The Perl Toolchain Summit 2025 Needs You: You can help 🙏 Learn more

# -*- mode: perl; -*-
use strict;
use Test::More tests => 66;
my @k = (16, 32, 64, 128);
for my $k (@k) {
# Parameters specific to this format:
my $b = 2;
my $p = $k == 16 ? 11
: $k == 32 ? 24
: $k == 64 ? 53
: $k - sprintf("%.0f", 4 * log($k)/log(2)) + 13;
$b = Math::BigRat -> new($b);
$k = Math::BigRat -> new($k);
$p = Math::BigRat -> new($p);
my $w = $k - $p;
my $emax = 2 ** ($w - 1) - 1;
my $emin = 1 - $emax;
my $format = 'binary' . $k;
note("\nComputing test data for k = $k ...\n\n");
my $binv = Math::BigRat -> new("0.5");
my $data =
[
{
dsc => "smallest positive subnormal number",
bin => "0"
. ("0" x $w)
. ("0" x ($p - 2)) . "1",
asc => "$b ** ($emin) * $b ** (" . (1 - $p) . ") "
. "= $b ** (" . ($emin + 1 - $p) . ")",
obj => $binv ** ($p - 1 - $emin),
},
{
dsc => "largest subnormal number",
bin => "0"
. ("0" x $w)
. ("1" x ($p - 1)),
asc => "$b ** ($emin) * (1 - $b ** (" . (1 - $p) . "))",
obj => $binv ** (-$emin) * (1 - $binv ** ($p - 1)),
},
{
dsc => "smallest positive normal number",
bin => "0"
. ("0" x ($w - 1)) . "1"
. ("0" x ($p - 1)),
asc => "$b ** ($emin)",
obj => $binv ** (-$emin),
},
{
dsc => "largest normal number",
bin => "0"
. ("1" x ($w - 1)) . "0"
. "1" x ($p - 1),
asc => "$b ** $emax * ($b - $b ** (" . (1 - $p) . "))",
obj => $b ** $emax * ($b - $binv ** ($p - 1)),
},
{
dsc => "largest number less than one",
bin => "0"
. "0" . ("1" x ($w - 2)) . "0"
. "1" x ($p - 1),
asc => "1 - $b ** (-$p)",
obj => 1 - $binv ** $p,
},
{
dsc => "smallest number larger than one",
bin => "0"
. "0" . ("1" x ($w - 1))
. ("0" x ($p - 2)) . "1",
asc => "1 + $b ** (" . (1 - $p) . ")",
obj => 1 + $binv ** ($p - 1),
},
{
dsc => "second smallest number larger than one",
bin => "0"
. "0" . ("1" x ($w - 1))
. ("0" x ($p - 3)) . "10",
asc => "1 + $b ** (" . (2 - $p) . ")",
obj => 1 + $binv ** ($p - 2),
},
{
dsc => "one",
bin => "0"
. "0" . ("1" x ($w - 1))
. "0" x ($p - 1),
asc => "1",
obj => Math::BigRat -> new("1"),
},
{
dsc => "minus one",
bin => "1"
. "0" . ("1" x ($w - 1))
. "0" x ($p - 1),
asc => "-1",
obj => Math::BigRat -> new("-1"),
},
{
dsc => "two",
bin => "0"
. "1" . ("0" x ($w - 1))
. ("0" x ($p - 1)),
asc => "2",
obj => Math::BigRat -> new("2"),
},
{
dsc => "minus two",
bin => "1"
. "1" . ("0" x ($w - 1))
. ("0" x ($p - 1)),
asc => "-2",
obj => Math::BigRat -> new("-2"),
},
{
dsc => "positive zero",
bin => "0"
. ("0" x $w)
. ("0" x ($p - 1)),
asc => "+0",
obj => Math::BigRat -> new("0"),
},
{
dsc => "positive infinity",
bin => "0"
. ("1" x $w)
. ("0" x ($p - 1)),
asc => "+inf",
obj => Math::BigRat -> new("inf"),
},
{
dsc => "negative infinity",
bin => "1"
. ("1" x $w)
. ("0" x ($p - 1)),
asc => "-inf",
obj => Math::BigRat -> new("-inf"),
},
{
dsc => "NaN (encoding used by Perl on Cygwin)",
bin => "1"
. ("1" x $w)
. ("1" . ("0" x ($p - 2))),
asc => "NaN",
obj => Math::BigRat -> new("NaN"),
},
];
for my $entry (@$data) {
my $bin = $entry -> {bin};
my $bytes = pack "B*", $bin;
my $hex = unpack "H*", $bytes;
note("\n", $entry -> {dsc}, " (k = $k): ", $entry -> {asc}, "\n\n");
my $x = $entry -> {obj};
my $test = qq|Math::BigRat -> new("$x) -> to_ieee754("$format")|;
my $got_bytes = $x -> to_ieee754($format);
my $got_hex = unpack "H*", $got_bytes;
$got_hex =~ s/(..)/\\x$1/g;
my $expected_hex = $hex;
$expected_hex =~ s/(..)/\\x$1/g;
is($got_hex, $expected_hex);
