NAME
XS::Parse::Keyword - XS functions to assist in parsing keyword syntax
DESCRIPTION
This module provides some XS functions to assist in writing syntax
modules that provide new perl-visible syntax, primarily for authors of
keyword plugins using the PL_keyword_plugin hook mechanism. It is
unlikely to be of much use to anyone else; and highly unlikely to be
any use when writing perl code using these. Unless you are writing a
keyword plugin using XS, this module is not for you.
This module is also currently experimental, and the design is still
evolving and subject to change. Later versions may break ABI
compatibility, requiring changes or at least a rebuild of any module
that depends on it.
XS FUNCTIONS
boot_xs_parse_keyword
void boot_xs_parse_keyword(double ver);
Call this function from your BOOT section in order to initialise the
module and parsing hooks.
ver should either be 0 or a decimal number for the module version
requirement; e.g.
boot_xs_parse_keyword(0.14);
register_xs_parse_keyword
void register_xs_parse_keyword(const char *keyword,
const struct XSParseKeywordHooks *hooks, void *hookdata);
This function installs a set of parsing hooks to be associated with the
given keyword. Such a keyword will then be handled automatically by a
keyword parser installed by XS::Parse::Keyword itself.
PARSE HOOKS
The XSParseKeywordHooks structure provides the following hook stages,
which are invoked in the given order.
flags
The following flags are defined:
XPK_FLAG_EXPR
The parse or build function is expected to return
KEYWORD_PLUGIN_EXPR.
XPK_FLAG_STMT
The parse or build function is expected to return
KEYWORD_PLUGIN_STMT.
These two flags are largely for the benefit of giving static
information at registration time to assist static parsing or other
related tasks to know what kind of grammatical element this keyword
will produce.
XPK_FLAG_AUTOSEMI
The syntax forms a complete statement, which should be followed by a
statement separator semicolon (;). This semicolon is optional at the
end of a block.
The semicolon, if present, will be consumed automatically.
The permit Stage
const char *permit_hintkey;
bool (*permit) (pTHX_ void *hookdata);
Called by the installed keyword parser hook which is used to handle
keywords registered by "register_xs_parse_keyword".
As a shortcut for the common case, the permit_hintkey may point to a
string to look up from the hints hash. If the given key name is not
found in the hints hash then the keyword is not permitted. If the key
is present then the permit function is invoked as normal.
If not rejected by a hint key that was not found in the hints hash, the
function part of the stage is called next and should inspect whether
the keyword is permitted at this time perhaps by inspecting other
lexical clues, and return true only if the keyword is permitted.
Both the string and the function are optional. Either or both may be
present. If neither is present then the keyword is always permitted -
which is likely not what you wanted to do.
The check Stage
void (*check)(pTHX_ void *hookdata);
Invoked once the keyword has been permitted. If present, this hook
function can check the surrounding lexical context, state, or other
information and throw an exception if it is unhappy that the keyword
should apply in this position.
The parse Stage
This stage is invoked once the keyword has been checked, and actually
parses the incoming text into an optree. It is implemented by calling
the first of the following function pointers which is not NULL. The
invoked function may optionally build an optree to represent the parsed
syntax, and place it into the variable addressed by out. If it does
not, then a simple OP_NULL will be constructed in its place.
lex_read_space() is called both before and after this stage is invoked,
so in many simple cases the hook function itself does not need to
bother with it.
int (*parse)(pTHX_ OP **out, void *hookdata);
If present, this should consume text from the parser buffer by invoking
lex_* or parse_* functions and eventually return a KEYWORD_PLUGIN_*
result value.
This is the most generic and powerful of the options, but requires the
most amount of implementation work.
int (*build)(pTHX_ OP **out, XSParseKeywordPiece *args[], size_t nargs, void *hookdata);
If parse is not present, this is called instead after parsing a
sequence of arguments, of types given by the pieces field; which should
be a zero- terminated array of piece types.
This alternative is somewhat less generic and powerful than providing
parse yourself, but involves much less parsing work and is shorter and
easier to implement.
int (*build1)(pTHX_ OP **out, XSParseKeywordPiece *arg0, void *hookdata);
If neither parse nor build are present, this is called as a simpler
variant of build when only a single argument is required. It takes its
type from the piece1 field instead.
PIECES AND PIECE TYPES
When using the build or build1 alternatives for the parse phase, the
actual syntax is parsed automatically by this module, according to the
specification given by the pieces or piece1 field. The result of that
parsing step is placed into the args or arg0 parameter to the invoked
function, using a struct type consisting of the following fields:
typedef struct
union {
OP *op;
CV *cv;
SV *sv;
int i;
struct {
SV *name;
SV *value;
} attr;
PADOFFSET padix;
struct XSParseInfixInfo *infix;
};
int line;
} XSParseKeywordPiece;
Which field of the anonymous union is set depends on the type of the
piece. The line field contains the line number of the source file where
parsing of that piece began.
