—package
Math::BigFloat;
#
# Mike grinned. 'Two down, infinity to go' - Mike Nostrus in 'Before and After'
#
# The following hash values are internally used:
# _e : exponent (ref to $CALC object)
# _m : mantissa (ref to $CALC object)
# _es : sign of _e
# sign : +,-,+inf,-inf, or "NaN" if not a number
# _a : accuracy
# _p : precision
$VERSION
=
'1.53'
;
require
5.006002;
require
Exporter;
@ISA
=
qw(Exporter Math::BigInt)
;
use
strict;
# $_trap_inf/$_trap_nan are internal and should never be accessed from outside
$upgrade $downgrade $_trap_nan $_trap_inf/
;
my
$class
=
"Math::BigFloat"
;
use
overload
'<=>'
=>
sub
{
my
$rc
=
$_
[2] ?
ref
(
$_
[0])->bcmp(
$_
[1],
$_
[0]) :
ref
(
$_
[0])->bcmp(
$_
[0],
$_
[1]);
$rc
= 1
unless
defined
$rc
;
$rc
<=> 0;
},
# we need '>=' to get things like "1 >= NaN" right:
'>='
=>
sub
{
my
$rc
=
$_
[2] ?
ref
(
$_
[0])->bcmp(
$_
[1],
$_
[0]) :
ref
(
$_
[0])->bcmp(
$_
[0],
$_
[1]);
# if there was a NaN involved, return false
return
''
unless
defined
$rc
;
$rc
>= 0;
},
'int'
=>
sub
{
$_
[0]->as_number() },
# 'trunc' to bigint
;
##############################################################################
# global constants, flags and assorted stuff
# the following are public, but their usage is not recommended. Use the
# accessor methods instead.
# class constants, use Class->constant_name() to access
$round_mode
=
'even'
;
# one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
$accuracy
=
undef
;
$precision
=
undef
;
$div_scale
= 40;
$upgrade
=
undef
;
$downgrade
=
undef
;
# the package we are using for our private parts, defaults to:
# Math::BigInt->config()->{lib}
my
$MBI
=
'Math::BigInt::FastCalc'
;
# are NaNs ok? (otherwise it dies when encountering an NaN) set w/ config()
$_trap_nan
= 0;
# the same for infinity
$_trap_inf
= 0;
# constant for easier life
my
$nan
=
'NaN'
;
my
$IMPORT
= 0;
# was import() called yet? used to make require work
# some digits of accuracy for blog(undef,10); which we use in blog() for speed
my
$LOG_10
=
'2.3025850929940456840179914546843642076011014886287729760333279009675726097'
;
my
$LOG_10_A
=
length
(
$LOG_10
)-1;
# ditto for log(2)
my
$LOG_2
=
'0.6931471805599453094172321214581765680755001343602552541206800094933936220'
;
my
$LOG_2_A
=
length
(
$LOG_2
)-1;
my
$HALF
=
'0.5'
;
# made into an object if nec.
##############################################################################
# the old code had $rnd_mode, so we need to support it, too
sub
TIESCALAR {
my
(
$class
) =
@_
;
bless
\
$round_mode
,
$class
; }
sub
FETCH {
return
$round_mode
; }
sub
STORE {
$rnd_mode
=
$_
[0]->round_mode(
$_
[1]); }
BEGIN
{
# when someone set's $rnd_mode, we catch this and check the value to see
# whether it is valid or not.
$rnd_mode
=
'even'
;
tie
$rnd_mode
,
'Math::BigFloat'
;
# we need both of them in this package:
*as_int
= \
&as_number
;
}
##############################################################################
{
# valid method aliases for AUTOLOAD
my
%methods
=
map
{
$_
=> 1 }
qw /
fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm
fint facmp fcmp fzero fnan finf finc fdec flog ffac fneg
fceil ffloor frsft flsft fone flog froot
/;
# valid methods that can be handed up (for AUTOLOAD)
my
%hand_ups
=
map
{
$_
=> 1 }
qw /
is_nan is_inf is_negative is_positive is_pos is_neg
accuracy precision div_scale round_mode fabs fnot
objectify upgrade downgrade
bone binf bnan bzero
bsub
/;
sub
_method_alias {
exists
$methods
{
$_
[0]||
''
}; }
sub
_method_hand_up {
exists
$hand_ups
{
$_
[0]||
''
}; }
}
##############################################################################
# constructors
sub
new
{
# create a new BigFloat object from a string or another bigfloat object.
# _e: exponent
# _m: mantissa
# sign => sign (+/-), or "NaN"
my
(
$class
,
$wanted
,
@r
) =
@_
;
# avoid numify-calls by not using || on $wanted!
return
$class
->bzero()
if
!
