From Code to Community: Sponsoring The Perl and Raku Conference 2025 Learn more

# $Id: Statistics.pm,v 1.34.4.1 2006/10/02 23:10:23 sendu Exp $
#
# BioPerl module for Bio::PopGen::Statistics
#
# Cared for by Jason Stajich <jason-at-bioperl-dot-org>
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself
# POD documentation - main docs before the code
=head1 NAME
Bio::PopGen::Statistics - Population Genetics statistical tests
=head1 SYNOPSIS
use Bio::PopGen::Statistics;
use Bio::AlignIO;
use Bio::PopGen::IO;
use Bio::PopGen::Simulation::Coalescent;
my $sim = new Bio::PopGen::Simulation::Coalescent( -sample_size => 12);
my $tree = $sim->next_tree;
$sim->add_Mutations($tree,20);
my $stats = new Bio::PopGen::Statistics();
my $individuals = [ $tree->get_leaf_nodes];
my $pi = $stats->pi($individuals);
my $D = $stats->tajima_D($individuals);
# Alternatively to do this on input data from
# See the tests in t/PopGen.t for more examples
my $parser = new Bio::PopGen::IO(-format => 'prettybase',
-file => 't/data/popstats.prettybase');
my $pop = $parser->next_population;
# Note that you can also call the stats as a class method if you like
# the only reason to instantiate it (as above) is if you want
# to set the verbosity for debugging
$pi = Bio::PopGen::Statistics->pi($pop);
$theta = Bio::PopGen::Statistics->theta($pop);
# Pi and Theta also take additional arguments,
# see the documentation for more information
use Bio::PopGen::Utilities;
use Bio::AlignIO;
my $in = new Bio::AlignIO(-file => 't/data/t7.aln',
-format => 'clustalw');
my $aln = $in->next_aln;
# get a population, each sequence is an individual and
# for the default case, every site which is not monomorphic
# is a 'marker'. Each individual will have a 'genotype' for the
# site which will be the specific base in the alignment at that
# site
my $pop = Bio::PopGen::Utilities->aln_to_population(-alignment => $aln);
=head1 DESCRIPTION
This object is intended to provide implementations some standard
population genetics statistics about alleles in populations.
This module was previously named Bio::Tree::Statistics.
This object is a place to accumulate routines for calculating various
statistics from the coalescent simulation, marker/allele, or from
aligned sequence data given that you can calculate alleles, number of
segregating sites.
Currently implemented:
Fu and Li's D (fu_and_li_D)
Fu and Li's D* (fu_and_li_D_star)
Fu and Li's F (fu_and_li_F)
Fu and Li's F* (fu_and_li_F_star)
Tajima's D (tajima_D)
Watterson's theta (theta)
pi (pi) - number of pairwise differences
composite_LD (composite_LD)
Count based methods also exist in case you have already calculated the key statistics (seg sites, num individuals, etc) and just want to compute the statistic.
In all cases where a the method expects an arrayref of
L<Bio::PopGen::IndividualI> objects and L<Bio::PopGen::PopulationI>
object will also work.
=head2 REFERENCES
Fu Y.X and Li W.H. (1993) "Statistical Tests of Neutrality of
Mutations." Genetics 133:693-709.
Fu Y.X. (1996) "New Statistical Tests of Neutrality for DNA samples
from a Population." Genetics 143:557-570.
Tajima F. (1989) "Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism." Genetics 123:585-595.
=head2 CITING THIS WORK
Please see this reference for use of this implementation.
Stajich JE and Hahn MW "Disentangling the Effects of Demography and Selection in Human History." (2005) Mol Biol Evol 22(1):63-73.
If you use these Bio::PopGen modules please cite the Bioperl
publication (see FAQ) and the above reference.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:
