/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the SQLite parser
** when syntax rules are reduced. The routines in this file handle the
** following kinds of SQL syntax:
**
** CREATE TABLE
** DROP TABLE
** CREATE INDEX
** DROP INDEX
** creating ID lists
** BEGIN TRANSACTION
** COMMIT
** ROLLBACK
** PRAGMA
**
** $Id: build.c,v 1.1.1.1 2004/08/08 15:03:57 matt Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
/*
** This routine is called when a new SQL statement is beginning to
** be parsed. Check to see if the schema for the database needs
** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
** If it does, then read it.
*/
void sqliteBeginParse(Parse *pParse, int explainFlag){
sqlite *db = pParse->db;
int i;
pParse->explain = explainFlag;
if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
int rc = sqliteInit(db, &pParse->zErrMsg);
if( rc!=SQLITE_OK ){
pParse->rc = rc;
pParse->nErr++;
}
}
for(i=0; i<db->nDb; i++){
DbClearProperty(db, i, DB_Locked);
if( !db->aDb[i].inTrans ){
DbClearProperty(db, i, DB_Cookie);
}
}
pParse->nVar = 0;
}
/*
** This routine is called after a single SQL statement has been
** parsed and we want to execute the VDBE code to implement
** that statement. Prior action routines should have already
** constructed VDBE code to do the work of the SQL statement.
** This routine just has to execute the VDBE code.
**
** Note that if an error occurred, it might be the case that
** no VDBE code was generated.
*/
void sqliteExec(Parse *pParse){
sqlite *db = pParse->db;
Vdbe *v = pParse->pVdbe;
if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
sqliteVdbeAddOp(v, OP_Halt, 0, 0);
}
if( sqlite_malloc_failed ) return;
if( v && pParse->nErr==0 ){
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
sqliteVdbeTrace(v, trace);
sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
pParse->colNamesSet = 0;
}else if( pParse->rc==SQLITE_OK ){
pParse->rc = SQLITE_ERROR;
}
pParse->nTab = 0;
pParse->nMem = 0;
pParse->nSet = 0;
pParse->nAgg = 0;
pParse->nVar = 0;
}
/*
** Locate the in-memory structure that describes
** a particular database table given the name
** of that table and (optionally) the name of the database
** containing the table. Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the
** table and the first matching table is returned. (No checking
** for duplicate table names is done.) The search order is
** TEMP first, then MAIN, then any auxiliary databases added
** using the ATTACH command.
**
** See also sqliteLocateTable().
*/
Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
Table *p = 0;
int i;
for(i=0; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
if( p ) break;
}
return p;
}
/*
** Locate the in-memory structure that describes
** a particular database table given the name
** of that table and (optionally) the name of the database
** containing the table. Return NULL if not found.
** Also leave an error message in pParse->zErrMsg.
**
** The difference between this routine and sqliteFindTable()
** is that this routine leaves an error message in pParse->zErrMsg
** where sqliteFindTable() does not.
*/
Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
Table *p;
p = sqliteFindTable(pParse->db, zName, zDbase);
if( p==0 ){
if( zDbase ){
sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
}else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
zName, zDbase);
}else{
sqliteErrorMsg(pParse, "no such table: %s", zName);
}
}
return p;
}
/*
** Locate the in-memory structure that describes
** a particular index given the name of that index
** and the name of the database that contains the index.
** Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the
** table and the first matching index is returned. (No checking
** for duplicate index names is done.) The search order is
** TEMP first, then MAIN, then any auxiliary databases added
** using the ATTACH command.
*/
Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
Index *p = 0;
int i;
for(i=0; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
if( p ) break;
}
return p;
}
/*
** Remove the given index from the index hash table, and free
** its memory structures.
**
** The index is removed from the database hash tables but
** it is not unlinked from the Table that it indexes.
** Unlinking from the Table must be done by the calling function.
*/
static void sqliteDeleteIndex(sqlite *db, Index *p){
Index *pOld;
assert( db!=0 && p->zName!=0 );
pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
strlen(p->zName)+1, 0);
if( pOld!=0 && pOld!=p ){
sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
strlen(pOld->zName)+1, pOld);
}
sqliteFree(p);
}
/*
** Unlink the given index from its table, then remove
** the index from the index hash table and free its memory
** structures.
*/
void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
if( pIndex->pTable->pIndex==pIndex ){
pIndex->pTable->pIndex = pIndex->pNext;
}else{
Index *p;
for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
if( p && p->pNext==pIndex ){
p->pNext = pIndex->pNext;
}
}
sqliteDeleteIndex(db, pIndex);
}
/*
** Erase all schema information from the in-memory hash tables of
** database connection. This routine is called to reclaim memory
** before the connection closes. It is also called during a rollback
** if there were schema changes during the transaction.
**
** If iDb<=0 then reset the internal schema tables for all database
** files. If iDb>=2 then reset the internal schema for only the
** single file indicated.
*/
void sqliteResetInternalSchema(sqlite *db, int iDb){
HashElem *pElem;
Hash temp1;
Hash temp2;
int i, j;
assert( iDb>=0 && iDb<db->nDb );
db->flags &= ~SQLITE_Initialized;
for(i=iDb; i<db->nDb; i++){
Db *pDb = &db->aDb[i];
temp1 = pDb->tblHash;
temp2 = pDb->trigHash;
sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
sqliteHashClear(&pDb->aFKey);
sqliteHashClear(&pDb->idxHash);
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
Trigger *pTrigger = sqliteHashData(pElem);
sqliteDeleteTrigger(pTrigger);
}
sqliteHashClear(&temp2);
sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
Table *pTab = sqliteHashData(pElem);
sqliteDeleteTable(db, pTab);
}
sqliteHashClear(&temp1);
DbClearProperty(db, i, DB_SchemaLoaded);
if( iDb>0 ) return;
}
assert( iDb==0 );
db->flags &= ~SQLITE_InternChanges;
/* If one or more of the auxiliary database files has been closed,
** then remove then from the auxiliary database list. We take the
** opportunity to do this here since we have just deleted all of the
** schema hash tables and therefore do not have to make any changes
** to any of those tables.
*/
for(i=0; i<db->nDb; i++){
struct Db *pDb = &db->aDb[i];
if( pDb->pBt==0 ){
if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
pDb->pAux = 0;
}
}
for(i=j=2; i<db->nDb; i++){
struct Db *pDb = &db->aDb[i];
if( pDb->pBt==0 ){
sqliteFree(pDb->zName);
pDb->zName = 0;
continue;
}
if( j<i ){
db->aDb[j] = db->aDb[i];
}
j++;
}
memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
db->nDb = j;
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
sqliteFree(db->aDb);
db->aDb = db->aDbStatic;
}
}
/*
** This routine is called whenever a rollback occurs. If there were
** schema changes during the transaction, then we have to reset the
** internal hash tables and reload them from disk.
*/
void sqliteRollbackInternalChanges(sqlite *db){
if( db->flags & SQLITE_InternChanges ){
sqliteResetInternalSchema(db, 0);