defined
$wanted
;
# default to 0
return
$wanted
->copy()
if
UNIVERSAL::isa(
$wanted
,
'Math::BigFloat'
);
$class
->
import
()
if
$IMPORT
== 0;
# make require work
my
$self
= {};
bless
$self
,
$class
;
# shortcut for bigints and its subclasses
if
((
ref
(
$wanted
)) && UNIVERSAL::can(
$wanted
,
"as_number"
))
{
$self
->{_m} =
$wanted
->as_number()->{value};
# get us a bigint copy
$self
->{_e} =
$MBI
->_zero();
$self
->{_es} =
'+'
;
$self
->{sign} =
$wanted
->sign();
return
$self
->bnorm();
}
# else: got a string or something maskerading as number (with overload)
# handle '+inf', '-inf' first
if
(
$wanted
=~ /^[+-]?inf\z/)
{
return
$downgrade
->new(
$wanted
)
if
$downgrade
;
$self
->{sign} =
$wanted
;
# set a default sign for bstr()
return
$self
->binf(
$wanted
);
}
# shortcut for simple forms like '12' that neither have trailing nor leading
# zeros
if
(
$wanted
=~ /^([+-]?)([1-9][0-9]*[1-9])$/)
{
$self
->{_e} =
$MBI
->_zero();
$self
->{_es} =
'+'
;
$self
->{sign} = $1 ||
'+'
;
$self
->{_m} =
$MBI
->_new($2);
return
$self
->round(
@r
)
if
!
$downgrade
;
}
my
(
$mis
,
$miv
,
$mfv
,
$es
,
$ev
) = Math::BigInt::_split(
$wanted
);
if
(!
ref
$mis
)
{
if
(
$_trap_nan
)
{
Carp::croak (
"$wanted is not a number initialized to $class"
);
}
return
$downgrade
->bnan()
if
$downgrade
;
$self
->{_e} =
$MBI
->_zero();
$self
->{_es} =
'+'
;
$self
->{_m} =
$MBI
->_zero();
$self
->{sign} =
$nan
;
}
else
{
# make integer from mantissa by adjusting exp, then convert to int
$self
->{_e} =
$MBI
->_new(
$$ev
);
# exponent
$self
->{_es} =
$$es
||
'+'
;
my
$mantissa
=
"$$miv$$mfv"
;
# create mant.
$mantissa
=~ s/^0+(\d)/$1/;
# strip leading zeros
$self
->{_m} =
$MBI
->_new(
$mantissa
);
# create mant.
# 3.123E0 = 3123E-3, and 3.123E-2 => 3123E-5
if
(CORE::
length
(
$$mfv
) != 0)
{
my
$len
=
$MBI
->_new( CORE::
length
(
$$mfv
));
(
$self
->{_e},
$self
->{_es}) =
_e_sub (
$self
->{_e},
$len
,
$self
->{_es},
'+'
);
}
# we can only have trailing zeros on the mantissa if $$mfv eq ''
else
{
# Use a regexp to count the trailing zeros in $$miv instead of _zeros()
# because that is faster, especially when _m is not stored in base 10.
my
$zeros
= 0;
$zeros
= CORE::
length
($1)
if
$$miv
=~ /[1-9](0*)$/;
if
(
$zeros
!= 0)
{
my
$z
=
$MBI
->_new(
$zeros
);
# turn '120e2' into '12e3'
$MBI
->_rsft (
$self
->{_m},
$z
, 10);
(
$self
->{_e},
$self
->{_es}) =
_e_add (
$self
->{_e},
$z
,
$self
->{_es},
'+'
);
}
}
$self
->{sign} =
$$mis
;
# for something like 0Ey, set y to 1, and -0 => +0
# Check $$miv for being '0' and $$mfv eq '', because otherwise _m could not
# have become 0. That's faster than to call $MBI->_is_zero().
$self
->{sign} =
'+'
,
$self
->{_e} =
$MBI
->_one()
if
$$miv
eq
'0'
and
$$mfv
eq
''
;
return
$self
->round(
@r
)
if
!
$downgrade
;
}
# if downgrade, inf, NaN or integers go down
if
(
$downgrade
&&
$self
->{_es} eq
'+'
)
{
if
(
$MBI
->_is_zero(
$self
->{_e} ))
{
return
$downgrade
->new(
$$mis
.