=head1 AUTHOR - Jason Stajich, Matthew Hahn
Email jason-at-bioperl-dot-org
Email matthew-dot-hahn-at-duke-dot-edu
=head1 APPENDIX
The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _
=cut
# Let the code begin...
use strict;
=head2 new
Title : new
Usage : my $obj = new Bio::PopGen::Statistics();
Function: Builds a new Bio::PopGen::Statistics object
Returns : an instance of Bio::PopGen::Statistics
Args : none
=cut
=head2 fu_and_li_D
Title : fu_and_li_D
Usage : my $D = $statistics->fu_and_li_D(\@ingroup,$extmutations);
Function: Fu and Li D statistic for a list of individuals
given an outgroup and the number of external mutations
(either provided or calculated from list of outgroup individuals)
Returns : decimal
Args : $individuals - array reference which contains ingroup individuals
(L<Bio::PopGen::Individual> or derived classes)
$extmutations - number of external mutations OR
arrayref of outgroup individuals
=cut
sub fu_and_li_D {
my ($self,$ingroup,$outgroup) = @_;
my ($seg_sites,$n,$ancestral,$derived) = (0,0,0,0);
if( ref($ingroup) =~ /ARRAY/i ) {
$n = scalar @$ingroup;
# pi - all pairwise differences
$seg_sites = $self->segregating_sites_count($ingroup);
} elsif( ref($ingroup) &&
$ingroup->isa('Bio::PopGen::PopulationI')) {
$n = $ingroup->get_number_individuals;
$seg_sites = $self->segregating_sites_count($ingroup);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D");
return 0;
}
if( $seg_sites <= 0 ) {
$self->warn("mutation total was not > 0, cannot calculate a Fu and Li D");
return 0;
}
if( ! defined $outgroup ) {
$self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations");
return 0;
} elsif( ref($outgroup) ) {
($ancestral,$derived) = $self->derived_mutations($ingroup,$outgroup);
$ancestral = 0 unless defined $ancestral;
} else {
$ancestral = $outgroup;
}
return $self->fu_and_li_D_counts($n,$seg_sites,
$ancestral,$derived);
}
=head2 fu_and_li_D_counts
Title : fu_li_D_counts
Usage : my $D = $statistics->fu_and_li_D_counts($samps,$sites,
$external);
Function: Fu and Li D statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
number of segregating sites (n)
number of external mutations (n_e)
=cut
sub fu_and_li_D_counts {
my ($self,$n,$seg_sites, $external_mut) = @_;
my $a_n = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a_n += ( 1 / $k );
}
my $b = 0;
for(my $k= 1; $k < $n; $k++ ) {
$b += ( 1 / $k**2 );
}
my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( ( $n - 1) * ( $n - 2 ) ) );
my $v = 1 + ( ( $a_n**2 / ( $b + $a_n**2 ) ) *
( $c - ( ( $n + 1) /
( $n - 1) ) ));
my $u = $a_n - 1 - $v;
($seg_sites - $a_n * $external_mut) /
sqrt( ($u * $seg_sites) + ($v * $seg_sites*$seg_sites));
}
=head2 fu_and_li_D_star
Title : fu_and_li_D_star
Usage : my $D = $statistics->fu_an_li_D_star(\@individuals);
Function: Fu and Li's D* statistic for a set of samples
Without an outgroup
Returns : decimal number
Args : array ref of L<Bio::PopGen::IndividualI> objects
OR
L<Bio::PopGen::PopulationI> object
=cut
#'
# fu_and_li_D*
sub fu_and_li_D_star {
my ($self,$individuals) = @_;
my ($seg_sites,$n,$singletons);
if( ref($individuals) =~ /ARRAY/i ) {
$n = scalar @$individuals;
$seg_sites = $self->segregating_sites_count($individuals);
$singletons = $self->singleton_count($individuals);
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI')) {
my $pop = $individuals;
$n = $pop->get_number_individuals;
$seg_sites = $self->segregating_sites_count($pop);
$singletons = $self->singleton_count($pop);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to tajima_D");
return 0;
}
return $self->fu_and_li_D_star_counts($n,$seg_sites, $singletons);
}
=head2 fu_and_li_D_star_counts
Title : fu_li_D_star_counts
Usage : my $D = $statistics->fu_and_li_D_star_counts($samps,$sites,
$singletons);
Function: Fu and Li D statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
number of segregating sites (n)
singletons (n_s)
=cut
sub fu_and_li_D_star_counts {
my ($self,$n,$seg_sites, $singletons) = @_;
my $a_n;
for(my $k = 1; $k < $n; $k++ ) {
$a_n += ( 1 / $k );
}
my $a1 = $a_n + 1 / $n;
my $b = 0;
for(my $k= 1; $k < $n; $k++ ) {
$b += ( 1 / $k**2 );
}
my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( ( $n - 1) * ( $n - 2 ) ) );
my $d = $c + ($n -2) / ($n - 1)**2 +
2 / ($n -1) *
( 1.5 - ( (2*$a1 - 3) / ($n -2) ) -
1 / $n );
my $v_star = ( ( ($n/($n-1) )**2)*$b + (($a_n**2)*$d) -
(2*( ($n*$a_n*($a_n+1)) )/(($n-1)**2)) ) /
(($a_n**2) + $b);
my $u_star = ( ($n/($n-1))*
($a_n - ($n/
($n-1)))) - $v_star;
return (($n / ($n - 1)) * $seg_sites -
$a_n * $singletons) /
sqrt( ($u_star * $seg_sites) + ($v_star * $seg_sites*$seg_sites));