Some piece types are "atomic", whose definition is self-contained.
Others are structural, defined in terms of inner pieces. Together these
form an entire tree-shaped definition of the syntax that the keyword
expects to find.
Atomic types generally provide exactly one argument into the list of
args (with the exception of literal matches, which do not provide
anything). Structural types may provide an initial argument themselves,
followed by a list of the values of each sub-piece they contained
inside them. Thus, while the data structure defining the syntax shape
is a tree, the argument values it parses into is passed as a flat array
to the build function.
Some structural types need to be able to determine whether or not
syntax relating some optional part of them is present in the incoming
source text. In this case, the pieces relating to those optional parts
must support "probing". This ability is also noted below.
The type of each piece should be one of the following macro values.
XPK_BLOCK
atomic, can probe, emits op.
XPK_BLOCK
A brace-delimited block of code is expected, passed as an optree in the
op field. This will be parsed as a block within the current function
scope.
This can be probed by checking for the presence of an open-brace ({)
character.
Be careful defining grammars with this because an open-brace is also a
valid character to start a term expression, for example. Given a choice
between XPK_BLOCK and XPK_TERMEXPR, either of them could try to consume
such code as
{ 123, 456 }
XPK_BLOCK_VOIDCTX, XPK_BLOCK_SCALARCTX, XPK_BLOCK_LISTCTX
Variants of XPK_BLOCK which wrap a void, scalar or list-context scope
around the block.
XPK_PREFIXED_BLOCK
structural, emits op.
XPK_PREFIXED_BLOCK(pieces ...)
Some pieces are expected, followed by a brace-delimited block of code,
which is passed as an optree in the op field. The prefix pieces are
parsed first, and their results are passed before the block itself.
The entire sequence, including the prefix items, is contained within a
pair of block_start() / block_end() calls. This permits the prefix
pieces to introduce new items into the lexical scope of the block - for
example by the use of XPK_LEXVAR_MY.
A call to intro_my() is automatically made at the end of the prefix
pieces, before the block itself is parsed, ensuring any new lexical
variables are now visible.
In addition, the following extra piece types are recognised here:
XPK_SETUP
void setup(pTHX_ void *hookdata);
XPK_SETUP(&setup)
atomic, emits nothing.
This piece type runs a function given by pointer. Typically this
function may be used to introduce new lexical state into the parser,
or in some other way have some side-effect on the parsing context of
the block to be parsed.
XPK_PREFIXED_BLOCK_ENTERLEAVE
A variant of XPK_PREFIXED_BLOCK which additionally wraps the entire
parsing operation, including the block_start(), block_end() and any
calls to XPK_SETUP functions, within a ENTER/LEAVE pair.
This should not make a difference to the standard parser pieces
provided here, but may be useful behaviour for the code in the setup
function, especially if it wishes to modify parser state and use the
savestack to ensure it is restored again when parsing has finished.
XPK_ANONSUB
atomic, emits op.
A brace-delimited block of code is expected, and assembled into the
body of a new anonymous subroutine. This will be passed as a protosub
CV in the cv field.
XPK_ARITHEXPR
atomic, emits op.
XPK_ARITHEXPR
An arithmetic expression is expected, parsed using parse_arithexpr(),
and passed as an optree in the op field.
XPK_ARITHEXPR_VOIDCTX, XPK_ARITHEXPR_SCALARCTX
Variants of XPK_ARITHEXPR which puts the expression in void or scalar
context.
XPK_TERMEXPR
atomic, emits op.
XPK_TERMEXPR
A term expression is expected, parsed using parse_termexpr(), and
passed as an optree in the op field.
XPK_TERMEXPR_VOIDCTX, XPK_TERMEXPR_SCALARCTX
Variants of XPK_TERMEXPR which puts the expression in void or scalar
context.
XPK_LISTEXPR
atomic, emits op.
XPK_LISTEXPR
A list expression is expected, parsed using parse_listexpr(), and
passed as an optree in the op field.
XPK_LISTEXPR_LISTCTX
Variant of XPK_LISTEXPR which puts the expression in list context.
XPK_IDENT, XPK_IDENT_OPT
atomic, can probe, emits sv.
A bareword identifier name is expected, and passed as an SV containing
a PV in the sv field. An identifier is not permitted to contain a
double colon (::).
The _OPT-suffixed version is optional; if no identifier is found then
sv is set to NULL.
XPK_PACKAGENAME, XPK_PACKAGENAME_OPT
atomic, can probe, emits sv.