$MBI
->_str(
$self
->{_m} ));
}
return
$downgrade
->new(
$self
->bsstr());
}
$self
->bnorm()->round(
@r
);
# first normalize, then round
}
sub
copy
{
my
(
$c
,
$x
);
if
(
@_
> 1)
{
# if two arguments, the first one is the class to "swallow" subclasses
(
$c
,
$x
) =
@_
;
}
else
{
$x
=
shift
;
$c
=
ref
(
$x
);
}
return
unless
ref
(
$x
);
# only for objects
my
$self
= {};
bless
$self
,
$c
;
$self
->{sign} =
$x
->{sign};
$self
->{_es} =
$x
->{_es};
$self
->{_m} =
$MBI
->_copy(
$x
->{_m});
$self
->{_e} =
$MBI
->_copy(
$x
->{_e});
$self
->{_a} =
$x
->{_a}
if
defined
$x
->{_a};
$self
->{_p} =
$x
->{_p}
if
defined
$x
->{_p};
$self
;
}
sub
_bnan
{
# used by parent class bone() to initialize number to NaN
my
$self
=
shift
;
if
(
$_trap_nan
)
{
my
$class
=
ref
(
$self
);
Carp::croak (
"Tried to set $self to NaN in $class\::_bnan()"
);
}
$IMPORT
=1;
# call our import only once
$self
->{_m} =
$MBI
->_zero();
$self
->{_e} =
$MBI
->_zero();
$self
->{_es} =
'+'
;
}
sub
_binf
{
# used by parent class bone() to initialize number to +-inf
my
$self
=
shift
;
if
(
$_trap_inf
)
{
my
$class
=
ref
(
$self
);
Carp::croak (
"Tried to set $self to +-inf in $class\::_binf()"
);
}
$IMPORT
=1;
# call our import only once
$self
->{_m} =
$MBI
->_zero();
$self
->{_e} =
$MBI
->_zero();
$self
->{_es} =
'+'
;
}
sub
_bone
{
# used by parent class bone() to initialize number to 1
my
$self
=
shift
;
$IMPORT
=1;
# call our import only once
$self
->{_m} =
$MBI
->_one();
$self
->{_e} =
$MBI
->_zero();
$self
->{_es} =
'+'
;
}
sub
_bzero
{
# used by parent class bone() to initialize number to 0
my
$self
=
shift
;
$IMPORT
=1;
# call our import only once
$self
->{_m} =
$MBI
->_zero();
$self
->{_e} =
$MBI
->_one();
$self
->{_es} =
'+'
;
}
sub
isa
{
my
(
$self
,
$class
) =
@_
;
return
if
$class
=~ /^Math::BigInt/;
# we aren't one of these
UNIVERSAL::isa(
$self
,
$class
);
}
sub
config
{
# return (later set?) configuration data as hash ref
my
$class
=
shift
||
'Math::BigFloat'
;
my
$cfg
=
$class
->SUPER::config(
@_
);
# now we need only to override the ones that are different from our parent
$cfg
->{class} =
$class
;
$cfg
->{
with
} =
$MBI
;
$cfg
;
}
##############################################################################
# string conversation
sub
bstr
{
# (ref to BFLOAT or num_str ) return num_str
# Convert number from internal format to (non-scientific) string format.
# internal format is always normalized (no leading zeros, "-0" => "+0")
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
if
(
$x
->{sign} !~ /^[+-]$/)
{
return
$x
->{sign}
unless
$x
->{sign} eq
'+inf'
;
# -inf, NaN
return
'inf'
;
# +inf
}
my
$es
=
'0'
;
my
$len
= 1;
my
$cad
= 0;
my
$dot
=
'.'
;
# $x is zero?
my
$not_zero
= !(
$x
->{sign} eq
'+'
&&
$MBI
->_is_zero(
$x
->{_m}));
if
(
$not_zero
)
{
$es
=
$MBI
->_str(
$x
->{_m});
$len
= CORE::
length
(
$es
);
my
$e
=
$MBI
->_num(
$x
->{_e});
$e
= -
$e
if
$x
->{_es} eq
'-'
;
if
(
$e
< 0)
{
$dot
=
''
;
# if _e is bigger than a scalar, the following will blow your memory
if
(
$e
<= -
$len
)
{
my
$r
=
abs
(
$e
) -
$len
;
$es
=
'0.'
. (
'0'
x
$r
) .
$es
;
$cad
= -(
$len
+
$r
);
}
else
{
substr
(
$es
,
$e
,0) =
'.'
;
$cad
=
$MBI
->_num(
$x
->{_e});
$cad
= -
$cad
if
$x
->{_es} eq
'-'
;
}
}
elsif
(
$e
> 0)
{
# expand with zeros
$es
.=
'0'
x
$e
;
$len
+=
$e
;
$cad
= 0;
}
}
# if not zero
$es
=
'-'
.
$es
if
$x
->{sign} eq
'-'
;
# if set accuracy or precision, pad with zeros on the right side
if
((
defined
$x
->{_a}) && (
$not_zero
))
{
# 123400 => 6, 0.1234 => 4, 0.001234 => 4
my
$zeros
=
$x
->{_a} -
$cad
;
# cad == 0 => 12340
$zeros
=
$x
->{_a} -
$len
if
$cad
!=
$len
;
$es
.=
$dot
.
'0'
x
$zeros
if
$zeros
> 0;
}
elsif
(((
$x
->{_p} || 0) < 0))
{
# 123400 => 6, 0.1234 => 4, 0.001234 => 6
my
$zeros
= -
$x
->{_p} +
$cad
;
$es
.=
$dot
.
