { \
if (ptr >= endptr) { \
_dwarf_error(dbg, errptr, DW_DLE_LEB_IMPROPER); \
return DW_DLV_ERROR; \
} \
if ((*(ptr++) & 0x80) != 0) { \
if (ptr >= endptr) { \
_dwarf_error(dbg, errptr, DW_DLE_LEB_IMPROPER); \
return DW_DLV_ERROR; \
} \
if ((*(ptr++) & 0x80) != 0) { \
if (ptr >= endptr) { \
_dwarf_error(dbg, errptr, DW_DLE_LEB_IMPROPER); \
return DW_DLV_ERROR; \
} \
ptr++; \
if (ptr >= endptr) { \
_dwarf_error(dbg, errptr, DW_DLE_LEB_IMPROPER); \
return DW_DLV_ERROR; \
} \
} \
} \
} \
} while (0)
#define CHECK_DIE(die, error_ret_value) \
do { \
if (die == NULL) { \
_dwarf_error(NULL, error, DW_DLE_DIE_NULL); \
return(error_ret_value); \
} \
if (die->di_cu_context == NULL) { \
_dwarf_error(NULL, error, DW_DLE_DIE_NO_CU_CONTEXT); \
return(error_ret_value); \
} \
if (die->di_cu_context->cc_dbg == NULL) { \
_dwarf_error(NULL, error, DW_DLE_DBG_NULL); \
return(error_ret_value); \
} \
} while (0)
/*
Reads 'source' for 'length' bytes from unaligned addr.
Avoids any constant-in-conditional warnings and
avoids a test in the generated code (for non-const cases,
which are in the majority.)
Uses a temp to avoid the test.
The decl here should avoid any problem of size in the temp.
This code is ENDIAN DEPENDENT
The memcpy args are the endian issue.
Does not update the 'source' field.
for READ_UNALIGNED_CK the error code refers to host endianness.
*/
typedef Dwarf_Unsigned BIGGEST_UINT;
#ifdef WORDS_BIGENDIAN
#define READ_UNALIGNED_CK(dbg,dest,desttype, source, length,error,endptr) \
do { \
BIGGEST_UINT _ltmp = 0; \
Dwarf_Byte_Ptr readend = source+length; \
if (readend < source) { \
_dwarf_error(dbg, error, DW_DLE_READ_BIGENDIAN_ERROR); \
return DW_DLV_ERROR; \
} \
if (readend > endptr) { \
_dwarf_error(dbg, error, DW_DLE_READ_BIGENDIAN_ERROR); \
return DW_DLV_ERROR; \
} \
dbg->de_copy_word( (((char *)(&_ltmp)) + \
sizeof(_ltmp) - length),source, length) ; \
dest = (desttype)_ltmp; \
} while (0)
/*
This macro sign-extends a variable depending on the length.
It fills the bytes between the size of the destination and
the length with appropriate padding.
This code is ENDIAN DEPENDENT but dependent only
on host endianness, not object file endianness.
The memcpy args are the issue.
*/
#define SIGN_EXTEND(dest, length) \
do { \
if (*(Dwarf_Sbyte *)((char *)&dest + \
sizeof(dest) - length) < 0) { \
memcpy((char *)&dest, "\xff\xff\xff\xff\xff\xff\xff\xff",\
sizeof(dest) - length); \
} \
} while (0)
#else /* LITTLE ENDIAN */
#define READ_UNALIGNED_CK(dbg,dest,desttype, source, length,error,endptr) \
do { \
BIGGEST_UINT _ltmp = 0; \
Dwarf_Byte_Ptr readend = source+length; \
if (readend < source) { \
_dwarf_error(dbg, error, DW_DLE_READ_LITTLEENDIAN_ERROR);\
return DW_DLV_ERROR; \
} \
if (readend > endptr) { \
_dwarf_error(dbg, error, DW_DLE_READ_LITTLEENDIAN_ERROR);\
return DW_DLV_ERROR; \
} \
dbg->de_copy_word( (char *)(&_ltmp) , \
source, length) ; \
dest = (desttype)_ltmp; \
} while (0)
/*
This macro sign-extends a variable depending on the length.
It fills the bytes between the size of the destination and
the length with appropriate padding.
This code is ENDIAN DEPENDENT but dependent only
on host endianness, not object file endianness.
The memcpy args are the issue.