}
}
/*
** This routine is called when a commit occurs.
*/
void sqliteCommitInternalChanges(sqlite *db){
db->aDb[0].schema_cookie = db->next_cookie;
db->flags &= ~SQLITE_InternChanges;
}
/*
** Remove the memory data structures associated with the given
** Table. No changes are made to disk by this routine.
**
** This routine just deletes the data structure. It does not unlink
** the table data structure from the hash table. Nor does it remove
** foreign keys from the sqlite.aFKey hash table. But it does destroy
** memory structures of the indices and foreign keys associated with
** the table.
**
** Indices associated with the table are unlinked from the "db"
** data structure if db!=NULL. If db==NULL, indices attached to
** the table are deleted, but it is assumed they have already been
** unlinked.
*/
void sqliteDeleteTable(sqlite *db, Table *pTable){
int i;
Index *pIndex, *pNext;
FKey *pFKey, *pNextFKey;
if( pTable==0 ) return;
/* Delete all indices associated with this table
*/
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
pNext = pIndex->pNext;
assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
sqliteDeleteIndex(db, pIndex);
}
/* Delete all foreign keys associated with this table. The keys
** should have already been unlinked from the db->aFKey hash table
*/
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
pNextFKey = pFKey->pNextFrom;
assert( pTable->iDb<db->nDb );
assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
sqliteFree(pFKey);
}
/* Delete the Table structure itself.
*/
for(i=0; i<pTable->nCol; i++){
sqliteFree(pTable->aCol[i].zName);
sqliteFree(pTable->aCol[i].zDflt);
sqliteFree(pTable->aCol[i].zType);
}
sqliteFree(pTable->zName);
sqliteFree(pTable->aCol);
sqliteSelectDelete(pTable->pSelect);
sqliteFree(pTable);
}
/*
** Unlink the given table from the hash tables and the delete the
** table structure with all its indices and foreign keys.
*/
static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
Table *pOld;
FKey *pF1, *pF2;
int i = p->iDb;
assert( db!=0 );
pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
assert( pOld==0 || pOld==p );
for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
int nTo = strlen(pF1->zTo) + 1;
pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
if( pF2==pF1 ){
sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
}else{
while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
if( pF2 ){
pF2->pNextTo = pF1->pNextTo;
}
}
}
sqliteDeleteTable(db, p);
}
/*
** Construct the name of a user table or index from a token.
**
** Space to hold the name is obtained from sqliteMalloc() and must
** be freed by the calling function.
*/
char *sqliteTableNameFromToken(Token *pName){
char *zName = sqliteStrNDup(pName->z, pName->n);
sqliteDequote(zName);
return zName;
}
/*
** Generate code to open the appropriate master table. The table
** opened will be SQLITE_MASTER for persistent tables and
** SQLITE_TEMP_MASTER for temporary tables. The table is opened
** on cursor 0.
*/
void sqliteOpenMasterTable(Vdbe *v, int isTemp){
sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
}
/*
** Begin constructing a new table representation in memory. This is
** the first of several action routines that get called in response
** to a CREATE TABLE statement. In particular, this routine is called
** after seeing tokens "CREATE" and "TABLE" and the table name. The
** pStart token is the CREATE and pName is the table name. The isTemp
** flag is true if the table should be stored in the auxiliary database
** file instead of in the main database file. This is normally the case
** when the "TEMP" or "TEMPORARY" keyword occurs in between
** CREATE and TABLE.
**
** The new table record is initialized and put in pParse->pNewTable.
** As more of the CREATE TABLE statement is parsed, additional action
** routines will be called to add more information to this record.
** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
** is called to complete the construction of the new table record.
*/
void sqliteStartTable(
Parse *pParse, /* Parser context */
Token *pStart, /* The "CREATE" token */
Token *pName, /* Name of table or view to create */
int isTemp, /* True if this is a TEMP table */
int isView /* True if this is a VIEW */
){
Table *pTable;
Index *pIdx;
char *zName;
sqlite *db = pParse->db;
Vdbe *v;
int iDb;
pParse->sFirstToken = *pStart;
zName = sqliteTableNameFromToken(pName);
if( zName==0 ) return;
if( db->init.iDb==1 ) isTemp = 1;
#ifndef SQLITE_OMIT_AUTHORIZATION
assert( (isTemp & 1)==isTemp );
{
int code;
char *zDb = isTemp ? "temp" : "main";
if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
sqliteFree(zName);
return;
}
if( isView ){
if( isTemp ){
code = SQLITE_CREATE_TEMP_VIEW;
}else{
code = SQLITE_CREATE_VIEW;
}
}else{
if( isTemp ){
code = SQLITE_CREATE_TEMP_TABLE;
}else{
code = SQLITE_CREATE_TABLE;
}
}
if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
sqliteFree(zName);
return;
}
}
#endif
/* Before trying to create a temporary table, make sure the Btree for
** holding temporary tables is open.
*/
if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
if( rc!=SQLITE_OK ){
sqliteErrorMsg(pParse, "unable to open a temporary database "
"file for storing temporary tables");
pParse->nErr++;
return;
}
if( db->flags & SQLITE_InTrans ){
rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
if( rc!=SQLITE_OK ){
sqliteErrorMsg(pParse, "unable to get a write lock on "
"the temporary database file");
return;
}
}
}
/* Make sure the new table name does not collide with an existing
** index or table name. Issue an error message if it does.
**
** If we are re-reading the sqlite_master table because of a schema
** change and a new permanent table is found whose name collides with
** an existing temporary table, that is not an error.
*/
pTable = sqliteFindTable(db, zName, 0);
iDb = isTemp ? 1 : db->init.iDb;
if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
sqliteErrorMsg(pParse, "table %T already exists", pName);
sqliteFree(zName);
return;
}
if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
(pIdx->iDb==0 || !db->init.busy) ){
sqliteErrorMsg(pParse, "there is already an index named %s", zName);
sqliteFree(zName);
return;
}
pTable = sqliteMalloc( sizeof(Table) );
if( pTable==0 ){
sqliteFree(zName);
return;
}
pTable->zName = zName;
pTable->nCol = 0;
pTable->aCol = 0;
pTable->iPKey = -1;
pTable->pIndex = 0;
pTable->iDb = iDb;
if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
pParse->pNewTable = pTable;
/* Begin generating the code that will insert the table record into
** the SQLITE_MASTER table. Note in particular that we must go ahead
** and allocate the record number for the table entry now. Before any
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
** indices to be created and the table record must come before the
** indices. Hence, the record number for the table must be allocated
** now.
*/
if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
sqliteBeginWriteOperation(pParse, 0, isTemp);
if( !isTemp ){
sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
}
sqliteOpenMasterTable(v, isTemp);
sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
}
}
/*
** Add a new column to the table currently being constructed.
**
** The parser calls this routine once for each column declaration
** in a CREATE TABLE statement. sqliteStartTable() gets called
** first to get things going. Then this routine is called for each
** column.
*/
void sqliteAddColumn(Parse *pParse, Token *pName){
Table *p;
int i;
char *z = 0;
Column *pCol;
if( (p = pParse->pNewTable)==0 ) return;
sqliteSetNString(&z, pName->z, pName->n, 0);
if( z==0 ) return;
sqliteDequote(z);
for(i=0; i<p->nCol; i++){
if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
sqliteErrorMsg(pParse, "duplicate column name: %s", z);
sqliteFree(z);
return;
}
}
if( (p->nCol & 0x7)==0 ){
Column *aNew;
aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
if( aNew==0 ) return;
p->aCol = aNew;
}
pCol = &p->aCol[p->nCol];
memset(pCol, 0, sizeof(p->aCol[0]));
pCol->zName = z;
pCol->sortOrder = SQLITE_SO_NUM;
p->nCol++;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
** been seen on a column. This routine sets the notNull flag on
** the column currently under construction.
*/
void sqliteAddNotNull(Parse *pParse, int onError){
Table *p;
int i;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i>=0 ) p->aCol[i].notNull = onError;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. The pFirst token is the first
** token in the sequence of tokens that describe the type of the
** column currently under construction. pLast is the last token
** in the sequence. Use this information to construct a string
** that contains the typename of the column and store that string
** in zType.
*/
void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
Table *p;
int i, j;
int n;
char *z, **pz;
Column *pCol;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i<0 ) return;
pCol = &p->aCol[i];
pz = &pCol->zType;
n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
sqliteSetNString(pz, pFirst->z, n, 0);
z = *pz;
if( z==0 ) return;
for(i=j=0; z[i]; i++){
int c = z[i];
if( isspace(c) ) continue;
z[j++] = c;
}
z[j] = 0;
if( pParse->db->file_format>=4 ){
pCol->sortOrder = sqliteCollateType(z, n);
}else{
pCol->sortOrder = SQLITE_SO_NUM;
}
}
/*
** The given token is the default value for the last column added to
** the table currently under construction. If "minusFlag" is true, it
** means the value token was preceded by a minus sign.
**
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.
*/
void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
Table *p;
int i;
char **pz;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i<0 ) return;
pz = &p->aCol[i].zDflt;
if( minusFlag ){
sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
}else{
sqliteSetNString(pz, pVal->z, pVal->n, 0);
}
sqliteDequote(*pz);
}
/*
** Designate the PRIMARY KEY for the table. pList is a list of names
** of columns that form the primary key. If pList is NULL, then the
** most recently added column of the table is the primary key.
**
** A table can have at most one primary key. If the table already has
** a primary key (and this is the second primary key) then create an
** error.
**
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
** then we will try to use that column as the row id. (Exception:
** For backwards compatibility with older databases, do not do this
** if the file format version number is less than 1.) Set the Table.iPKey
** field of the table under construction to be the index of the
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
** no INTEGER PRIMARY KEY.
**
** If the key is not an INTEGER PRIMARY KEY, then create a unique
** index for the key. No index is created for INTEGER PRIMARY KEYs.
*/
void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
Table *pTab = pParse->pNewTable;
char *zType = 0;
int iCol = -1, i;
if( pTab==0 ) goto primary_key_exit;
if( pTab->hasPrimKey ){
sqliteErrorMsg(pParse,
"table \"%s\" has more than one primary key", pTab->zName);
goto primary_key_exit;
}
pTab->hasPrimKey = 1;
if( pList==0 ){
iCol = pTab->nCol - 1;
pTab->aCol[iCol].isPrimKey = 1;
}else{
for(i=0; i<pList->nId; i++){
for(iCol=0; iCol<pTab->nCol; iCol++){
if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
}
if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
}
if( pList->nId>1 ) iCol = -1;
}
if( iCol>=0 && iCol<pTab->nCol ){
zType = pTab->aCol[iCol].zType;
}
if( pParse->db->file_format>=1 &&
zType && sqliteStrICmp(zType, "INTEGER")==0 ){
pTab->iPKey = iCol;
pTab->keyConf = onError;
}else{
sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
pList = 0;
}
primary_key_exit:
sqliteIdListDelete(pList);
return;
}
/*
** Return the appropriate collating type given a type name.
**
** The collation type is text (SQLITE_SO_TEXT) if the type
** name contains the character stream "text" or "blob" or
** "clob". Any other type name is collated as numeric
** (SQLITE_SO_NUM).
*/
int sqliteCollateType(const char *zType, int nType){
int i;
for(i=0; i<nType-3; i++){
int c = *(zType++) | 0x60;
if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
return SQLITE_SO_TEXT;
}
if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
return SQLITE_SO_TEXT;
}
if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
return SQLITE_SO_TEXT;
}
}
return SQLITE_SO_NUM;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. A "COLLATE" clause has
** been seen on a column. This routine sets the Column.sortOrder on
** the column currently under construction.
*/
void sqliteAddCollateType(Parse *pParse, int collType){
Table *p;
int i;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i>=0 ) p->aCol[i].sortOrder = collType;
}
/*
** Come up with a new random value for the schema cookie. Make sure
** the new value is different from the old.
**
** The schema cookie is used to determine when the schema for the
** database changes. After each schema change, the cookie value
** changes. When a process first reads the schema it records the
** cookie. Thereafter, whenever it goes to access the database,
** it checks the cookie to make sure the schema has not changed
** since it was last read.
**
** This plan is not completely bullet-proof. It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value. But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32. So we're safe enough.
*/
void sqliteChangeCookie(sqlite *db, Vdbe *v){
if( db->next_cookie==db->aDb[0].schema_cookie ){
unsigned char r;
sqliteRandomness(1, &r);
db->next_cookie = db->aDb[0].schema_cookie + r + 1;
db->flags |= SQLITE_InternChanges;
sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
}
}
/*
** Measure the number of characters needed to output the given
** identifier. The number returned includes any quotes used
** but does not include the null terminator.
*/
static int identLength(const char *z){
int n;
int needQuote = 0;
for(n=0; *z; n++, z++){
if( *z=='\'' ){ n++; needQuote=1; }
}
return n + needQuote*2;
}
/*
** Write an identifier onto the end of the given string. Add
** quote characters as needed.
*/
static void identPut(char *z, int *pIdx, char *zIdent){
int i, j, needQuote;
i = *pIdx;
for(j=0; zIdent[j]; j++){
if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
}
needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|| sqliteKeywordCode(zIdent, j)!=TK_ID;
if( needQuote ) z[i++] = '\'';
for(j=0; zIdent[j]; j++){
z[i++] = zIdent[j];
if( zIdent[j]=='\'' ) z[i++] = '\'';
}
if( needQuote ) z[i++] = '\'';
z[i] = 0;
*pIdx = i;