'0'
x
$zeros
if
$zeros
> 0;
}
$es
;
}
sub
bsstr
{
# (ref to BFLOAT or num_str ) return num_str
# Convert number from internal format to scientific string format.
# internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
if
(
$x
->{sign} !~ /^[+-]$/)
{
return
$x
->{sign}
unless
$x
->{sign} eq
'+inf'
;
# -inf, NaN
return
'inf'
;
# +inf
}
my
$sep
=
'e'
.
$x
->{_es};
my
$sign
=
$x
->{sign};
$sign
=
''
if
$sign
eq
'+'
;
$sign
.
$MBI
->_str(
$x
->{_m}) .
$sep
.
$MBI
->_str(
$x
->{_e});
}
sub
numify
{
# Make a number from a BigFloat object
# simple return a string and let Perl's atoi()/atof() handle the rest
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
$x
->bsstr();
}
##############################################################################
# public stuff (usually prefixed with "b")
sub
bneg
{
# (BINT or num_str) return BINT
# negate number or make a negated number from string
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
return
$x
if
$x
->modify(
'bneg'
);
# for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
$x
->{sign} =~
tr
/+-/-+/
unless
(
$x
->{sign} eq
'+'
&&
$MBI
->_is_zero(
$x
->{_m}));
$x
;
}
# tels 2001-08-04
# XXX TODO this must be overwritten and return NaN for non-integer values
# band(), bior(), bxor(), too
#sub bnot
# {
# $class->SUPER::bnot($class,@_);
# }
sub
bcmp
{
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
# set up parameters
my
(
$self
,
$x
,
$y
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
) = objectify(2,
@_
);
}
return
$upgrade
->bcmp(
$x
,
$y
)
if
defined
$upgrade
&&
((!
$x
->isa(
$self
)) || (!
$y
->isa(
$self
)));
if
((
$x
->{sign} !~ /^[+-]$/) || (
$y
->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return
undef
if
((
$x
->{sign} eq
$nan
) || (
$y
->{sign} eq
$nan
));
return
0
if
(
$x
->{sign} eq
$y
->{sign}) && (
$x
->{sign} =~ /^[+-]inf$/);
return
+1
if
$x
->{sign} eq
'+inf'
;
return
-1
if
$x
->{sign} eq
'-inf'
;
return
-1
if
$y
->{sign} eq
'+inf'
;
return
+1;
}
# check sign for speed first
return
1
if
$x
->{sign} eq
'+'
&&
$y
->{sign} eq
'-'
;
# does also 0 <=> -y
return
-1
if
$x
->{sign} eq
'-'
&&
$y
->{sign} eq
'+'
;
# does also -x <=> 0
# shortcut
my
$xz
=
$x
->is_zero();
my
$yz
=
$y
->is_zero();
return
0
if
$xz
&&
$yz
;
# 0 <=> 0
return
-1
if
$xz
&&
$y
->{sign} eq
'+'
;
# 0 <=> +y
return
1
if
$yz
&&
$x
->{sign} eq
'+'
;
# +x <=> 0
# adjust so that exponents are equal
my
$lxm
=
$MBI
->_len(
$x
->{_m});
my
$lym
=
$MBI
->_len(
$y
->{_m});
# the numify somewhat limits our length, but makes it much faster
my
(
$xes
,
$yes
) = (1,1);
$xes
= -1
if
$x
->{_es} ne
'+'
;
$yes
= -1
if
$y
->{_es} ne
'+'
;
my
$lx
=
$lxm
+
$xes
*
$MBI
->_num(
$x
->{_e});
my
$ly
=
$lym
+
$yes
*
$MBI
->_num(
$y
->{_e});
my
$l
=
$lx
-
$ly
;
$l
= -
$l
if
$x
->{sign} eq
'-'
;
return
$l
<=> 0
if
$l
!= 0;
# lengths (corrected by exponent) are equal
# so make mantissa equal length by padding with zero (shift left)
my
$diff
=
$lxm
-
$lym
;
my
$xm
=
$x
->{_m};
# not yet copy it
my
$ym
=
$y
->{_m};
if
(
$diff
> 0)
{
$ym
=
$MBI
->_copy(
$y
->{_m});
$ym
=
$MBI
->_lsft(
$ym
,
$MBI
->_new(
$diff
), 10);
}
elsif
(
$diff
< 0)
{
$xm
=
$MBI
->_copy(
$x
->{_m});
$xm
=
$MBI
->_lsft(
$xm
,
$MBI
->_new(-
$diff
), 10);
}
my
$rc
=
$MBI
->_acmp(
$xm
,
$ym
);
$rc
= -
$rc
if
$x
->{sign} eq
'-'
;
# -124 < -123
$rc
<=> 0;
}
sub
bacmp
{
# Compares 2 values, ignoring their signs.
# Returns one of undef, <0, =0, >0. (suitable for sort)
# set up parameters
my
(
$self
,
$x
,
$y
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
) = objectify(2,
@_
);
}
return
$upgrade
->bacmp(
$x
,
$y
)
if
defined
$upgrade
&&
((!