}
=head2 fu_and_li_F
Title : fu_and_li_F
Usage : my $F = Bio::PopGen::Statistics->fu_and_li_F(\@ingroup,$ext_muts);
Function: Calculate Fu and Li's F on an ingroup with either the set of
outgroup individuals, or the number of external mutations
Returns : decimal number
Args : array ref of L<Bio::PopGen::IndividualI> objects for the ingroup
OR a L<Bio::PopGen::PopulationI> object
number of external mutations OR list of individuals for the outgroup
=cut
#'
sub fu_and_li_F {
my ($self,$ingroup,$outgroup) = @_;
my ($seg_sites,$pi,$n,$external,$internal);
if( ref($ingroup) =~ /ARRAY/i ) {
$n = scalar @$ingroup;
# pi - all pairwise differences
$pi = $self->pi($ingroup);
$seg_sites = $self->segregating_sites_count($ingroup);
} elsif( ref($ingroup) &&
$ingroup->isa('Bio::PopGen::PopulationI')) {
$n = $ingroup->get_number_individuals;
$pi = $self->pi($ingroup);
$seg_sites = $self->segregating_sites_count($ingroup);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to Fu and Li's F");
return 0;
}
if( ! defined $outgroup ) {
$self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations");
return 0;
} elsif( ref($outgroup) ) {
($external,$internal) = $self->derived_mutations($ingroup,$outgroup);
} else {
$external = $outgroup;
}
$self->fu_and_li_F_counts($n,$pi,$seg_sites,$external);
}
=head2 fu_and_li_F_counts
Title : fu_li_F_counts
Usage : my $F = $statistics->fu_and_li_F_counts($samps,$pi,
$sites,
$external);
Function: Fu and Li F statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
average pairwise differences (pi)
number of segregating sites (n)
external mutations (n_e)
=cut
sub fu_and_li_F_counts {
my ($self,$n,$pi,$seg_sites, $external) = @_;
my $a_n = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a_n += ( 1 / $k );
}
my $a1 = $a_n + (1 / $n );
my $b = 0;
for(my $k= 1; $k < $n; $k++ ) {
$b += ( 1 / $k**2 );
}
my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( ( $n - 1) * ( $n - 2 ) ) );
my $v_F = ( $c + ( (2*(($n**2)+$n+3)) /
( (9*$n)*($n-1) ) ) -
(2/($n-1)) ) / ( ($a_n**2)+$b );
my $u_F = ( 1 + ( ($n+1)/(3*($n-1)) )-
( 4*( ($n+1)/(($n-1)**2) ))*
($a1 - ((2*$n)/($n+1))) ) /
$a_n - $v_F;
# warn("$v_F vf $u_F uf n = $n\n");
my $F = ($pi - $external) / ( sqrt( ($u_F*$seg_sites) +
($v_F*($seg_sites**2)) ) );
return $F;
}
=head2 fu_and_li_F_star
Title : fu_and_li_F_star
Usage : my $F = Bio::PopGen::Statistics->fu_and_li_F_star(\@ingroup);
Function: Calculate Fu and Li's F* on an ingroup without an outgroup
It uses count of singleton alleles instead
Returns : decimal number
Args : array ref of L<Bio::PopGen::IndividualI> objects for the ingroup
OR
L<Bio::PopGen::PopulationI> object
=cut
#' keep my emacs happy
sub fu_and_li_F_star {
my ($self,$individuals) = @_;
my ($seg_sites,$pi,$n,$singletons);
if( ref($individuals) =~ /ARRAY/i ) {
$n = scalar @$individuals;
# pi - all pairwise differences
$pi = $self->pi($individuals);
$seg_sites = $self->segregating_sites_count($individuals);
$singletons = $self->singleton_count($individuals);
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI')) {
my $pop = $individuals;
$n = $pop->get_number_individuals;
$pi = $self->pi($pop);
$seg_sites = $self->segregating_sites_count($pop);
$singletons = $self->singleton_count($pop);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_F_star");
return 0;
}
return $self->fu_and_li_F_star_counts($n,
$pi,
$seg_sites,
$singletons);
}
=head2 fu_and_li_F_star_counts
Title : fu_li_F_star_counts
Usage : my $F = $statistics->fu_and_li_F_star_counts($samps,
$pi,$sites,
$singletons);
Function: Fu and Li F statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
average pairwise differences (pi)
number of segregating sites (n)
singleton mutations (n_s)
=cut
sub fu_and_li_F_star_counts {
my ($self,$n,$pi,$seg_sites, $singletons) = @_;
if( $n <= 1 ) {
$self->warn("N must be > 1\n");
return;
}
if( $n == 2) {
return 0;
}
my $a_n = 0;
my $b = 0;
for(my $k= 1; $k < $n; $k++ ) {
$b += (1 / ($k**2));
$a_n += ( 1 / $k ); # Eq (2)
}
my $a1 = $a_n + (1 / $n );
# warn("a_n is $a_n a1 is $a1 n is $n b is $b\n");
# From Simonsen et al (1995) instead of Fu and Li 1993
my $v_F_star = ( (( 2 * $n ** 3 + 110 * $n**2 - (255 * $n) + 153)/
(9 * ($n ** 2) * ( $n - 1))) +
((2 * ($n - 1) * $a_n ) / $n ** 2) -
(8 * $b / $n) ) /
( ($a_n ** 2) + $b );
my $u_F_star = ((( (4* ($n**2)) + (19 * $n) + 3 - (12 * ($n + 1)* $a1)) /
(3 * $n * ( $n - 1))) / $a_n) - $v_F_star;
# warn("vf* = $v_F_star uf* = $u_F_star n = $n\n");
my $F_star = ( $pi - ($singletons*( ( $n-1) / $n)) ) /
sqrt ( $u_F_star*$seg_sites + $v_F_star*$seg_sites**2);
return $F_star;