}
/*
** Generate a CREATE TABLE statement appropriate for the given
** table. Memory to hold the text of the statement is obtained
** from sqliteMalloc() and must be freed by the calling function.
*/
static char *createTableStmt(Table *p){
int i, k, n;
char *zStmt;
char *zSep, *zSep2, *zEnd;
n = 0;
for(i=0; i<p->nCol; i++){
n += identLength(p->aCol[i].zName);
}
n += identLength(p->zName);
if( n<40 ){
zSep = "";
zSep2 = ",";
zEnd = ")";
}else{
zSep = "\n ";
zSep2 = ",\n ";
zEnd = "\n)";
}
n += 35 + 6*p->nCol;
zStmt = sqliteMallocRaw( n );
if( zStmt==0 ) return 0;
strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
k = strlen(zStmt);
identPut(zStmt, &k, p->zName);
zStmt[k++] = '(';
for(i=0; i<p->nCol; i++){
strcpy(&zStmt[k], zSep);
k += strlen(&zStmt[k]);
zSep = zSep2;
identPut(zStmt, &k, p->aCol[i].zName);
}
strcpy(&zStmt[k], zEnd);
return zStmt;
}
/*
** This routine is called to report the final ")" that terminates
** a CREATE TABLE statement.
**
** The table structure that other action routines have been building
** is added to the internal hash tables, assuming no errors have
** occurred.
**
** An entry for the table is made in the master table on disk, unless
** this is a temporary table or db->init.busy==1. When db->init.busy==1
** it means we are reading the sqlite_master table because we just
** connected to the database or because the sqlite_master table has
** recently changes, so the entry for this table already exists in
** the sqlite_master table. We do not want to create it again.
**
** If the pSelect argument is not NULL, it means that this routine
** was called to create a table generated from a
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
** the new table will match the result set of the SELECT.
*/
void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
Table *p;
sqlite *db = pParse->db;
if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
p = pParse->pNewTable;
if( p==0 ) return;
/* If the table is generated from a SELECT, then construct the
** list of columns and the text of the table.
*/
if( pSelect ){
Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
if( pSelTab==0 ) return;
assert( p->aCol==0 );
p->nCol = pSelTab->nCol;
p->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
sqliteDeleteTable(0, pSelTab);
}
/* If the db->init.busy is 1 it means we are reading the SQL off the
** "sqlite_master" or "sqlite_temp_master" table on the disk.
** So do not write to the disk again. Extract the root page number
** for the table from the db->init.newTnum field. (The page number
** should have been put there by the sqliteOpenCb routine.)
*/
if( db->init.busy ){
p->tnum = db->init.newTnum;
}
/* If not initializing, then create a record for the new table
** in the SQLITE_MASTER table of the database. The record number
** for the new table entry should already be on the stack.
**
** If this is a TEMPORARY table, write the entry into the auxiliary
** file instead of into the main database file.
*/
if( !db->init.busy ){
int n;
Vdbe *v;
v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( p->pSelect==0 ){
/* A regular table */
sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
}else{
/* A view */
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
}
p->tnum = 0;
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
sqliteVdbeAddOp(v, OP_Dup, 4, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
if( pSelect ){
char *z = createTableStmt(p);
n = z ? strlen(z) : 0;
sqliteVdbeChangeP3(v, -1, z, n);
sqliteFree(z);
}else{
assert( pEnd!=0 );
n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
}
sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
if( !p->iDb ){
sqliteChangeCookie(db, v);
}
sqliteVdbeAddOp(v, OP_Close, 0, 0);
if( pSelect ){
sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
pParse->nTab = 2;
sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
}
sqliteEndWriteOperation(pParse);
}
/* Add the table to the in-memory representation of the database.
*/
if( pParse->explain==0 && pParse->nErr==0 ){
Table *pOld;
FKey *pFKey;
pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
p->zName, strlen(p->zName)+1, p);
if( pOld ){
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
return;
}
for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
int nTo = strlen(pFKey->zTo) + 1;
pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
}
pParse->pNewTable = 0;
db->nTable++;
db->flags |= SQLITE_InternChanges;
}
}
/*
** The parser calls this routine in order to create a new VIEW
*/
void sqliteCreateView(
Parse *pParse, /* The parsing context */
Token *pBegin, /* The CREATE token that begins the statement */
Token *pName, /* The token that holds the name of the view */
Select *pSelect, /* A SELECT statement that will become the new view */
int isTemp /* TRUE for a TEMPORARY view */
){
Table *p;
int n;
const char *z;
Token sEnd;
DbFixer sFix;
sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
p = pParse->pNewTable;
if( p==0 || pParse->nErr ){
sqliteSelectDelete(pSelect);
return;
}
if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
&& sqliteFixSelect(&sFix, pSelect)
){
sqliteSelectDelete(pSelect);
return;
}
/* Make a copy of the entire SELECT statement that defines the view.
** This will force all the Expr.token.z values to be dynamically
** allocated rather than point to the input string - which means that
** they will persist after the current sqlite_exec() call returns.
*/
p->pSelect = sqliteSelectDup(pSelect);
sqliteSelectDelete(pSelect);
if( !pParse->db->init.busy ){
sqliteViewGetColumnNames(pParse, p);
}
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
** the end.
*/
sEnd = pParse->sLastToken;
if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
sEnd.z += sEnd.n;
}
sEnd.n = 0;
n = sEnd.z - pBegin->z;
z = pBegin->z;
while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
sEnd.z = &z[n-1];
sEnd.n = 1;
/* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
sqliteEndTable(pParse, &sEnd, 0);
return;
}
/*
** The Table structure pTable is really a VIEW. Fill in the names of
** the columns of the view in the pTable structure. Return the number
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
*/
int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
ExprList *pEList;
Select *pSel;
Table *pSelTab;
int nErr = 0;
assert( pTable );
/* A positive nCol means the columns names for this view are
** already known.
*/
if( pTable->nCol>0 ) return 0;
/* A negative nCol is a special marker meaning that we are currently
** trying to compute the column names. If we enter this routine with
** a negative nCol, it means two or more views form a loop, like this:
**
** CREATE VIEW one AS SELECT * FROM two;
** CREATE VIEW two AS SELECT * FROM one;
**
** Actually, this error is caught previously and so the following test
** should always fail. But we will leave it in place just to be safe.
*/
if( pTable->nCol<0 ){
sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
return 1;
}
/* If we get this far, it means we need to compute the table names.