*/
#define SIGN_EXTEND(dest, length) \
do { \
if (*(Dwarf_Sbyte *)((char *)&dest + (length-1)) < 0) { \
memcpy((char *)&dest+length, \
"\xff\xff\xff\xff\xff\xff\xff\xff", \
sizeof(dest) - length); \
} \
} while (0)
#endif /* ! LITTLE_ENDIAN */
/*
READ_AREA LENGTH reads the length (the older way
of pure 32 or 64 bit
or the dwarf v3 64bit-extension way)
It reads the bits from where rw_src_data_p points to
and updates the rw_src_data_p to point past what was just read.
It updates w_length_size (to the size of an offset, either 4 or 8)
and w_exten_size (set 0 unless this frame has the DWARF3
and later 64bit
extension, in which case w_exten_size is set to 4).
r_dbg is just the current dbg pointer.
w_target is the output length field.
r_targtype is the output type. Always Dwarf_Unsigned so far.
*/
/* This one handles the v3 64bit extension
and 32bit (and SGI/MIPS fixed 64 bit via the
dwarf_init-set r_dbg->de_length_size)..
It does not recognize any but the one distingushed value
(the only one with defined meaning).
It assumes that no CU will have a length
0xffffffxx (32bit length)
or
0xffffffxx xxxxxxxx (64bit length)
which makes possible auto-detection of the extension.
This depends on knowing that only a non-zero length
is legitimate (AFAICT), and for IRIX non-standard -64
dwarf that the first 32 bits of the 64bit offset will be
zero (because the compiler could not handle a truly large
value as of Jan 2003 and because no app has that much debug
info anyway, at least not in the IRIX case).
At present not testing for '64bit elf' here as that
does not seem necessary (none of the 64bit length seems
appropriate unless it's ident[EI_CLASS] == ELFCLASS64).
*/
/* The w_target > r_sectionlen compare is done without adding in case
the w_target value read is so large any addition would overflow.
A basic value sanity check. */
#define READ_AREA_LENGTH_CK(r_dbg,w_target,r_targtype, \
rw_src_data_p,w_length_size,w_exten_size,w_error, \
r_sectionlen,r_endptr) \
do { \
READ_UNALIGNED_CK(r_dbg,w_target,r_targtype, \
rw_src_data_p, ORIGINAL_DWARF_OFFSET_SIZE, \
w_error,r_endptr); \
if (w_target == DISTINGUISHED_VALUE) { \
/* dwarf3 64bit extension */ \
w_length_size = DISTINGUISHED_VALUE_OFFSET_SIZE; \
rw_src_data_p += ORIGINAL_DWARF_OFFSET_SIZE; \
w_exten_size = ORIGINAL_DWARF_OFFSET_SIZE; \
READ_UNALIGNED_CK(r_dbg,w_target,r_targtype, \
rw_src_data_p, DISTINGUISHED_VALUE_OFFSET_SIZE,\
w_error,r_endptr); \
if (w_target > r_sectionlen) { \
_dwarf_error(r_dbg,w_error, \
DW_DLE_HEADER_LEN_BIGGER_THAN_SECSIZE); \
return DW_DLV_ERROR; \
} \
rw_src_data_p += DISTINGUISHED_VALUE_OFFSET_SIZE; \
} else { \
if (w_target == 0 && r_dbg->de_big_endian_object) {\
/* Might be IRIX: We have to distinguish between */\
/* 32-bit DWARF format and IRIX 64-bit \
DWARF format. */ \
if (r_dbg->de_length_size == 8) { \
/* IRIX 64 bit, big endian. This test */ \
/* is not a truly precise test, a precise test*/ \
/* would check if the target was IRIX. */ \
READ_UNALIGNED_CK(r_dbg,w_target,r_targtype,\
rw_src_data_p, \
DISTINGUISHED_VALUE_OFFSET_SIZE, \
w_error,r_endptr); \
if (w_target > r_sectionlen) { \
_dwarf_error(r_dbg,w_error, \
DW_DLE_HEADER_LEN_BIGGER_THAN_SECSIZE);\
return DW_DLV_ERROR; \
} \
w_length_size = DISTINGUISHED_VALUE_OFFSET_SIZE;\
rw_src_data_p += DISTINGUISHED_VALUE_OFFSET_SIZE;\
w_exten_size = 0; \
} else { \
/* 32 bit, big endian */ \
w_length_size = ORIGINAL_DWARF_OFFSET_SIZE;\
rw_src_data_p += w_length_size; \