$x
->isa(
$self
)) || (!
$y
->isa(
$self
)));
# handle +-inf and NaN's
if
(
$x
->{sign} !~ /^[+-]$/ ||
$y
->{sign} !~ /^[+-]$/)
{
return
undef
if
((
$x
->{sign} eq
$nan
) || (
$y
->{sign} eq
$nan
));
return
0
if
(
$x
->is_inf() &&
$y
->is_inf());
return
1
if
(
$x
->is_inf() && !
$y
->is_inf());
return
-1;
}
# shortcut
my
$xz
=
$x
->is_zero();
my
$yz
=
$y
->is_zero();
return
0
if
$xz
&&
$yz
;
# 0 <=> 0
return
-1
if
$xz
&& !
$yz
;
# 0 <=> +y
return
1
if
$yz
&& !
$xz
;
# +x <=> 0
# adjust so that exponents are equal
my
$lxm
=
$MBI
->_len(
$x
->{_m});
my
$lym
=
$MBI
->_len(
$y
->{_m});
my
(
$xes
,
$yes
) = (1,1);
$xes
= -1
if
$x
->{_es} ne
'+'
;
$yes
= -1
if
$y
->{_es} ne
'+'
;
# the numify somewhat limits our length, but makes it much faster
my
$lx
=
$lxm
+
$xes
*
$MBI
->_num(
$x
->{_e});
my
$ly
=
$lym
+
$yes
*
$MBI
->_num(
$y
->{_e});
my
$l
=
$lx
-
$ly
;
return
$l
<=> 0
if
$l
!= 0;
# lengths (corrected by exponent) are equal
# so make mantissa equal-length by padding with zero (shift left)
my
$diff
=
$lxm
-
$lym
;
my
$xm
=
$x
->{_m};
# not yet copy it
my
$ym
=
$y
->{_m};
if
(
$diff
> 0)
{
$ym
=
$MBI
->_copy(
$y
->{_m});
$ym
=
$MBI
->_lsft(
$ym
,
$MBI
->_new(
$diff
), 10);
}
elsif
(
$diff
< 0)
{
$xm
=
$MBI
->_copy(
$x
->{_m});
$xm
=
$MBI
->_lsft(
$xm
,
$MBI
->_new(-
$diff
), 10);
}
$MBI
->_acmp(
$xm
,
$ym
);
}
sub
badd
{
# add second arg (BFLOAT or string) to first (BFLOAT) (modifies first)
# return result as BFLOAT
# set up parameters
my
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = objectify(2,
@_
);
}
# inf and NaN handling
if
((
$x
->{sign} !~ /^[+-]$/) || (
$y
->{sign} !~ /^[+-]$/))
{
# NaN first
return
$x
->bnan()
if
((
$x
->{sign} eq
$nan
) || (
$y
->{sign} eq
$nan
));
# inf handling
if
((
$x
->{sign} =~ /^[+-]inf$/) && (
$y
->{sign} =~ /^[+-]inf$/))
{
# +inf++inf or -inf+-inf => same, rest is NaN
return
$x
if
$x
->{sign} eq
$y
->{sign};
return
$x
->bnan();
}
# +-inf + something => +inf; something +-inf => +-inf
$x
->{sign} =
$y
->{sign},
return
$x
if
$y
->{sign} =~ /^[+-]inf$/;
return
$x
;
}
return
$upgrade
->badd(
$x
,
$y
,
$a
,
$p
,
$r
)
if
defined
$upgrade
&&
((!
$x
->isa(
$self
)) || (!
$y
->isa(
$self
)));
# speed: no add for 0+y or x+0
return
$x
->bround(
$a
,
$p
,
$r
)
if
$y
->is_zero();
# x+0
if
(
$x
->is_zero())
# 0+y
{
# make copy, clobbering up x (modify in place!)
$x
->{_e} =
$MBI
->_copy(
$y
->{_e});
$x
->{_es} =
$y
->{_es};
$x
->{_m} =
$MBI
->_copy(
$y
->{_m});
$x
->{sign} =
$y
->{sign} ||
$nan
;
return
$x
->round(
$a
,
$p
,
$r
,
$y
);
}
# take lower of the two e's and adapt m1 to it to match m2
my
$e
=
$y
->{_e};
$e
=
$MBI
->_zero()
if
!
defined
$e
;
# if no BFLOAT?
$e
=
$MBI
->_copy(
$e
);
# make copy (didn't do it yet)
my
$es
;
(
$e
,
$es
) = _e_sub(
$e
,
$x
->{_e},
$y
->{_es} ||
'+'
,
$x
->{_es});
my
$add
=
$MBI
->_copy(
$y
->{_m});
if
(
$es
eq
'-'
)
# < 0
{
$MBI
->_lsft(
$x
->{_m},
$e
, 10);
(
$x
->{_e},
$x
->{_es}) = _e_add(
$x
->{_e},
$e
,
$x
->{_es},
$es
);
}
elsif
(!