*/
assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
pSel = pTable->pSelect;
/* Note that the call to sqliteResultSetOfSelect() will expand any
** "*" elements in this list. But we will need to restore the list
** back to its original configuration afterwards, so we save a copy of
** the original in pEList.
*/
pEList = pSel->pEList;
pSel->pEList = sqliteExprListDup(pEList);
if( pSel->pEList==0 ){
pSel->pEList = pEList;
return 1; /* Malloc failed */
}
pTable->nCol = -1;
pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
if( pSelTab ){
assert( pTable->aCol==0 );
pTable->nCol = pSelTab->nCol;
pTable->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
sqliteDeleteTable(0, pSelTab);
DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
}else{
pTable->nCol = 0;
nErr++;
}
sqliteSelectUnbind(pSel);
sqliteExprListDelete(pSel->pEList);
pSel->pEList = pEList;
return nErr;
}
/*
** Clear the column names from the VIEW pTable.
**
** This routine is called whenever any other table or view is modified.
** The view passed into this routine might depend directly or indirectly
** on the modified or deleted table so we need to clear the old column
** names so that they will be recomputed.
*/
static void sqliteViewResetColumnNames(Table *pTable){
int i;
Column *pCol;
assert( pTable!=0 && pTable->pSelect!=0 );
for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
sqliteFree(pCol->zName);
sqliteFree(pCol->zDflt);
sqliteFree(pCol->zType);
}
sqliteFree(pTable->aCol);
pTable->aCol = 0;
pTable->nCol = 0;
}
/*
** Clear the column names from every VIEW in database idx.
*/
static void sqliteViewResetAll(sqlite *db, int idx){
HashElem *i;
if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
Table *pTab = sqliteHashData(i);
if( pTab->pSelect ){
sqliteViewResetColumnNames(pTab);
}
}
DbClearProperty(db, idx, DB_UnresetViews);
}
/*
** Given a token, look up a table with that name. If not found, leave
** an error for the parser to find and return NULL.
*/
Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
char *zName;
Table *pTab;
zName = sqliteTableNameFromToken(pTok);
if( zName==0 ) return 0;
pTab = sqliteFindTable(pParse->db, zName, 0);
sqliteFree(zName);
if( pTab==0 ){
sqliteErrorMsg(pParse, "no such table: %T", pTok);
}
return pTab;
}
/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
*/
void sqliteDropTable(Parse *pParse, Token *pName, int isView){
Table *pTable;
Vdbe *v;
int base;
sqlite *db = pParse->db;
int iDb;
if( pParse->nErr || sqlite_malloc_failed ) return;
pTable = sqliteTableFromToken(pParse, pName);
if( pTable==0 ) return;
iDb = pTable->iDb;
assert( iDb>=0 && iDb<db->nDb );
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code;
const char *zTab = SCHEMA_TABLE(pTable->iDb);
const char *zDb = db->aDb[pTable->iDb].zName;
if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
return;
}
if( isView ){
if( iDb==1 ){
code = SQLITE_DROP_TEMP_VIEW;
}else{
code = SQLITE_DROP_VIEW;
}
}else{
if( iDb==1 ){
code = SQLITE_DROP_TEMP_TABLE;
}else{
code = SQLITE_DROP_TABLE;
}
}
if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
return;
}
if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
return;
}
}
#endif
if( pTable->readOnly ){
sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
pParse->nErr++;
return;
}
if( isView && pTable->pSelect==0 ){
sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
return;
}
if( !isView && pTable->pSelect ){
sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
return;
}
/* Generate code to remove the table from the master table
** on disk.
*/
v = sqliteGetVdbe(pParse);
if( v ){
static VdbeOpList dropTable[] = {
{ OP_Rewind, 0, ADDR(8), 0},
{ OP_String, 0, 0, 0}, /* 1 */
{ OP_MemStore, 1, 1, 0},
{ OP_MemLoad, 1, 0, 0}, /* 3 */
{ OP_Column, 0, 2, 0},
{ OP_Ne, 0, ADDR(7), 0},
{ OP_Delete, 0, 0, 0},
{ OP_Next, 0, ADDR(3), 0}, /* 7 */
};
Index *pIdx;
Trigger *pTrigger;
sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
/* Drop all triggers associated with the table being dropped */
pTrigger = pTable->pTrigger;
while( pTrigger ){
assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
sqliteDropTriggerPtr(pParse, pTrigger, 1);
if( pParse->explain ){
pTrigger = pTrigger->pNext;
}else{
pTrigger = pTable->pTrigger;
}
}
/* Drop all SQLITE_MASTER entries that refer to the table */
sqliteOpenMasterTable(v, pTable->iDb);
base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
/* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
if( pTable->iDb!=1 ){
sqliteOpenMasterTable(v, 1);
base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
}
if( pTable->iDb==0 ){
sqliteChangeCookie(db, v);
}
sqliteVdbeAddOp(v, OP_Close, 0, 0);
if( !isView ){
sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
}
}
sqliteEndWriteOperation(pParse);
}
/* Delete the in-memory description of the table.
**
** Exception: if the SQL statement began with the EXPLAIN keyword,
** then no changes should be made.
*/
if( !pParse->explain ){
sqliteUnlinkAndDeleteTable(db, pTable);
db->flags |= SQLITE_InternChanges;
}
sqliteViewResetAll(db, iDb);
}
/*
** This routine constructs a P3 string suitable for an OP_MakeIdxKey
** opcode and adds that P3 string to the most recently inserted instruction
** in the virtual machine. The P3 string consists of a single character
** for each column in the index pIdx of table pTab. If the column uses
** a numeric sort order, then the P3 string character corresponding to
** that column is 'n'. If the column uses a text sort order, then the
** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
** additional information. See also the sqliteAddKeyType() routine.
*/
void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
char *zType;
Table *pTab;
int i, n;
assert( pIdx!=0 && pIdx->pTable!=0 );
pTab = pIdx->pTable;
n = pIdx->nColumn;
zType = sqliteMallocRaw( n+1 );
if( zType==0 ) return;
for(i=0; i<n; i++){
int iCol = pIdx->aiColumn[i];
assert( iCol>=0 && iCol<pTab->nCol );
if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
zType[i] = 't';
}else{
zType[i] = 'n';
}
}
zType[n] = 0;
sqliteVdbeChangeP3(v, -1, zType, n);
sqliteFree(zType);
