—package
AI::XGBoost::CAPI::RAW;
use
strict;
use
warnings;
our
$VERSION
=
'0.008'
;
# VERSION
# ABSTRACT: Perl wrapper for XGBoost C API https://github.com/dmlc/xgboost
sub
XGBGetLastError : Args() : Native(xgboost) : Returns(string) { }
sub
XGDMatrixCreateFromFile : Args(string,
int
, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixCreateFromCSREx : Args(size_t[], uint[], float[], size_t, size_t, size_t, opaque*) : Native(xgboost) :
Returns(
int
) { }
sub
XGDMatrixCreateFromCSCEx : Args(size_t[], uint[], float[], size_t, size_t, size_t, opaque*) : Native(xgboost) :
Returns(
int
) { }
sub
XGDMatrixCreateFromMat : Args(float[], uint64, uint64, float, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixSliceDMatrix : Args(opaque,
int
*, uint64, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixNumRow : Args(opaque, uint64*) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixNumCol : Args(opaque, uint64*) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixSaveBinary : Args(opaque, string,
int
) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixSetFloatInfo : Args(opaque, string, float[], uint64) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixSetUIntInfo : Args(opaque, string, uint32 *, uint64) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixSetGroup : Args(opaque, uint32 *, uint64) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixGetFloatInfo : Args(opaque, string, uint64 *, opaque *) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixGetUIntInfo : Args(opaque, string, uint64 *, opaque *) : Native(xgboost) : Returns(
int
) { }
sub
XGDMatrixFree : Args(opaque) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterCreate : Args(opaque[], uint64, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterFree : Args(opaque) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterSetParam : Args(opaque, string, string) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterBoostOneIter : Args(opaque, opaque, float[], float[], uint64) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterUpdateOneIter : Args(opaque,
int
, opaque) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterEvalOneIter : Args(opaque,
int
, opaque[], opaque[], uint64, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterPredict : Args(opaque, opaque,
int
, uint, uint64*, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterLoadModel : Args(opaque, string) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterSaveModel : Args(opaque, string) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterLoadModelFromBuffer : Args(opaque, opaque, uint64) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterGetModelRaw : Args(opaque, uint64*, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterDumpModel : Args(opaque, string,
int
, uint64*, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterDumpModelEx : Args(opaque, string,
int
, string, uint64*, opaque*) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterDumpModelWithFeatures : Args(opaque,
int
, opaque[], opaque[],
int
, uint64*, opaque*) Native(xgboost) :
Returns(
int
) { }
sub
XGBoosterDumpModelExWithFeatures : Args(opaque,
int
, opaque[], opaque[],
int
, string, uint64*, opaque*)
Native(xgboost) : Returns(
int
) { }
sub
XGBoosterSetAttr : Args(opaque, string, string) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterGetAttr : Args(opaque, string, opaque*,
int
*) : Native(xgboost) : Returns(
int
) { }
sub
XGBoosterGetAttrNames : Args(opaque, uint64*, opaque*) : Native(xgboost) : Returns(
int
) { }
1;
__END__
=pod
=encoding utf-8
=head1 NAME
AI::XGBoost::CAPI::RAW - Perl wrapper for XGBoost C API https://github.com/dmlc/xgboost
=head1 VERSION
version 0.008
=head1 SYNOPSIS
use 5.010;
use AI::XGBoost::CAPI::RAW;
use FFI::Platypus;
my $silent = 0;
my ($dtrain, $dtest) = (0, 0);
AI::XGBoost::CAPI::RAW::XGDMatrixCreateFromFile('agaricus.txt.test', $silent, \$dtest);
AI::XGBoost::CAPI::RAW::XGDMatrixCreateFromFile('agaricus.txt.train', $silent, \$dtrain);
my ($rows, $cols) = (0, 0);
AI::XGBoost::CAPI::RAW::XGDMatrixNumRow($dtrain, \$rows);
AI::XGBoost::CAPI::RAW::XGDMatrixNumCol($dtrain, \$cols);
say "Dimensions: $rows, $cols";
my $booster = 0;
AI::XGBoost::CAPI::RAW::XGBoosterCreate( [$dtrain] , 1, \$booster);
for my $iter (0 .. 10) {
AI::XGBoost::CAPI::RAW::XGBoosterUpdateOneIter($booster, $iter, $dtrain);
}
my $out_len = 0;
my $out_result = 0;
AI::XGBoost::CAPI::RAW::XGBoosterPredict($booster, $dtest, 0, 0, \$out_len, \$out_result);
my $ffi = FFI::Platypus->new();
my $predictions = $ffi->cast(opaque => "float[$out_len]", $out_result);
#say join "\n", @$predictions;
AI::XGBoost::CAPI::RAW::XGBoosterFree($booster);
AI::XGBoost::CAPI::RAW::XGDMatrixFree($dtrain);
AI::XGBoost::CAPI::RAW::XGDMatrixFree($dtest);
=head1 DESCRIPTION
Wrapper for the C API.