}
}
# These tests verify fixing CPAN RT #139960.
# binary16
{
# largest subnormal number
my $lo = Math::BigRat -> from_ieee754("03ff", "binary16");
# smallest normal number
my $hi = Math::BigRat -> from_ieee754("0400", "binary16");
# compute an average weighted towards the larger of the two
my $x = 0.25 * $lo + 0.75 * $hi;
my $got = unpack "H*", $x -> to_ieee754("binary16");
is($got, "0400",
"6.102025508880615234375e-5 -> 0x0400");
}
{
# largest number smaller than one
my $lo = Math::BigRat -> from_ieee754("3bff", "binary16");
# one
my $hi = Math::BigRat -> from_ieee754("3c00", "binary16");
# compute an average weighted towards the larger of the two
my $x = 0.25 * $lo + 0.75 * $hi;
my $got = unpack "H*", $x -> to_ieee754("binary16");
is($got, "3c00", "9.998779296875e-1 -> 0x3c00");
}
# binary32
{
# largest subnormal number
my $lo = Math::BigRat -> from_ieee754("007fffff", "binary32");
# smallest normal number
my $hi = Math::BigRat -> from_ieee754("00800000", "binary32");
# compute an average weighted towards the larger of the two
my $x = 0.25 * $lo + 0.75 * $hi;
my $got = unpack "H*", $x -> to_ieee754("binary32");
is($got, "00800000",
"1.1754943157898258998483097641290060955707622747...e-38 -> 0x00800000");
}
{
# largest number smaller than one
my $lo = Math::BigRat -> from_ieee754("3f7fffff", "binary32");
# one
my $hi = Math::BigRat -> from_ieee754("3f800000", "binary32");
# compute an average weighted towards the larger of the two
my $x = 0.25 * $lo + 0.75 * $hi;
my $got = unpack "H*", $x -> to_ieee754("binary32");
is($got, "3f800000",
"9.9999998509883880615234375e-1 -> 0x3f800000");
}
# binary64
{
# largest subnormal number
my $lo = Math::BigRat -> from_ieee754("000fffffffffffff", "binary64");
# smallest normal number
my $hi = Math::BigRat -> from_ieee754("0010000000000000", "binary64");
# compute an average weighted towards the larger of the two
my $x = 0.25 * $lo + 0.75 * $hi;
my $got = unpack "H*", $x -> to_ieee754("binary64");
is($got, "0010000000000000",
"2.2250738585072012595738212570207680200...e-308 -> 0x0010000000000000");
}
{
# largest number smaller than one
my $lo = Math::BigRat -> from_ieee754("3fefffffffffffff", "binary64");
# one
my $hi = Math::BigRat -> from_ieee754("3ff0000000000000", "binary64");
# compute an average weighted towards the larger of the two
my $x = 0.25 * $lo + 0.75 * $hi;
my $got = unpack "H*", $x -> to_ieee754("binary64");
is($got, "3ff0000000000000",
"9.999999999999999722444243843710864894092...e-1 -> 0x3ff0000000000000");
}