}
/*
** This routine is called to create a new foreign key on the table
** currently under construction. pFromCol determines which columns
** in the current table point to the foreign key. If pFromCol==0 then
** connect the key to the last column inserted. pTo is the name of
** the table referred to. pToCol is a list of tables in the other
** pTo table that the foreign key points to. flags contains all
** information about the conflict resolution algorithms specified
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
**
** An FKey structure is created and added to the table currently
** under construction in the pParse->pNewTable field. The new FKey
** is not linked into db->aFKey at this point - that does not happen
** until sqliteEndTable().
**
** The foreign key is set for IMMEDIATE processing. A subsequent call
** to sqliteDeferForeignKey() might change this to DEFERRED.
*/
void sqliteCreateForeignKey(
Parse *pParse, /* Parsing context */
IdList *pFromCol, /* Columns in this table that point to other table */
Token *pTo, /* Name of the other table */
IdList *pToCol, /* Columns in the other table */
int flags /* Conflict resolution algorithms. */
){
Table *p = pParse->pNewTable;
int nByte;
int i;
int nCol;
char *z;
FKey *pFKey = 0;
assert( pTo!=0 );
if( p==0 || pParse->nErr ) goto fk_end;
if( pFromCol==0 ){
int iCol = p->nCol-1;
if( iCol<0 ) goto fk_end;
if( pToCol && pToCol->nId!=1 ){
sqliteErrorMsg(pParse, "foreign key on %s"
" should reference only one column of table %T",
p->aCol[iCol].zName, pTo);
goto fk_end;
}
nCol = 1;
}else if( pToCol && pToCol->nId!=pFromCol->nId ){
sqliteErrorMsg(pParse,
"number of columns in foreign key does not match the number of "
"columns in the referenced table");
goto fk_end;
}else{
nCol = pFromCol->nId;
}
nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
if( pToCol ){
for(i=0; i<pToCol->nId; i++){
nByte += strlen(pToCol->a[i].zName) + 1;
}
}
pFKey = sqliteMalloc( nByte );
if( pFKey==0 ) goto fk_end;
pFKey->pFrom = p;
pFKey->pNextFrom = p->pFKey;
z = (char*)&pFKey[1];
pFKey->aCol = (struct sColMap*)z;
z += sizeof(struct sColMap)*nCol;
pFKey->zTo = z;
memcpy(z, pTo->z, pTo->n);
z[pTo->n] = 0;
z += pTo->n+1;
pFKey->pNextTo = 0;
pFKey->nCol = nCol;
if( pFromCol==0 ){
pFKey->aCol[0].iFrom = p->nCol-1;
}else{
for(i=0; i<nCol; i++){
int j;
for(j=0; j<p->nCol; j++){
if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
pFKey->aCol[i].iFrom = j;
break;
}
}
if( j>=p->nCol ){
sqliteErrorMsg(pParse,
"unknown column \"%s\" in foreign key definition",
pFromCol->a[i].zName);
goto fk_end;
}
}
}
if( pToCol ){
for(i=0; i<nCol; i++){
int n = strlen(pToCol->a[i].zName);
pFKey->aCol[i].zCol = z;
memcpy(z, pToCol->a[i].zName, n);
z[n] = 0;
z += n+1;
}
}
pFKey->isDeferred = 0;
pFKey->deleteConf = flags & 0xff;
pFKey->updateConf = (flags >> 8 ) & 0xff;
pFKey->insertConf = (flags >> 16 ) & 0xff;
/* Link the foreign key to the table as the last step.
*/
p->pFKey = pFKey;
pFKey = 0;
fk_end:
sqliteFree(pFKey);
sqliteIdListDelete(pFromCol);
sqliteIdListDelete(pToCol);
}
/*
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
** clause is seen as part of a foreign key definition. The isDeferred
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
** The behavior of the most recently created foreign key is adjusted
** accordingly.
*/
void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
Table *pTab;
FKey *pFKey;
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
pFKey->isDeferred = isDeferred;
}
/*
** Create a new index for an SQL table. pIndex is the name of the index
** and pTable is the name of the table that is to be indexed. Both will
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
** as the table to be indexed. pParse->pNewTable is a table that is
** currently being constructed by a CREATE TABLE statement.
**
** pList is a list of columns to be indexed. pList will be NULL if this
** is a primary key or unique-constraint on the most recent column added
** to the table currently under construction.
*/
void sqliteCreateIndex(
Parse *pParse, /* All information about this parse */
Token *pName, /* Name of the index. May be NULL */
SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
IdList *pList, /* A list of columns to be indexed */
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
Token *pEnd /* The ")" that closes the CREATE INDEX statement */
){
Table *pTab; /* Table to be indexed */
Index *pIndex; /* The index to be created */
char *zName = 0;
int i, j;
Token nullId; /* Fake token for an empty ID list */
DbFixer sFix; /* For assigning database names to pTable */
int isTemp; /* True for a temporary index */
sqlite *db = pParse->db;
if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
if( db->init.busy
&& sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
&& sqliteFixSrcList(&sFix, pTable)
){
goto exit_create_index;
}
/*
** Find the table that is to be indexed. Return early if not found.
*/
if( pTable!=0 ){
assert( pName!=0 );
assert( pTable->nSrc==1 );
pTab = sqliteSrcListLookup(pParse, pTable);
}else{
assert( pName==0 );
pTab = pParse->pNewTable;
}
if( pTab==0 || pParse->nErr ) goto exit_create_index;
if( pTab->readOnly ){
sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
goto exit_create_index;
}
if( pTab->iDb>=2 && db->init.busy==0 ){
sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
goto exit_create_index;
}
if( pTab->pSelect ){
sqliteErrorMsg(pParse, "views may not be indexed");
goto exit_create_index;
}
isTemp = pTab->iDb==1;
/*
** Find the name of the index. Make sure there is not already another
** index or table with the same name.
**
** Exception: If we are reading the names of permanent indices from the
** sqlite_master table (because some other process changed the schema) and
** one of the index names collides with the name of a temporary table or
** index, then we will continue to process this index.
**
** If pName==0 it means that we are
** dealing with a primary key or UNIQUE constraint. We have to invent our
** own name.
*/
if( pName && !db->init.busy ){
Index *pISameName; /* Another index with the same name */
Table *pTSameName; /* A table with same name as the index */
zName = sqliteTableNameFromToken(pName);
if( zName==0 ) goto exit_create_index;
if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
sqliteErrorMsg(pParse, "index %s already exists", zName);
goto exit_create_index;
}
if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
sqliteErrorMsg(pParse, "there is already a table named %s", zName);
goto exit_create_index;
}
}else if( pName==0 ){
char zBuf[30];
int n;
Index *pLoop;
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
sprintf(zBuf,"%d)",n);
zName = 0;
sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
if( zName==0 ) goto exit_create_index;
}else{
zName = sqliteStrNDup(pName->z, pName->n);
}
/* Check for authorization to create an index.
*/
#ifndef SQLITE_OMIT_AUTHORIZATION
{
const char *zDb = db->aDb[pTab->iDb].zName;
assert( pTab->iDb==db->init.iDb || isTemp );
if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
goto exit_create_index;
}
i = SQLITE_CREATE_INDEX;
if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
goto exit_create_index;
}
}
#endif
/* If pList==0, it means this routine was called to make a primary
** key out of the last column added to the table under construction.
** So create a fake list to simulate this.
*/
if( pList==0 ){
nullId.z = pTab->aCol[pTab->nCol-1].zName;
nullId.n = strlen(nullId.z);
pList = sqliteIdListAppend(0, &nullId);
if( pList==0 ) goto exit_create_index;
}
/*
** Allocate the index structure.
*/
pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
sizeof(int)*pList->nId );
if( pIndex==0 ) goto exit_create_index;
pIndex->aiColumn = (int*)&pIndex[1];
pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
strcpy(pIndex->zName, zName);
pIndex->pTable = pTab;
pIndex->nColumn = pList->nId;
pIndex->onError = onError;
pIndex->autoIndex = pName==0;
pIndex->iDb = isTemp ? 1 : db->init.iDb;
/* Scan the names of the columns of the table to be indexed and
** load the column indices into the Index structure. Report an error
** if any column is not found.
*/
for(i=0; i<pList->nId; i++){
for(j=0; j<pTab->nCol; j++){
if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
}
if( j>=pTab->nCol ){
sqliteErrorMsg(pParse, "table %s has no column named %s",
pTab->zName, pList->a[i].zName);
sqliteFree(pIndex);
goto exit_create_index;
}
pIndex->aiColumn[i] = j;