}
=head2 tajima_D
Title : tajima_D
Usage : my $D = Bio::PopGen::Statistics->tajima_D(\@samples);
Function: Calculate Tajima's D on a set of samples
Returns : decimal number
Args : array ref of L<Bio::PopGen::IndividualI> objects
OR
L<Bio::PopGen::PopulationI> object
=cut
#'
sub tajima_D {
my ($self,$individuals) = @_;
my ($seg_sites,$pi,$n);
if( ref($individuals) =~ /ARRAY/i ) {
$n = scalar @$individuals;
# pi - all pairwise differences
$pi = $self->pi($individuals);
$seg_sites = $self->segregating_sites_count($individuals);
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI')) {
my $pop = $individuals;
$n = $pop->get_number_individuals;
$pi = $self->pi($pop);
$seg_sites = $self->segregating_sites_count($pop);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to tajima_D");
return 0;
}
$self->tajima_D_counts($n,$seg_sites,$pi);
}
=head2 tajima_D_counts
Title : tajima_D_counts
Usage : my $D = $statistics->tajima_D_counts($samps,$sites,$pi);
Function: Tajima's D statistic for the raw counts of the number
of samples, sites, and avg pairwise distances (pi)
Returns : decimal number
Args : number of samples (N)
number of segregating sites (n)
average pairwise differences (pi)
=cut
#'
sub tajima_D_counts {
my ($self,$n,$seg_sites,$pi) = @_;
my $a1 = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a1 += ( 1 / $k );
}
my $a2 = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a2 += ( 1 / $k**2 );
}
my $b1 = ( $n + 1 ) / ( 3* ( $n - 1) );
my $b2 = ( 2 * ( $n ** 2 + $n + 3) ) /
( ( 9 * $n) * ( $n - 1) );
my $c1 = $b1 - ( 1 / $a1 );
my $c2 = $b2 - ( ( $n + 2 ) /
( $a1 * $n))+( $a2 / $a1 ** 2);
my $e1 = $c1 / $a1;
my $e2 = $c2 / ( $a1**2 + $a2 );
my $D = ( $pi - ( $seg_sites / $a1 ) ) /
sqrt ( ($e1 * $seg_sites) + (( $e2 * $seg_sites) * ( $seg_sites - 1)));
return $D;
}
=head2 pi
Title : pi
Usage : my $pi = Bio::PopGen::Statistics->pi(\@inds)
Function: Calculate pi (average number of pairwise differences) given
a list of individuals which have the same number of markers
(also called sites) as available from the get_Genotypes()
call in L<Bio::PopGen::IndividualI>
Returns : decimal number
Args : Arg1= array ref of L<Bio::PopGen::IndividualI> objects
which have markers/mutations. We expect all individuals to
have a marker - we will deal with missing data as a special case.
OR
Arg1= L<Bio::PopGen::PopulationI> object. In the event that
only allele frequency data is available, storing it in
Population object will make this available.
num sites [optional], an optional second argument (integer)
which is the number of sites, then pi returned is pi/site.
=cut
sub pi {
my ($self,$individuals,$numsites) = @_;
my (%data,@marker_names,$n);
if( ref($individuals) =~ /ARRAY/i ) {
# one possible argument is an arrayref of Bio::PopGen::IndividualI objs
@marker_names = $individuals->[0]->get_marker_names;
$n = scalar @$individuals;
# Here we are calculating the allele frequencies
my %marker_total;
foreach my $ind ( @$individuals ) {
if( ! $ind->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($ind)."\n");
return 0;
}
foreach my $m ( @marker_names ) {
foreach my $allele (map { $_->get_Alleles}
$ind->get_Genotypes($m) ) {
$data{$m}->{$allele}++;
$marker_total{$m}++;
}
}
}
while( my ($marker,$count) = each %marker_total ) {
foreach my $c ( values %{$data{$marker}} ) {
$c /= $count;
}
}
# %data will contain allele frequencies for each marker, allele
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI') ) {
my $pop = $individuals;
$n = $pop->get_number_individuals;
foreach my $marker( $pop->get_Markers ) {
push @marker_names, $marker->name;
$data{$marker->name} = {$marker->get_Allele_Frequencies};
}
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI to pi");
}
# doing all pairwise combinations
# For now we assume that all individuals have the same markers
my ($diffcount,$totalcompare) = (0,0);
my $pi = 0;
foreach my $markerdat ( values %data ) {
my $totalalleles; # this will only be different among markers
# when there is missing data
my @alleles = keys %$markerdat;
foreach my $al ( @alleles ) { $totalalleles += $markerdat->{$al} }
for( my $i =0; $i < scalar @alleles -1; $i++ ) {
my ($a1,$a2) = ( $alleles[$i], $alleles[$i+1]);
$pi += $self->heterozygosity($n,
$markerdat->{$a1} / $totalalleles,
$markerdat->{$a2} / $totalalleles);
}
}
$self->debug( "pi=$pi\n");
if( $numsites ) {
return $pi / $numsites;
} else {
return $pi;
}
}
=head2 theta
Title : theta
Usage : my $theta = Bio::PopGen::Statistics->theta($sampsize,$segsites);
Function: Calculates Watterson's theta from the sample size
and the number of segregating sites.