A bareword package name is expected, and passed as an SV containing a
PV in the sv field. A package name is similar to an identifier, except
it permits double colons in the middle.
The _OPT-suffixed version is optional; if no package name is found then
sv is set to NULL.
XPK_LEXVARNAME
atomic, emits sv.
XPK_LEXVARNAME(kind)
A lexical variable name is expected, and passed as an SV containing a
PV in the sv field. The kind argument specifies what kinds of variable
are permitted, and should be a bitmask of one or more bits from
XPK_LEXVAR_SCALAR, XPK_LEXVAR_ARRAY and XPK_LEXVAR_HASH. A convenient
shortcut XPK_LEXVAR_ANY permits all three.
XPK_ATTRIBUTES
atomic, emits i followed by more args.
A list of :-prefixed attributes is expected, in the same format as sub
or variable attributes. An optional leading : indicates the presence of
attributes, then one or more of them are parsed. Attributes may be
optionally separated by additional :s, but this is not required.
Each attribute is expected to be an identifier name, followed by an
optional value wrapped in parentheses. Whitespace is NOT permitted
between the name and value, as per standard Perl parsing rules.
:attrname
:attrname(value)
The i field indicates how many attributes were found. That number of
additional arguments are then passed, each containing two SVs in the
attr.name and attr.value fields. This number may be zero.
It is not an error for there to be no attributes present, or for the
optional colon to be missing. In this case i will be set to zero.
XPK_VSTRING, XPK_VSTRING_OPT
atomic, can probe, emits sv.
A version string is expected, of the form v1.234 including the leading
v character. It is passed as a version SV object in the sv field.
The _OPT-suffixed version is optional; if no version string is found
then sv is set to NULL.
XPK_LEXVAR_MY
atomic, emits padix.
XPK_LEXVAR_MY(kind)
A lexical variable name is expected, added to the current pad as if
specified in a my expression, and passed as the pad index in the padix
field.
The kind argument specifies what kinds of variable are permitted, as
per XPK_LEXVARNAME.
XPK_COMMA, XPK_COLON, XPK_EQUALS
atomic, can probe, emits nothing.
A literal character (,, : or =) is expected. No argument value is
passed.
XPK_AUTOSEMI
atomic, emits nothing.
A literal semicolon (;) as a statement terminator is optionally
expected. If the next token is a closing brace to indicate the end of a
block, then a semicolon is not required. If anything else is
encountered an error will be raised.
This piece type is the same as specifying the XPK_FLAG_AUTOSEMI. It is
useful to put at the end of a sequence that forms part of a choice of
syntax, where some forms indicate a statement ending in a semicolon,
whereas others may end in a full block that does not need one.
XPK_INFIX_*
atomic, can probe, emits infix.
An infix operator as recognised by XS::Parse::Infix. The returned
pointer points to a structure allocated by XS::Parse::Infix describing
the operator.
Various versions of the macro are provided, each using a different
selection filter to choose certain available infix operators:
XPK_INFIX_RELATION # any relational operator
XPK_INFIX_EQUALITY # an equality operator like `==` or `eq`
XPK_INFIX_MATCH_NOSMART # any sort of "match"-like operator, except smartmatch
XPK_INFIX_MATCH_SMART # XPK_INFIX_MATCH_NOSMART plus smartmatch
XPK_LITERAL
atomic, can probe, emits nothing.
XPK_LITERAL("literal")
A literal string match is expected. No argument value is passed.
This form should generally be avoided if at all possible, because it is
very easy to abuse to make syntaxes which confuse humans and code tools
alike. Generally it is best reserved just for the first component of a
XPK_OPTIONAL or XPK_REPEATED sequence, to provide a "secondary keyword"
that such a repeated item can look out for.
XPK_KEYWORD
atomic, can probe, emits nothing.
XPK_KEYWORD("keyword")
A literal string match is expected. No argument value is passed.
This is similar to XPK_LITERAL except that it additionally checks that
the following character is not an identifier character. This ensures
that the expected keyword-like behaviour is preserved. For example,
given the input "keyword", the piece XPK_LITERAL("key") would match it,
whereas XPK_KEYWORD("key") would not because of the subsequent "w"
character.
XPK_SEQUENCE
structural, might support probe, emits nothing.
XPK_SEQUENCE(pieces ...)
A structural type which contains a number of pieces. This is normally
equivalent to simply placing the pieces in sequence inside their own
container, but it is useful inside XPK_CHOICE or XPK_TAGGEDCHOICE.
An XPK_SEQUENCE supports probe if its first contained piece does; i.e.
is transparent to probing.
XPK_OPTIONAL
structural, emits i.
XPK_OPTIONAL(pieces ...)