}
/* Link the new Index structure to its table and to the other
** in-memory database structures.
*/
if( !pParse->explain ){
Index *p;
p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
pIndex->zName, strlen(pIndex->zName)+1, pIndex);
if( p ){
assert( p==pIndex ); /* Malloc must have failed */
sqliteFree(pIndex);
goto exit_create_index;
}
db->flags |= SQLITE_InternChanges;
}
/* When adding an index to the list of indices for a table, make
** sure all indices labeled OE_Replace come after all those labeled
** OE_Ignore. This is necessary for the correct operation of UPDATE
** and INSERT.
*/
if( onError!=OE_Replace || pTab->pIndex==0
|| pTab->pIndex->onError==OE_Replace){
pIndex->pNext = pTab->pIndex;
pTab->pIndex = pIndex;
}else{
Index *pOther = pTab->pIndex;
while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
pOther = pOther->pNext;
}
pIndex->pNext = pOther->pNext;
pOther->pNext = pIndex;
}
/* If the db->init.busy is 1 it means we are reading the SQL off the
** "sqlite_master" table on the disk. So do not write to the disk
** again. Extract the table number from the db->init.newTnum field.
*/
if( db->init.busy && pTable!=0 ){
pIndex->tnum = db->init.newTnum;
}
/* If the db->init.busy is 0 then create the index on disk. This
** involves writing the index into the master table and filling in the
** index with the current table contents.
**
** The db->init.busy is 0 when the user first enters a CREATE INDEX
** command. db->init.busy is 1 when a database is opened and
** CREATE INDEX statements are read out of the master table. In
** the latter case the index already exists on disk, which is why
** we don't want to recreate it.
**
** If pTable==0 it means this index is generated as a primary key
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
** has just been created, it contains no data and the index initialization
** step can be skipped.
*/
else if( db->init.busy==0 ){
int n;
Vdbe *v;
int lbl1, lbl2;
int i;
int addr;
v = sqliteGetVdbe(pParse);
if( v==0 ) goto exit_create_index;
if( pTable!=0 ){
sqliteBeginWriteOperation(pParse, 0, isTemp);
sqliteOpenMasterTable(v, isTemp);
}
sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
pIndex->tnum = 0;
if( pTable ){
sqliteVdbeCode(v,
OP_Dup, 0, 0,
OP_Integer, isTemp, 0,
OP_OpenWrite, 1, 0,
0);
}
addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
if( pStart && pEnd ){
n = Addr(pEnd->z) - Addr(pStart->z) + 1;
sqliteVdbeChangeP3(v, addr, pStart->z, n);
}
sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
if( pTable ){
sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
lbl2 = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
for(i=0; i<pIndex->nColumn; i++){
int iCol = pIndex->aiColumn[i];
if( pTab->iPKey==iCol ){
sqliteVdbeAddOp(v, OP_Dup, i, 0);
}else{
sqliteVdbeAddOp(v, OP_Column, 2, iCol);
}
}
sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
"indexed columns are not unique", P3_STATIC);
sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
sqliteVdbeResolveLabel(v, lbl2);
sqliteVdbeAddOp(v, OP_Close, 2, 0);
sqliteVdbeAddOp(v, OP_Close, 1, 0);
}
if( pTable!=0 ){
if( !isTemp ){
sqliteChangeCookie(db, v);
}
sqliteVdbeAddOp(v, OP_Close, 0, 0);
sqliteEndWriteOperation(pParse);
}
}
/* Clean up before exiting */
exit_create_index:
sqliteIdListDelete(pList);
sqliteSrcListDelete(pTable);
sqliteFree(zName);
return;
}
/*
** This routine will drop an existing named index. This routine
** implements the DROP INDEX statement.
*/
void sqliteDropIndex(Parse *pParse, SrcList *pName){
Index *pIndex;
Vdbe *v;
sqlite *db = pParse->db;
if( pParse->nErr || sqlite_malloc_failed ) return;
assert( pName->nSrc==1 );
pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
if( pIndex==0 ){
sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
goto exit_drop_index;
}
if( pIndex->autoIndex ){
sqliteErrorMsg(pParse, "index associated with UNIQUE "
"or PRIMARY KEY constraint cannot be dropped", 0);
goto exit_drop_index;
}
if( pIndex->iDb>1 ){
sqliteErrorMsg(pParse, "cannot alter schema of attached "
"databases", 0);
goto exit_drop_index;
}
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code = SQLITE_DROP_INDEX;
Table *pTab = pIndex->pTable;
const char *zDb = db->aDb[pIndex->iDb].zName;
const char *zTab = SCHEMA_TABLE(pIndex->iDb);
if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
goto exit_drop_index;
}
if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
goto exit_drop_index;
}
}
#endif
/* Generate code to remove the index and from the master table */
v = sqliteGetVdbe(pParse);
if( v ){
static VdbeOpList dropIndex[] = {
{ OP_Rewind, 0, ADDR(9), 0},
{ OP_String, 0, 0, 0}, /* 1 */
{ OP_MemStore, 1, 1, 0},
{ OP_MemLoad, 1, 0, 0}, /* 3 */
{ OP_Column, 0, 1, 0},
{ OP_Eq, 0, ADDR(8), 0},
{ OP_Next, 0, ADDR(3), 0},
{ OP_Goto, 0, ADDR(9), 0},
{ OP_Delete, 0, 0, 0}, /* 8 */
};
int base;
sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
sqliteOpenMasterTable(v, pIndex->iDb);
base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
if( pIndex->iDb==0 ){
sqliteChangeCookie(db, v);
}
sqliteVdbeAddOp(v, OP_Close, 0, 0);
sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
sqliteEndWriteOperation(pParse);
}
/* Delete the in-memory description of this index.
*/
if( !pParse->explain ){
sqliteUnlinkAndDeleteIndex(db, pIndex);
db->flags |= SQLITE_InternChanges;
}
exit_drop_index:
sqliteSrcListDelete(pName);
}
/*
** Append a new element to the given IdList. Create a new IdList if
** need be.
**
** A new IdList is returned, or NULL if malloc() fails.
*/
IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
if( pList==0 ){
pList = sqliteMalloc( sizeof(IdList) );
if( pList==0 ) return 0;
pList->nAlloc = 0;
}
if( pList->nId>=pList->nAlloc ){
struct IdList_item *a;
pList->nAlloc = pList->nAlloc*2 + 5;
a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
if( a==0 ){
sqliteIdListDelete(pList);
return 0;
}
pList->a = a;
}
memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
if( pToken ){
char **pz = &pList->a[pList->nId].zName;
sqliteSetNString(pz, pToken->z, pToken->n, 0);
if( *pz==0 ){
sqliteIdListDelete(pList);
return 0;
}else{
sqliteDequote(*pz);
}
}
pList->nId++;
return pList;