Providing the third parameter, total number of sites will
return theta per site.
This is also known as K-hat = K / a_n
Returns : decimal number
Args : sample size (integer),
num segregating sites (integer)
total sites (integer) [optional] (to calculate theta per site)
OR
provide an arrayref of the L<Bio::PopGen::IndividualI> objects
total sites (integer) [optional] (to calculate theta per site)
OR
provide an L<Bio::PopGen::PopulationI> object
total sites (integer)[optional]
=cut
#'
sub theta {
my $self = shift;
my ( $n, $seg_sites,$totalsites) = @_;
if( ref($n) =~ /ARRAY/i ) {
my $samps = $n;
$totalsites = $seg_sites; # only 2 arguments if one is an array
my %data;
my @marker_names = $samps->[0]->get_marker_names;
# we need to calculate number of polymorphic sites
$seg_sites = $self->segregating_sites_count($samps);
$n = scalar @$samps;
} elsif(ref($n) &&
$n->isa('Bio::PopGen::PopulationI') ) {
# This will handle the case when we pass in a PopulationI object
my $pop = $n;
$totalsites = $seg_sites; # shift the arguments over by one
$n = $pop->haploid_population->get_number_individuals;
$seg_sites = $self->segregating_sites_count($pop);
}
my $a1 = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a1 += ( 1 / $k );
}
if( $totalsites ) { # 0 and undef are the same can't divide by them
$seg_sites /= $totalsites;
}
return $seg_sites / $a1;
}
=head2 singleton_count
Title : singleton_count
Usage : my ($singletons) = Bio::PopGen::Statistics->singleton_count(\@inds)
Function: Calculate the number of mutations/alleles which only occur once in
a list of individuals for all sites/markers
Returns : (integer) number of alleles which only occur once (integer)
Args : arrayref of L<Bio::PopGen::IndividualI> objects
OR
L<Bio::PopGen::PopulationI> object
=cut
sub singleton_count {
my ($self,$individuals) = @_;
my @inds;
if( ref($individuals) =~ /ARRAY/ ) {
@inds = @$individuals;
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI') ) {
my $pop = $individuals;
@inds = $pop->get_Individuals();
unless( @inds ) {
$self->warn("Need to provide a population which has individuals loaded, not just a population with allele frequencies");
return 0;
}
} else {
$self->warn("Expected either a PopulationI object or an arrayref of IndividualI objects");
return 0;
}
# find number of sites where a particular allele is only seen once
my ($singleton_allele_ct,%sites) = (0);
# first collect all the alleles into a hash structure
foreach my $n ( @inds ) {
if( ! $n->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n");
return 0;
}
foreach my $g ( $n->get_Genotypes ) {
my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles);
foreach my $allele (@alleles ) {
$sites{$nm}->{$allele}++;
}
}
}
foreach my $site ( values %sites ) { # don't really care what the name is
foreach my $allelect ( values %$site ) { #
# find the sites which have an allele with only 1 copy
$singleton_allele_ct++ if( $allelect == 1 );
}
}
return $singleton_allele_ct;
}
# Yes I know that singleton_count and segregating_sites_count are
# basically processing the same data so calling them both is
# redundant, something I want to fix later but want to make things
# correct and simple first
=head2 segregating_sites_count
Title : segregating_sites_count
Usage : my $segsites = Bio::PopGen::Statistics->segregating_sites_count
Function: Gets the number of segregating sites (number of polymorphic sites)
