#include "uv.h"
#include "internal.h"
#include <assert.h>
#include <string.h>
#include <errno.h>
#include <paths.h>
#include <sys/user.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <vm/vm_param.h> /* VM_LOADAVG */
#include <time.h>
#include <stdlib.h>
#include <unistd.h> /* sysconf */
#include <fcntl.h>
#ifndef CPUSTATES
# define CPUSTATES 5U
#endif
#ifndef CP_USER
# define CP_USER 0
# define CP_NICE 1
# define CP_SYS 2
# define CP_IDLE 3
# define CP_INTR 4
#endif
int
uv__platform_loop_init(uv_loop_t* loop) {
return
uv__kqueue_init(loop);
}
void
uv__platform_loop_delete(uv_loop_t* loop) {
}
#ifdef __DragonFly__
int
uv_exepath(
char
* buffer,
size_t
* size) {
char
abspath[PATH_MAX * 2 + 1];
ssize_t abspath_size;
if
(buffer == NULL || size == NULL || *size == 0)
return
UV_EINVAL;
abspath_size = readlink(
"/proc/curproc/file"
, abspath,
sizeof
(abspath));
if
(abspath_size < 0)
return
UV__ERR(
errno
);
assert
(abspath_size > 0);
*size -= 1;
if
(*size > abspath_size)
*size = abspath_size;
memcpy
(buffer, abspath, *size);
buffer[*size] =
'\0'
;
return
0;
}
#else
int
uv_exepath(
char
* buffer,
size_t
* size) {
char
abspath[PATH_MAX * 2 + 1];
int
mib[4];
size_t
abspath_size;
if
(buffer == NULL || size == NULL || *size == 0)
return
UV_EINVAL;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PATHNAME;
mib[3] = -1;
abspath_size =
sizeof
abspath;
if
(sysctl(mib, 4, abspath, &abspath_size, NULL, 0))
return
UV__ERR(
errno
);
assert
(abspath_size > 0);
abspath_size -= 1;
*size -= 1;
if
(*size > abspath_size)
*size = abspath_size;
memcpy
(buffer, abspath, *size);
buffer[*size] =
'\0'
;
return
0;
}
#endif
uint64_t uv_get_free_memory(
void
) {
int
freecount;
size_t
size =
sizeof
(freecount);
if
(sysctlbyname(
"vm.stats.vm.v_free_count"
, &freecount, &size, NULL, 0))
return
UV__ERR(
errno
);
return
(uint64_t) freecount * sysconf(_SC_PAGESIZE);
}
uint64_t uv_get_total_memory(
void
) {
unsigned
long
info;
int
which[] = {CTL_HW, HW_PHYSMEM};
size_t
size =
sizeof
(info);
if
(sysctl(which, 2, &info, &size, NULL, 0))
return
UV__ERR(
errno
);
return
(uint64_t) info;
}
void
uv_loadavg(
double
avg[3]) {
struct
loadavg info;
size_t
size =
sizeof
(info);
int
which[] = {CTL_VM, VM_LOADAVG};
if
(sysctl(which, 2, &info, &size, NULL, 0) < 0)
return
;
avg[0] = (
double
) info.ldavg[0] / info.fscale;
avg[1] = (
double
) info.ldavg[1] / info.fscale;
avg[2] = (
double
) info.ldavg[2] / info.fscale;
}
int
uv_resident_set_memory(
size_t
* rss) {
struct
kinfo_proc kinfo;
size_t
page_size;
size_t
kinfo_size;
int
mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();
kinfo_size =
sizeof
(kinfo);
if
(sysctl(mib, 4, &kinfo, &kinfo_size, NULL, 0))
return
UV__ERR(
errno
);
page_size = getpagesize();
#ifdef __DragonFly__
*rss = kinfo.kp_vm_rssize * page_size;
#else
*rss = kinfo.ki_rssize * page_size;
#endif
return
0;
}
int
uv_uptime(
double
* uptime) {
int
r;
struct
timespec sp;
r = clock_gettime(CLOCK_MONOTONIC, &sp);
if
(r)
return
UV__ERR(
errno
);
*uptime = sp.tv_sec;
return
0;
}
int
uv_cpu_info(uv_cpu_info_t** cpu_infos,
int
* count) {
unsigned
int
ticks = (unsigned
int
)sysconf(_SC_CLK_TCK),
multiplier = ((uint64_t)1000L / ticks), cpuspeed, maxcpus,
cur = 0;
uv_cpu_info_t* cpu_info;
const
char
* maxcpus_key;
const
char
* cptimes_key;
const
char
* model_key;
char
model[512];
long
* cp_times;
int
numcpus;
size_t
size;
int
i;
#if defined(__DragonFly__)
maxcpus_key =
"hw.ncpu"
;
cptimes_key =
"kern.cp_time"
;
#else
maxcpus_key =
"kern.smp.maxcpus"
;
cptimes_key =
"kern.cp_times"
;
#endif
#if defined(__arm__) || defined(__aarch64__)
model_key =
"hw.machine"
;
cpuspeed = 0;
#else
model_key =
"hw.model"
;
size =
sizeof
(cpuspeed);
if
(sysctlbyname(
"hw.clockrate"
, &cpuspeed, &size, NULL, 0))
return
-
errno
;
#endif
size =
sizeof
(model);
if
(sysctlbyname(model_key, &model, &size, NULL, 0))
return
UV__ERR(
errno
);
size =
sizeof
(numcpus);
if
(sysctlbyname(
"hw.ncpu"
, &numcpus, &size, NULL, 0))
return
UV__ERR(
errno
);
*cpu_infos = uv__malloc(numcpus *
sizeof
(**cpu_infos));
if
(!(*cpu_infos))
return
UV_ENOMEM;
*count = numcpus;
size =
sizeof
(maxcpus);
if
(sysctlbyname(maxcpus_key, &maxcpus, &size, NULL, 0)) {
uv__free(*cpu_infos);
return
UV__ERR(
errno
);
}
size = maxcpus * CPUSTATES *
sizeof
(
long
);
cp_times = uv__malloc(size);
if
(cp_times == NULL) {
uv__free(*cpu_infos);
return
UV_ENOMEM;
}
if
(sysctlbyname(cptimes_key, cp_times, &size, NULL, 0)) {
uv__free(cp_times);
uv__free(*cpu_infos);
return
UV__ERR(
errno
);
}
for
(i = 0; i < numcpus; i++) {
cpu_info = &(*cpu_infos)[i];
cpu_info->cpu_times.user = (uint64_t)(cp_times[CP_USER+cur]) * multiplier;
cpu_info->cpu_times.nice = (uint64_t)(cp_times[CP_NICE+cur]) * multiplier;
cpu_info->cpu_times.sys = (uint64_t)(cp_times[CP_SYS+cur]) * multiplier;
cpu_info->cpu_times.idle = (uint64_t)(cp_times[CP_IDLE+cur]) * multiplier;
cpu_info->cpu_times.irq = (uint64_t)(cp_times[CP_INTR+cur]) * multiplier;
cpu_info->model = uv__strdup(model);
cpu_info->speed = cpuspeed;
cur+=CPUSTATES;
}
uv__free(cp_times);
return
0;
}
void
uv_free_cpu_info(uv_cpu_info_t* cpu_infos,
int
count) {
int
i;
for
(i = 0; i < count; i++) {
uv__free(cpu_infos[i].model);
}
uv__free(cpu_infos);
}