}
/*
** Append a new table name to the given SrcList. Create a new SrcList if
** need be. A new entry is created in the SrcList even if pToken is NULL.
**
** A new SrcList is returned, or NULL if malloc() fails.
**
** If pDatabase is not null, it means that the table has an optional
** database name prefix. Like this: "database.table". The pDatabase
** points to the table name and the pTable points to the database name.
** The SrcList.a[].zName field is filled with the table name which might
** come from pTable (if pDatabase is NULL) or from pDatabase.
** SrcList.a[].zDatabase is filled with the database name from pTable,
** or with NULL if no database is specified.
**
** In other words, if call like this:
**
** sqliteSrcListAppend(A,B,0);
**
** Then B is a table name and the database name is unspecified. If called
** like this:
**
** sqliteSrcListAppend(A,B,C);
**
** Then C is the table name and B is the database name.
*/
SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
if( pList==0 ){
pList = sqliteMalloc( sizeof(SrcList) );
if( pList==0 ) return 0;
pList->nAlloc = 1;
}
if( pList->nSrc>=pList->nAlloc ){
SrcList *pNew;
pList->nAlloc *= 2;
pNew = sqliteRealloc(pList,
sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
if( pNew==0 ){
sqliteSrcListDelete(pList);
return 0;
}
pList = pNew;
}
memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
if( pDatabase && pDatabase->z==0 ){
pDatabase = 0;
}
if( pDatabase && pTable ){
Token *pTemp = pDatabase;
pDatabase = pTable;
pTable = pTemp;
}
if( pTable ){
char **pz = &pList->a[pList->nSrc].zName;
sqliteSetNString(pz, pTable->z, pTable->n, 0);
if( *pz==0 ){
sqliteSrcListDelete(pList);
return 0;
}else{
sqliteDequote(*pz);
}
}
if( pDatabase ){
char **pz = &pList->a[pList->nSrc].zDatabase;
sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
if( *pz==0 ){
sqliteSrcListDelete(pList);
return 0;
}else{
sqliteDequote(*pz);
}
}
pList->a[pList->nSrc].iCursor = -1;
pList->nSrc++;
return pList;
}
/*
** Assign cursors to all tables in a SrcList
*/
void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
int i;
for(i=0; i<pList->nSrc; i++){
if( pList->a[i].iCursor<0 ){
pList->a[i].iCursor = pParse->nTab++;
}
}
}
/*
** Add an alias to the last identifier on the given identifier list.
*/
void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
if( pList && pList->nSrc>0 ){
int i = pList->nSrc - 1;
sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
sqliteDequote(pList->a[i].zAlias);
}
}
/*
** Delete an IdList.
*/
void sqliteIdListDelete(IdList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nId; i++){
sqliteFree(pList->a[i].zName);
}
sqliteFree(pList->a);
sqliteFree(pList);
}
/*
** Return the index in pList of the identifier named zId. Return -1
** if not found.
*/
int sqliteIdListIndex(IdList *pList, const char *zName){
int i;
if( pList==0 ) return -1;
for(i=0; i<pList->nId; i++){
if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
}
return -1;
}
/*
** Delete an entire SrcList including all its substructure.
*/
void sqliteSrcListDelete(SrcList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nSrc; i++){
sqliteFree(pList->a[i].zDatabase);
sqliteFree(pList->a[i].zName);
sqliteFree(pList->a[i].zAlias);
if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
sqliteDeleteTable(0, pList->a[i].pTab);
}
sqliteSelectDelete(pList->a[i].pSelect);
sqliteExprDelete(pList->a[i].pOn);
sqliteIdListDelete(pList->a[i].pUsing);
}
sqliteFree(pList);
}
/*
** Begin a transaction
*/
void sqliteBeginTransaction(Parse *pParse, int onError){
sqlite *db;
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
if( pParse->nErr || sqlite_malloc_failed ) return;
if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
if( db->flags & SQLITE_InTrans ){
sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
return;
}
sqliteBeginWriteOperation(pParse, 0, 0);
if( !pParse->explain ){
db->flags |= SQLITE_InTrans;
db->onError = onError;
}
}
/*
** Commit a transaction
*/
void sqliteCommitTransaction(Parse *pParse){
sqlite *db;
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
if( pParse->nErr || sqlite_malloc_failed ) return;
if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
if( (db->flags & SQLITE_InTrans)==0 ){
sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
return;
}
if( !pParse->explain ){
db->flags &= ~SQLITE_InTrans;
}
sqliteEndWriteOperation(pParse);
if( !pParse->explain ){
db->onError = OE_Default;
}
}
/*
** Rollback a transaction
*/
void sqliteRollbackTransaction(Parse *pParse){
sqlite *db;
Vdbe *v;
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
if( pParse->nErr || sqlite_malloc_failed ) return;
if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
if( (db->flags & SQLITE_InTrans)==0 ){
sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
return;
}
v = sqliteGetVdbe(pParse);
if( v ){
sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
}
if( !pParse->explain ){
db->flags &= ~SQLITE_InTrans;
db->onError = OE_Default;
}
}
/*
** Generate VDBE code that will verify the schema cookie for all
** named database files.
*/
void sqliteCodeVerifySchema(Parse *pParse, int iDb){
sqlite *db = pParse->db;
Vdbe *v = sqliteGetVdbe(pParse);
assert( iDb>=0 && iDb<db->nDb );
assert( db->aDb[iDb].pBt!=0 );
if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
DbSetProperty(db, iDb, DB_Cookie);
}
}
/*
** Generate VDBE code that prepares for doing an operation that
** might change the database.
**
** This routine starts a new transaction if we are not already within
** a transaction. If we are already within a transaction, then a checkpoint
** is set if the setCheckpoint parameter is true. A checkpoint should
** be set for operations that might fail (due to a constraint) part of
** the way through and which will need to undo some writes without having to
** rollback the whole transaction. For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
**
** Only database iDb and the temp database are made writable by this call.
** If iDb==0, then the main and temp databases are made writable. If
** iDb==1 then only the temp database is made writable. If iDb>1 then the
** specified auxiliary database and the temp database are made writable.
*/
void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
Vdbe *v;
sqlite *db = pParse->db;
if( DbHasProperty(db, iDb, DB_Locked) ) return;
v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( !db->aDb[iDb].inTrans ){
sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
DbSetProperty(db, iDb, DB_Locked);
sqliteCodeVerifySchema(pParse, iDb);
if( iDb!=1 ){
sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
}
}else if( setCheckpoint ){
sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
DbSetProperty(db, iDb, DB_Locked);
}
}
/*
** Generate code that concludes an operation that may have changed
** the database. If a statement transaction was started, then emit
** an OP_Commit that will cause the changes to be committed to disk.
**
** Note that checkpoints are automatically committed at the end of
** a statement. Note also that there can be multiple calls to
** sqliteBeginWriteOperation() but there should only be a single
** call to sqliteEndWriteOperation() at the conclusion of the statement.
*/
void sqliteEndWriteOperation(Parse *pParse){
Vdbe *v;
sqlite *db = pParse->db;
if( pParse->trigStack ) return; /* if this is in a trigger */
v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( db->flags & SQLITE_InTrans ){
/* A BEGIN has executed. Do not commit until we see an explicit
** COMMIT statement. */
}else{
sqliteVdbeAddOp(v, OP_Commit, 0, 0);
}
}