Returns : (integer) number of segregating sites
Args : arrayref of L<Bio::PopGen::IndividualI> objects
OR
L<Bio::PopGen::PopulationI> object
=cut
# perhaps we'll change this in the future
# to return the actual segregating sites
# so one can use this to pull in the names of those sites.
# Would be trivial if it is useful.
sub segregating_sites_count{
my ($self,$individuals) = @_;
my $type = ref($individuals);
my $seg_sites = 0;
if( $type =~ /ARRAY/i ) {
my %sites;
foreach my $n ( @$individuals ) {
if( ! $n->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n");
return 0;
}
foreach my $g ( $n->get_Genotypes ) {
my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles);
foreach my $allele (@alleles ) {
$sites{$nm}->{$allele}++;
}
}
}
foreach my $site ( values %sites ) { # use values b/c we don't
# really care what the name is
# find the sites which >1 allele
$seg_sites++ if( keys %$site > 1 );
}
} elsif( $type && $individuals->isa('Bio::PopGen::PopulationI') ) {
foreach my $marker ( $individuals->haploid_population->get_Markers ) {
my @alleles = $marker->get_Alleles;
$seg_sites++ if ( scalar @alleles > 1 );
}
} else {
$self->warn("segregating_sites_count expects either a PopulationI object or a list of IndividualI objects");
return 0;
}
return $seg_sites;
}
=head2 heterozygosity
Title : heterozygosity
Usage : my $het = Bio::PopGen::Statistics->heterozygosity($sampsize,$freq1);
Function: Calculate the heterozgosity for a sample set for a set of alleles
Returns : decimal number
Args : sample size (integer)
frequency of one allele (fraction - must be less than 1)
[optional] frequency of another allele - this is only needed
in a non-binary allele system
Note : p^2 + 2pq + q^2
=cut
sub heterozygosity {
my ($self,$samp_size, $freq1,$freq2) = @_;
if( ! $freq2 ) { $freq2 = 1 - $freq1 }
if( $freq1 > 1 || $freq2 > 1 ) {
$self->warn("heterozygosity expects frequencies to be less than 1");
}
my $sum = ($freq1**2) + (($freq2)**2);
my $h = ( $samp_size*(1- $sum) ) / ($samp_size - 1) ;
return $h;
}
=head2 derived_mutations
Title : derived_mutations
Usage : my $ext = Bio::PopGen::Statistics->derived_mutations($ingroup,$outgroup);
Function: Calculate the number of alleles or (mutations) which are ancestral
and the number which are derived (occurred only on the tips)
Returns : array of 2 items - number of external and internal derived
mutation
Args : ingroup - L<Bio::PopGen::IndividualI>s arrayref OR
L<Bio::PopGen::PopulationI>
outgroup- L<Bio::PopGen::IndividualI>s arrayref OR
L<Bio::PopGen::PopulationI> OR
a single L<Bio::PopGen::IndividualI>
=cut
sub derived_mutations{
my ($self,$ingroup,$outgroup) = @_;
my (%indata,%outdata,@marker_names);
# basically we have to do some type checking
# if that perl were typed...
my ($itype,$otype) = (ref($ingroup),ref($outgroup));
return $outgroup unless( $otype ); # we expect arrayrefs or objects, nums
# are already the value we
# are searching for
# pick apart the ingroup
# get the data
if( ref($ingroup) =~ /ARRAY/i ) {
if( ! ref($ingroup->[0]) ||
! $ingroup->[0]->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for ingroup in external_mutations");
return 0;
}
# we assume that all individuals have the same markers
# i.e. that they are aligned
@marker_names = $ingroup->[0]->get_marker_names;
for my $ind ( @$ingroup ) {
for my $m ( @marker_names ) {
for my $allele ( map { $_->get_Alleles }
$ind->get_Genotypes($m) ) {
$indata{$m}->{$allele}++;
}
}
}
} elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI') ) {
@marker_names = $ingroup->get_marker_names;
for my $ind ( $ingroup->haploid_population->get_Individuals() ) {
for my $m ( @marker_names ) {
for my $allele ( map { $_->get_Alleles}
$ind->get_Genotypes($m) ) {
$indata{$m}->{$allele}++;
}
}
}
} else {
$self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for ingroup in external_mutations");
return 0;
}
if( $otype =~ /ARRAY/i ) {
if( ! ref($outgroup->[0]) ||
! $outgroup->[0]->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for outgroup in external_mutations");
return 0;
}
for my $ind ( @$outgroup ) {
for my $m ( @marker_names ) {
for my $allele ( map { $_->get_Alleles }
$ind->get_Genotypes($m) ) {
$outdata{$m}->{$allele}++;
}
}
}
} elsif( $otype->isa('Bio::PopGen::PopulationI') ) {
for my $ind ( $outgroup->haploid_population->get_Individuals() ) {
for my $m ( @marker_names ) {
for my $allele ( map { $_->get_Alleles}
$ind->get_Genotypes($m) ) {
$outdata{$m}->{$allele}++;
}
}
}
} elsif( $otype->isa('Bio::PopGen::PopulationI') ) {
$self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for outgroup in external_mutations");
return 0;
}
# derived mutations are defined as
#
# ingroup (G A T)
# outgroup (A)
# derived mutations are G and T, A is the external mutation
# ingroup (A T)
# outgroup (C)
# derived mutations A,T no external/ancestral mutations
# ingroup (G A T)
# outgroup (A T)
# cannot determine
my ($internal,$external);
foreach my $marker ( @marker_names ) {
my @outalleles = keys %{$outdata{$marker}};
my @in_alleles = keys %{$indata{$marker}};
next if( @outalleles > 1 || @in_alleles == 1);
for my $allele ( @in_alleles ) {
if( ! exists $outdata{$marker}->{$allele} ) {
if( $indata{$marker}->{$allele} == 1 ) {
$external++;
} else {
$internal++;
}
}
}
}
return ($external, $internal);
}
=head2 composite_LD
Title : composite_LD
Usage : %matrix = Bio::PopGen::Statistics->composite_LD($population);
Function: Calculate the Linkage Disequilibrium
This is for calculating LD for unphased data.