The doc for the methods is extracted from doxygen comments: https://github.com/dmlc/xgboost/blob/master/include/xgboost/c_api.h
=head1 FUNCTIONS
=head2 XGBGetLastError
Get string message of the last error
All functions in this file will return 0 when success
and -1 when an error occurred,
XGBGetLastError can be called to retrieve the error
This function is thread safe and can be called by different thread
Returns string error information
=head2 XGDMatrixCreateFromFile
Load a data matrix
Parameters:
=over 4
=item filename
the name of the file
=item silent
whether print messages during loading
=item out
a loaded data matrix
=back
=head2 XGDMatrixCreateFromCSREx
Create a matrix content from CSR fromat
Parameters:
=over 4
=item indptr
pointer to row headers
=item indices
findex
=item data
fvalue
=item nindptr
number of rows in the matrix + 1
=item nelem
number of nonzero elements in the matrix
=item num_col
number of columns; when it's set to 0, then guess from data
=item out
created dmatrix
=back
=head2 XGDMatrixCreateFromCSCEx
Create a matrix content from CSC format
Parameters:
=over 4
=item col_ptr
pointer to col headers
=item indices
findex
=item data
fvalue
=item nindptr
number of rows in the matrix + 1
=item nelem
number of nonzero elements in the matrix
=item num_row
number of rows; when it's set to 0, then guess from data
=back
=head2 XGDMatrixCreateFromMat
Create matrix content from dense matrix
Parameters:
=over 4
=item data
pointer to the data space
=item nrow
number of rows
=item ncol
number columns
=item missing
which value to represent missing value
=item out
created dmatrix
=back
=head2 XGDMatrixSliceDMatrix
Create a new dmatrix from sliced content of existing matrix
Parameters:
=over 4
=item handle
instance of data matrix to be sliced
=item idxset
index set
=item len
length of index set
=item out
a sliced new matrix
=back
=head2 XGDMatrixNumRow
Get number of rows.
Parameters:
=over 4
=item handle
the handle to the DMatrix
=item out
The address to hold number of rows.
=back
=head2 XGDMatrixNumCol
Get number of cols.
Parameters:
=over 4
=item handle
the handle to the DMatrix
=item out
The address to hold number of cols.
=back
=head2 XGDMatrixSaveBinary
load a data matrix into binary file
Parameters:
=over 4
=item handle
a instance of data matrix
=item fname
file name
=item silent
print statistics when saving
=back
=head2 XGDMatrixSetFloatInfo
Set float vector to a content in info
Parameters:
=over 4
=item handle
a instance of data matrix
=item field
field name, can be label, weight
=item array
pointer to float vector
=item len
length of array
=back
=head2 XGDMatrixSetUIntInfo
Set uint32 vector to a content in info
Parameters:
=over 4
=item handle
a instance of data matrix
=item field
field name, can be label, weight
=item array
pointer to unsigned int vector
=item len
length of array
=back
=head2 XGDMatrixSetGroup
Set label of the training matrix
Parameters:
=over 4
=item handle
a instance of data matrix
=item group
pointer to group size
=item len
length of the array
=back
=head2 XGDMatrixGetFloatInfo
Get float info vector from matrix
Parameters:
=over 4
=item handle
a instance of data matrix
=item field
field name
=item out_len
used to set result length
=item out_dptr
pointer to the result
=back
=head2 XGDMatrixGetUIntInfo
Get uint32 info vector from matrix
Parameters:
=over 4
=item handle
a instance of data matrix
=item field
field name
=item out_len
The length of the field
=item out_dptr
pointer to the result
=back
=head2 XGDMatrixFree
Free space in data matrix
=head2 XGBoosterCreate
Create xgboost learner
Parameters:
=over 4
=item dmats
matrices that are set to be cached
=item len
length of dmats
=item out
handle to the result booster
=back
=head2 XGBoosterFree
Free obj in handle
Parameters:
=over 4
=item handle
handle to be freed
=back
=head2 XGBoosterSetParam
Update the model in one round using dtrain
Parameters:
=over 4
=item handle
handle
=item name
parameter name
=item value
value of parameter
=back
=head2 XGBoosterBoostOneIter
Update the modelo, by directly specify grandient and second order gradient,
this can be used to replace UpdateOneIter, to support customized loss function
Parameters:
=over 4
=item handle
handle
=item dtrain
training data
=item grad
gradient statistics
=item hess
second order gradinet statistics
=item len
length of grad/hess array
=back
=head2 XGBoosterUpdateOneIter
Update the model in one round using dtrain
Parameters:
=over 4
=item handle
handle
=item iter
current iteration rounds
=item dtrain
training data
=back
=head2 XGBoosterEvalOneIter
=head2 XGBoosterPredict
Make prediction based on dmat
Parameters:
=over 4
=item handle
handle
=item dmat
data matrix
=item option_mask
bit-mask of options taken in prediction, possible values
=over 4
=item
0: normal prediction
=item
1: output margin instead of transformed value
=item
2: output leaf index of trees instead of leaf value, note leaf index is unique per tree
=item
4: output feature contributions to individual predictions
=back
=item ntree_limit
limit number of trees used for prediction, this is only valid for boosted trees
when the parameter is set to 0, we will use all the trees
=item out_len
used to store length of returning result
=item out_result
used to set a pointer to array
=back
=head2 XGBoosterLoadModel
Load model form existing file
Parameters:
=over 4
=item handle
handle
=item fname
file name
=back
=head2 XGBoosterSaveModel
Save model into existing file
Parameters:
=over 4
=item handle
handle
=item fname
file name
=back
=head2 XGBoosterLoadModelFromBuffer
=head2 XGBoosterGetModelRaw
=head2 XGBoosterDumpModel
=head2 XGBoosterDumpModelEx
=head2 XGBoosterDumpModelWithFeatures
=head2 XGBoosterDumpModelExWithFeatures
=head2 XGBoosterSetAttr
=head2 XGBoosterGetAttr
=head2 XGBoosterGetAttrNames
=head1 AUTHOR
Pablo Rodríguez González <pablo.rodriguez.gonzalez@gmail.com>
=head1 COPYRIGHT AND LICENSE
This software is Copyright (c) 2017 by Pablo Rodríguez González.
This is free software, licensed under:
The Apache License, Version 2.0, January 2004
=cut