$MBI
->_is_zero(
$e
))
# > 0
{
$MBI
->_lsft(
$add
,
$e
, 10);
}
# else: both e are the same, so just leave them
if
(
$x
->{sign} eq
$y
->{sign})
{
# add
$x
->{_m} =
$MBI
->_add(
$x
->{_m},
$add
);
}
else
{
(
$x
->{_m},
$x
->{sign}) =
_e_add(
$x
->{_m},
$add
,
$x
->{sign},
$y
->{sign});
}
# delete trailing zeros, then round
$x
->bnorm()->round(
$a
,
$p
,
$r
,
$y
);
}
# sub bsub is inherited from Math::BigInt!
sub
binc
{
# increment arg by one
my
(
$self
,
$x
,
@r
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
@_
) : objectify(1,
@_
);
if
(
$x
->{_es} eq
'-'
)
{
return
$x
->badd(
$self
->bone(),
@r
);
# digits after dot
}
if
(!
$MBI
->_is_zero(
$x
->{_e}))
# _e == 0 for NaN, inf, -inf
{
# 1e2 => 100, so after the shift below _m has a '0' as last digit
$x
->{_m} =
$MBI
->_lsft(
$x
->{_m},
$x
->{_e},10);
# 1e2 => 100
$x
->{_e} =
$MBI
->_zero();
# normalize
$x
->{_es} =
'+'
;
# we know that the last digit of $x will be '1' or '9', depending on the
# sign
}
# now $x->{_e} == 0
if
(
$x
->{sign} eq
'+'
)
{
$MBI
->_inc(
$x
->{_m});
return
$x
->bnorm()->bround(
@r
);
}
elsif
(
$x
->{sign} eq
'-'
)
{
$MBI
->_dec(
$x
->{_m});
$x
->{sign} =
'+'
if
$MBI
->_is_zero(
$x
->{_m});
# -1 +1 => -0 => +0
return
$x
->bnorm()->bround(
@r
);
}
# inf, nan handling etc
$x
->badd(
$self
->bone(),
@r
);
# badd() does round
}
sub
bdec
{
# decrement arg by one
my
(
$self
,
$x
,
@r
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
@_
) : objectify(1,
@_
);
if
(
$x
->{_es} eq
'-'
)
{
return
$x
->badd(
$self
->bone(
'-'
),
@r
);
# digits after dot
}
if
(!
$MBI
->_is_zero(
$x
->{_e}))
{
$x
->{_m} =
$MBI
->_lsft(
$x
->{_m},
$x
->{_e},10);
# 1e2 => 100
$x
->{_e} =
$MBI
->_zero();
# normalize
$x
->{_es} =
'+'
;
}
# now $x->{_e} == 0
my
$zero
=
$x
->is_zero();
# <= 0
if
((
$x
->{sign} eq
'-'
) ||
$zero
)
{
$MBI
->_inc(
$x
->{_m});
$x
->{sign} =
'-'
if
$zero
;
# 0 => 1 => -1
$x
->{sign} =
'+'
if
$MBI
->_is_zero(
$x
->{_m});
# -1 +1 => -0 => +0
return
$x
->bnorm()->round(
@r
);
}
# > 0
elsif
(
$x
->{sign} eq
'+'
)
{
$MBI
->_dec(
$x
->{_m});
return
$x
->bnorm()->round(
@r
);
}
# inf, nan handling etc
$x
->badd(
$self
->bone(
'-'
),
@r
);
# does round
}
sub
DEBUG () { 0; }
sub
blog
{
my
(
$self
,
$x
,
$base
,
$a
,
$p
,
$r
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
@_
) : objectify(1,
@_
);
# $base > 0, $base != 1; if $base == undef default to $base == e
# $x >= 0
# we need to limit the accuracy to protect against overflow
my
$fallback
= 0;
my
(
$scale
,
@params
);
(
$x
,
@params
) =
$x
->_find_round_parameters(
$a
,
$p
,
$r
);
# also takes care of the "error in _find_round_parameters?" case
return
$x
->bnan()
if
$x
->{sign} ne
'+'
||
$x
->is_zero();
# no rounding at all, so must use fallback
if
(
scalar
@params
== 0)
{
# simulate old behaviour
$params
[0] =
$self
->div_scale();
# and round to it as accuracy
$params
[1] =
undef
;
# P = undef
$scale
=
$params
[0]+4;
# at least four more for proper round
$params
[2] =
$r
;
# round mode by caller or undef
$fallback
= 1;
# to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale
=
abs
(
$params
[0] ||
$params
[1]) + 4;
# take whatever is defined
}
return
$x
->bzero(
@params
)
if
$x
->is_one();
# base not defined => base == Euler's constant e
if
(
defined
$base
)
{
# make object, since we don't feed it through objectify() to still get the
# case of $base == undef
$base
=
$self
->new(
$base
)
unless
ref
(
$base
);
# $base > 0; $base != 1
return
$x
->bnan()
if
$base
->is_zero() ||
$base
->is_one() ||
$base
->{sign} ne
'+'
;
# if $x == $base, we know the result must be 1.0
if
(
$x
->bcmp(
$base
) == 0)
{
$x
->bone(
'+'
,
@params
);
if
(
$fallback
)
{
# clear a/p after round, since user did not request it
delete
$x
->{_a};
delete
$x
->{_p};
}
return
$x
;
}
}
# when user set globals, they would interfere with our calculation, so
# disable them and later re-enable them
no
strict
'refs'
;
my
$abr
=
"$self\::accuracy"
;
my
$ab
=
$$abr
;
$$abr
=
undef
;
my
$pbr
=
"$self\::precision"
;
my
$pb
=
$$pbr
;
$$pbr
=
undef
;
# we also need to disable any set A or P on $x (_find_round_parameters took
# them already into account), since these would interfere, too
delete
$x
->{_a};
delete
$x
->{_p};
# need to disable $upgrade in BigInt, to avoid deep recursion
local
$Math::BigInt::upgrade
=
undef
;
local
$Math::BigFloat::downgrade
=
undef
;
# upgrade $x if $x is not a BigFloat (handle BigInt input)
if
(!