A structural type which may expects to find its contained pieces, or is
happy not to. This will pass an argument whose i field contains either
1 or 0, depending whether the contents were found. The first piece type
within must support probe.
XPK_REPEATED
structural, emits i.
XPK_REPEATED(pieces ...)
A structural type which expects to find zero or more repeats of its
contained pieces. This will pass an argument whose i field contains the
count of the number of repeats it found. The first piece type within
must support probe.
XPK_CHOICE
structural, can probe, emits i.
XPK_CHOICE(options ...)
A structural type which expects to find one of a number of alternative
options. An ordered list of types is provided, all of which must
support probe. This will pass an argument whose i field gives the index
of the first choice that was accepted. The first option takes the value
0.
As each of the options is interpreted as an alternative, not a
sequence, you should use XPK_SEQUENCE if a sequence of multiple items
should be considered as a single alternative.
It is not an error if no choice matches. At that point, the i field
will be set to -1.
If you require a failure message in this case, set the final choice to
be of type XPK_FAILURE. This will cause an error message to be printed
instead.
XPK_FAILURE("message string")
XPK_TAGGEDCHOICE
structural, can probe, emits i.
XPK_TAGGEDCHOICE(choice, tag, ...)
A structural type similar to XPK_CHOICE, except that each choice type
is followed by an element of type XPK_TAG which gives an integer. It is
that integer value, rather than the positional index of the choice
within the list, which is passed in the i field.
XPK_TAG(value)
As each of the options is interpreted as an alternative, not a
sequence, you should use XPK_SEQUENCE if a sequence of multiple items
should be considered as a single alternative.
XPK_COMMALIST
structural, might support probe, emits i.
XPK_COMMALIST(pieces ...)
A structural type which expects to find one or more repeats of its
contained pieces, separated by literal comma (,) characters. This is
somewhat similar to XPK_REPEATED, except that it needs at least one
copy, needs commas between its items, but does not require that the
first contained piece support probe (the comma itself is sufficient to
indicate a repeat).
An XPK_COMMALIST supports probe if its first contained piece does; i.e.
is transparent to probing.
XPK_PARENSCOPE
structural, can probe, emits nothing.
XPK_PARENSCOPE(pieces ...)
A structural type which expects to find a sequence of pieces, all
contained in parentheses as ( ... ). This will pass no extra arguments.
XPK_ARGSCOPE
structural, emits nothing.
XPK_ARGSCOPE(pieces ...)
A structural type similar to XPK_PARENSCOPE, except that the
parentheses themselves are optional; much like Perl's parsing of calls
to known functions.
If parentheses are encountered in the input, they will be consumed by
this piece and it will behave identically to XPK_PARENSCOPE. If there
is no open parenthesis, this piece will behave like XPK_SEQUENCE and
consume all the pieces inside it, without expecting a closing
parenthesis.
XPK_BRACKETSCOPE
structural, can probe, emits nothing.
XPK_BRACKETSCOPE(pieces ...)
A structural type which expects to find a sequence of pieces, all
contained in square brackets as [ ... ]. This will pass no extra
arguments.
XPK_BRACESCOPE
structural, can probe, emits nothing.
XPK_BRACESCOPE(pieces ...)
A structural type which expects to find a sequence of pieces, all
contained in braces as { ... }. This will pass no extra arguments.
Note that this is not necessary to use with XPK_BLOCK or XPK_ANONSUB;
those will already consume a set of braces. This is intended for
special constrained syntax that should not just accept an arbitrary
block.
XPK_CHEVRONSCOPE
structural, can probe, emits nothing.
XPK_CHEVRONSCOPE(pieces ...)
A structural type which expects to find a sequence of pieces, all
contained in angle brackets as < ... >. This will pass no extra
arguments.
Remember that expressions like a > b are valid term expressions, so the
contents of this scope shouldn't allow arbitrary expressions or the
closing bracket will be ambiguous.
XPK_PARENSCOPE_OPT, XPK_BRACKETSCOPE_OPT, XPK_BRACESCOPE_OPT,
XPK_CHEVRONSCOPE_OPT
structural, can probe, emits i.
XPK_PARENSCOPE_OPT(pieces ...)
XPK_BRACKETSCOPE_OPT(pieces ...)
XPK_BRACESCOPE_OPT(pieces ...)
XPK_CHEVERONSCOPE_OPT(pieces ...)
Each of the four XPK_...SCOPE macros above has an optional variant,
whose name is suffixed by _OPT. These pass an argument whose i field is
either true or false, indicating whether the scope was found, followed
by the values from the scope itself.
This is a convenient shortcut to nesting the scope within a
XPK_OPTIONAL macro.
AUTHOR
Paul Evans <leonerd@leonerd.org.uk>