Other methods will be appropriate for phased haplotype data.
Returns : Hash of Hashes - first key is site 1,second key is site 2
and value is LD for those two sites.
my $LDarrayref = $matrix{$site1}->{$site2};
my ($ldval, $chisquared) = @$LDarrayref;
Args : L<Bio::PopGen::PopulationI> or arrayref of
L<Bio::PopGen::IndividualI>s
Reference: Weir B.S. (1996) "Genetic Data Analysis II",
Sinauer, Sunderlanm MA.
=cut
sub composite_LD {
my ($self,$pop) = @_;
if( ref($pop) =~ /ARRAY/i ) {
if( ref($pop->[0]) && $pop->[0]->isa('Bio::PopGen::IndividualI') ) {
$pop = new Bio::PopGen::Population(-individuals => @$pop);
} else {
$self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects");
return ();
}
} elsif( ! ref($pop) || ! $pop->isa('Bio::PopGen::PopulationI') ) {
$self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects");
return ();
}
my @marker_names = $pop->get_marker_names;
my @inds = $pop->get_Individuals;
my $num_inds = scalar @inds;
my (%lookup);
# calculate allele frequencies for each marker from the population
# use the built-in get_Marker to get the allele freqs
# we still need to calculate the genotype frequencies
foreach my $marker_name ( @marker_names ) {
my(%allelef);
foreach my $ind ( @inds ) {
my ($genotype) = $ind->get_Genotypes(-marker => $marker_name);
if( ! defined $genotype ) {
$self->warn("no genotype for marker $marker_name for individual ". $ind->unique_id. "\n");
next;
}
my @alleles = sort $genotype->get_Alleles;
next if( scalar @alleles != 2);
my $genostr = join(',', @alleles);
$allelef{$alleles[0]}++;
$allelef{$alleles[1]}++;
}
# we should check for cases where there > 2 alleles or
# only 1 allele and throw out those markers.
my @alleles = sort keys %allelef;
my $allele_count = scalar @alleles;
# test if site is polymorphic
if( $allele_count != 2) {
# only really warn if we're seeing multi-allele
$self->warn("Skipping $marker_name because it has $allele_count alleles (".join(',',@alleles)."), \ncomposite_LD will currently only work for biallelic markers") if $allele_count > 2;
next; # skip this marker
}
# Need to do something here to detect alleles which aren't
# a single character
if( length($alleles[0]) != 1 ||
length($alleles[1]) != 1 ) {
$self->warn("An individual has an allele which is not a single base, this is currently not supported in composite_LD - consider recoding the allele as a single character");
next;
}
# fix the call for allele 1 (A or B) and
# allele 2 (a or b) in terms of how we'll do the
# N square from Weir p.126
$self->debug( "$alleles[0] is 1, $alleles[1] is 2 for $marker_name\n");
$lookup{$marker_name}->{'1'} = $alleles[0];
$lookup{$marker_name}->{'2'} = $alleles[1];
}
@marker_names = sort keys %lookup;
my $site_count = scalar @marker_names;
# where the final data will be stored
my %stats_for_sites;
# standard way of generating pairwise combos
# LD is done by comparing all the pairwise site (marker)
# combinations and keeping track of the genotype and
# pairwise genotype (ie genotypes of the 2 sites) frequencies
for( my $i = 0; $i < $site_count - 1; $i++ ) {
my $site1 = $marker_names[$i];
my (%genotypes, %total_genotype_count,
%total_pairwisegeno_count,%pairwise_genotypes);
for( my $j = $i+1; $j < $site_count ; $j++) {
my (%genotypes, %total_genotype_count,
%total_pairwisegeno_count,%pairwise_genotypes);
my $site2 = $marker_names[$j];
my (%allele_count,%allele_freqs) = (0,0);
foreach my $ind ( @inds ) {
# build string of genotype at site 1
my ($genotype1) = $ind->get_Genotypes(-marker => $site1);
my @alleles1 = sort $genotype1->get_Alleles;
# if an individual has only one available allele
# (has a blank or N for one of the chromosomes)
# we don't want to use it in our calculation
next unless( scalar @alleles1 == 2);