$x
->isa(
'Math::BigFloat'
))
{
$x
= Math::BigFloat->new(
$x
);
$self
=
ref
(
$x
);
}
my
$done
= 0;
# If the base is defined and an integer, try to calculate integer result
# first. This is very fast, and in case the real result was found, we can
# stop right here.
if
(
defined
$base
&&
$base
->is_int() &&
$x
->is_int())
{
my
$i
=
$MBI
->_copy(
$x
->{_m} );
$MBI
->_lsft(
$i
,
$x
->{_e}, 10 )
unless
$MBI
->_is_zero(
$x
->{_e});
my
$int
= Math::BigInt->bzero();
$int
->{value} =
$i
;
$int
->blog(
$base
->as_number());
# if ($exact)
if
(
$base
->as_number()->bpow(
$int
) ==
$x
)
{
# found result, return it
$x
->{_m} =
$int
->{value};
$x
->{_e} =
$MBI
->_zero();
$x
->{_es} =
'+'
;
$x
->bnorm();
$done
= 1;
}
}
if
(
$done
== 0)
{
# first calculate the log to base e (using reduction by 10 (and probably 2))
$self
->_log_10(
$x
,
$scale
);
# and if a different base was requested, convert it
if
(
defined
$base
)
{
$base
= Math::BigFloat->new(
$base
)
unless
$base
->isa(
'Math::BigFloat'
);
# not ln, but some other base (don't modify $base)
$x
->bdiv(
$base
->copy()->blog(
undef
,
$scale
),
$scale
);
}
}
# shortcut to not run through _find_round_parameters again
if
(
defined
$params
[0])
{
$x
->bround(
$params
[0],
$params
[2]);
# then round accordingly
}
else
{
$x
->bfround(
$params
[1],
$params
[2]);
# then round accordingly
}
if
(
$fallback
)
{
# clear a/p after round, since user did not request it
delete
$x
->{_a};
delete
$x
->{_p};
}
# restore globals
$$abr
=
$ab
;
$$pbr
=
$pb
;
$x
;
}
sub
_log
{
# internal log function to calculate ln() based on Taylor series.
# Modifies $x in place.
my
(
$self
,
$x
,
$scale
) =
@_
;
# in case of $x == 1, result is 0
return
$x
->bzero()
if
$x
->is_one();
# u = x-1, v = x+1
# _ _
# Taylor: | u 1 u^3 1 u^5 |
# ln (x) = 2 | --- + - * --- + - * --- + ... | x > 0
# |_ v 3 v^3 5 v^5 _|
# This takes much more steps to calculate the result and is thus not used
# u = x-1
# _ _
# Taylor: | u 1 u^2 1 u^3 |
# ln (x) = 2 | --- + - * --- + - * --- + ... | x > 1/2
# |_ x 2 x^2 3 x^3 _|
my
(
$limit
,
$v
,
$u
,
$below
,
$factor
,
$two
,
$next
,
$over
,
$f
);
$v
=
$x
->copy();
$v
->binc();
# v = x+1
$x
->bdec();
$u
=
$x
->copy();
# u = x-1; x = x-1
$x
->bdiv(
$v
,
$scale
);
# first term: u/v
$below
=
$v
->copy();
$over
=
$u
->copy();
$u
*=
$u
;
$v
*=
$v
;
# u^2, v^2
$below
->bmul(
$v
);
# u^3, v^3
$over
->bmul(
$u
);
$factor
=
$self
->new(3);
$f
=
$self
->new(2);
my
$steps
= 0
if
DEBUG;
$limit
=
$self
->new(
"1E-"
. (
$scale
-1));
while
(3 < 5)