w_exten_size = 0; \
} \
} else { \
if (w_target > r_sectionlen) { \
_dwarf_error(r_dbg,w_error, \
DW_DLE_HEADER_LEN_BIGGER_THAN_SECSIZE);\
return DW_DLV_ERROR; \
} \
/* Standard 32 bit dwarf2/dwarf3 */ \
w_exten_size = 0; \
w_length_size = ORIGINAL_DWARF_OFFSET_SIZE; \
rw_src_data_p += w_length_size; \
} \
} \
} while (0)
/* Fuller checking. Returns DW_DLV_ERROR or DW_DLV_OK
Caller must set Dwarf_Error */
int _dwarf_decode_u_leb128_chk(Dwarf_Small * leb128,
Dwarf_Unsigned * leb128_length,
Dwarf_Unsigned *outval,Dwarf_Byte_Ptr endptr);
int _dwarf_decode_s_leb128_chk(Dwarf_Small * leb128,
Dwarf_Unsigned * leb128_length,
Dwarf_Signed *outval, Dwarf_Byte_Ptr endptr);
int
_dwarf_get_size_of_val(Dwarf_Debug dbg,
Dwarf_Unsigned form,
Dwarf_Half cu_version,
Dwarf_Half address_size,
Dwarf_Small * val_ptr,
int v_length_size,
Dwarf_Unsigned *size_out,
Dwarf_Small *section_end_ptr,
Dwarf_Error *error);
struct Dwarf_Hash_Table_Entry_s;
/* This single struct is the base for the hash table.
The intent is that once the total_abbrev_count across
all the entries is greater than 10*current_table_entry_count
one should build a new Dwarf_Hash_Table_Base_s, rehash
all the existing entries, and delete the old table and entries.
(10 is a heuristic, nothing magic about it, but once the
count gets to 30 or 40 times current_table_entry_count
things really slow down a lot. One (500MB) application had
127000 abbreviations in one compilation unit)
The incoming 'code' is an abbrev number and those simply
increase linearly so the hashing is perfect always.
*/
struct Dwarf_Hash_Table_s {
unsigned long tb_table_entry_count;
unsigned long tb_total_abbrev_count;
/* Each table entry is a list of abbreviations. */
struct Dwarf_Hash_Table_Entry_s *tb_entries;
};
/*
This struct is used to build a hash table for the
abbreviation codes for a compile-unit.
*/
struct Dwarf_Hash_Table_Entry_s {
Dwarf_Abbrev_List at_head;
};
int _dwarf_get_abbrev_for_code(Dwarf_CU_Context cu_context,
Dwarf_Unsigned code,
Dwarf_Abbrev_List *list_out,Dwarf_Error *error);
/* return 1 if string ends before 'endptr' else
** return 0 meaning string is not properly terminated.
** Presumption is the 'endptr' pts to end of some dwarf section data.
*/
int _dwarf_check_string_valid(Dwarf_Debug dbg,void *areaptr,
void *startptr, void *endptr,
int suggested_error, Dwarf_Error *error);
int _dwarf_length_of_cu_header(Dwarf_Debug dbg, Dwarf_Unsigned offset,
Dwarf_Bool is_info,
Dwarf_Unsigned *area_length_out,
Dwarf_Error *error);
Dwarf_Unsigned _dwarf_length_of_cu_header_simple(Dwarf_Debug,Dwarf_Bool dinfo);
int _dwarf_load_debug_info(Dwarf_Debug dbg, Dwarf_Error *error);
int _dwarf_load_debug_types(Dwarf_Debug dbg, Dwarf_Error *error);
void _dwarf_free_abbrev_hash_table_contents(Dwarf_Debug dbg,
struct Dwarf_Hash_Table_s* hash_table);
int _dwarf_get_address_size(Dwarf_Debug dbg, Dwarf_Die die);
int _dwarf_reference_outside_section(Dwarf_Die die,
Dwarf_Small * startaddr,
Dwarf_Small * pastend);
void _dwarf_error_mv_s_to_t(Dwarf_Debug dbgs,Dwarf_Error *errs,
Dwarf_Debug dbgt,Dwarf_Error *errt);
int _dwarf_internal_get_die_comp_dir(Dwarf_Die die, const char **compdir_out,
const char **comp_name_out,
Dwarf_Error *error);
int _dwarf_what_section_are_we(Dwarf_Debug dbg,
Dwarf_Small *our_pointer,
const char ** section_name_out,
Dwarf_Small **sec_start_ptr_out,
Dwarf_Unsigned *sec_len_out,
Dwarf_Small **sec_end_ptr_out,
Dwarf_Error *error);
#endif /* DWARF_UTIL_H */