my $genostr1 = join(',', @alleles1);
# build string of genotype at site 2
my ($genotype2) = $ind->get_Genotypes(-marker => $site2);
my @alleles2 = sort $genotype2->get_Alleles;
my $genostr2 = join(',', @alleles2);
next unless( scalar @alleles2 == 2);
for (@alleles1) {
$allele_count{$site1}++;
$allele_freqs{$site1}->{$_}++;
}
$genotypes{$site1}->{$genostr1}++;
$total_genotype_count{$site1}++;
for (@alleles2) {
$allele_count{$site2}++;
$allele_freqs{$site2}->{$_}++;
}
$genotypes{$site2}->{$genostr2}++;
$total_genotype_count{$site2}++;
# We are using the $site1,$site2 to signify
# a unique key
$pairwise_genotypes{"$site1,$site2"}->{"$genostr1,$genostr2"}++;
# some individuals
$total_pairwisegeno_count{"$site1,$site2"}++;
}
for my $site ( %allele_freqs ) {
for my $al ( keys %{ $allele_freqs{$site} } ) {
$allele_freqs{$site}->{$al} /= $allele_count{$site};
}
}
my $n = $total_pairwisegeno_count{"$site1,$site2"}; # number of inds
# 'A' and 'B' are two loci or in our case site1 and site2
my $allele1_site1 = $lookup{$site1}->{'1'}; # this is the BigA allele
my $allele1_site2 = $lookup{$site2}->{'1'}; # this is the BigB allele
my $allele2_site1 = $lookup{$site1}->{'2'}; # this is the LittleA allele
my $allele2_site2 = $lookup{$site2}->{'2'}; # this is the LittleB allele
# AABB
my $N1genostr = join(",",( $allele1_site1, $allele1_site1,
$allele1_site2, $allele1_site2));
$self->debug(" [$site1,$site2](AABB) N1genostr=$N1genostr\n");
# AABb
my $N2genostr = join(",",( $allele1_site1, $allele1_site1,
$allele1_site2, $allele2_site2));
$self->debug(" [$site1,$site2](AABb) N2genostr=$N2genostr\n");
# AaBB
my $N4genostr = join(",",( $allele1_site1, $allele2_site1,
$allele1_site2, $allele1_site2));
$self->debug(" [$site1,$site2](AaBB) N4genostr=$N4genostr\n");
# AaBb
my $N5genostr = join(",",( $allele1_site1, $allele2_site1,
$allele1_site2, $allele2_site2));
$self->debug(" [$site1,$site2](AaBb) N5genostr=$N5genostr\n");
# count of AABB in
my $n1 = $pairwise_genotypes{"$site1,$site2"}->{$N1genostr} || 0;
# count of AABb in
my $n2 = $pairwise_genotypes{"$site1,$site2"}->{$N2genostr} || 0;
# count of AaBB in
my $n4 = $pairwise_genotypes{"$site1,$site2"}->{$N4genostr} || 0;
# count of AaBb in
my $n5 = $pairwise_genotypes{"$site1,$site2"}->{$N5genostr} || 0;
my $homozA_site1 = join(",", ($allele1_site1,$allele1_site1));
my $homozB_site2 = join(",", ($allele1_site2,$allele1_site2));
my $p_AA = ($genotypes{$site1}->{$homozA_site1} || 0) / $n;
my $p_BB = ($genotypes{$site2}->{$homozB_site2} || 0) / $n;
my $p_A = $allele_freqs{$site1}->{$allele1_site1} || 0; # an individual allele freq
my $p_a = 1 - $p_A;
my $p_B = $allele_freqs{$site2}->{$allele1_site2} || 0; # an individual allele freq
my $p_b = 1 - $p_B;
# variance of allele frequencies
my $pi_A = $p_A * $p_a;
my $pi_B = $p_B * $p_b;
# hardy weinberg
my $D_A = $p_AA - $p_A**2;
my $D_B = $p_BB - $p_B**2;
my $n_AB = 2*$n1 + $n2 + $n4 + 0.5 * $n5;
$self->debug("n_AB=$n_AB -- n1=$n1, n2=$n2 n4=$n4 n5=$n5\n");
my $delta_AB = (1 / $n ) * ( $n_AB ) - ( 2 * $p_A * $p_B );
$self->debug("delta_AB=$delta_AB -- n=$n, n_AB=$n_AB p_A=$p_A, p_B=$p_B\n");
$self->debug(sprintf(" (%d * %.4f) / ( %.2f + %.2f) * ( %.2f + %.2f) \n",
$n,$delta_AB**2, $pi_A, $D_A, $pi_B, $D_B));
my $chisquared;
eval { $chisquared = ( $n * ($delta_AB**2) ) /
( ( $pi_A + $D_A) * ( $pi_B + $D_B) );
};
if( $@ ) {
$self->debug("Skipping the site because the denom is 0.\nsite1=$site1, site2=$site2 : pi_A=$pi_A, pi_B=$pi_B D_A=$D_A, D_B=$D_B\n");
next;
}
# this will be an upper triangular matrix
$stats_for_sites{$site1}->{$site2} = [$delta_AB,$chisquared];
}
}
return %stats_for_sites;
}
1;