{
# we calculate the next term, and add it to the last
# when the next term is below our limit, it won't affect the outcome
# anymore, so we stop
# calculating the next term simple from over/below will result in quite
# a time hog if the input has many digits, since over and below will
# accumulate more and more digits, and the result will also have many
# digits, but in the end it is rounded to $scale digits anyway. So if we
# round $over and $below first, we save a lot of time for the division
# (not with log(1.2345), but try log (123**123) to see what I mean. This
# can introduce a rounding error if the division result would be f.i.
# 0.1234500000001 and we round it to 5 digits it would become 0.12346, but
# if we truncated $over and $below we might get 0.12345. Does this matter
# for the end result? So we give $over and $below 4 more digits to be
# on the safe side (unscientific error handling as usual... :+D
$next
=
$over
->copy->bround(
$scale
+4)->bdiv(
$below
->copy->bmul(
$factor
)->bround(
$scale
+4),
$scale
);
## old version:
## $next = $over->copy()->bdiv($below->copy()->bmul($factor),$scale);
last
if
$next
->bacmp(
$limit
) <= 0;
delete
$next
->{_a};
delete
$next
->{_p};
$x
->badd(
$next
);
# calculate things for the next term
$over
*=
$u
;
$below
*=
$v
;
$factor
->badd(
$f
);
if
(DEBUG)
{
$steps
++;
"step $steps = $x\n"
if
$steps
% 10 == 0;
}
}
$x
->bmul(
$f
);
# $x *= 2
"took $steps steps\n"
if
DEBUG;
}
sub
_log_10
{
# Internal log function based on reducing input to the range of 0.1 .. 9.99
# and then "correcting" the result to the proper one. Modifies $x in place.
my
(
$self
,
$x
,
$scale
) =
@_
;
# taking blog() from numbers greater than 10 takes a *very long* time, so we
# break the computation down into parts based on the observation that:
# blog(x*y) = blog(x) + blog(y)
# We set $y here to multiples of 10 so that $x is below 1 (the smaller $x is
# the faster it get's, especially because 2*$x takes about 10 times as long,
# so by dividing $x by 10 we make it at least factor 100 faster...)
# The same observation is valid for numbers smaller than 0.1 (e.g. computing
# log(1) is fastest, and the farther away we get from 1, the longer it takes)
# so we also 'break' this down by multiplying $x with 10 and subtract the
# log(10) afterwards to get the correct result.
# calculate nr of digits before dot
my
$dbd
=
$MBI
->_num(
$x
->{_e});
$dbd
= -
$dbd
if
$x
->{_es} eq
'-'
;
$dbd
+=
$MBI
->_len(
$x
->{_m});
# more than one digit (e.g. at least 10), but *not* exactly 10 to avoid
# infinite recursion
my
$calc
= 1;
# do some calculation?
# disable the shortcut for 10, since we need log(10) and this would recurse
# infinitely deep
if
(
$x
->{_es} eq
'+'
&&
$MBI
->_is_one(
$x
->{_e}) &&
$MBI
->_is_one(
$x
->{_m}))
{
$dbd
= 0;
# disable shortcut
# we can use the cached value in these cases
if
(
$scale
<=
$LOG_10_A
)
{
$x
->bzero();
$x
->badd(
$LOG_10
);
$calc
= 0;
# no need to calc, but round
}
}
else
{
# disable the shortcut for 2, since we maybe have it cached
if
((
$MBI
->_is_zero(
$x
->{_e}) &&
$MBI
->_is_two(
$x
->{_m})))
{
$dbd
= 0;
# disable shortcut
# we can use the cached value in these cases
if
(
$scale
<=
$LOG_2_A
)
{
$x
->bzero();
$x
->badd(
$LOG_2
);
$calc
= 0;
# no need to calc, but round
}
}
}
# if $x = 0.1, we know the result must be 0-log(10)
if
(
$calc
!= 0 &&
$x
->{_es} eq
'-'
&&
$MBI
->_is_one(
$x
->{_e}) &&
$MBI
->_is_one(
$x
->{_m}))
{
$dbd
= 0;
# disable shortcut
# we can use the cached value in these cases
if
(
$scale
<=
$LOG_10_A
)
{
$x
->bzero();
$x
->bsub(
$LOG_10
);
$calc
= 0;
# no need to calc, but round
}
}
return
if
$calc
== 0;
# already have the result
# default: these correction factors are undef and thus not used
my
$l_10
;
# value of ln(10) to A of $scale
my
$l_2
;
# value of ln(2) to A of $scale
# $x == 2 => 1, $x == 13 => 2, $x == 0.1 => 0, $x == 0.01 => -1
# so don't do this shortcut for 1 or 0
if
((
$dbd
> 1) || (
$dbd
< 0))
{
# convert our cached value to an object if not already (avoid doing this
# at import() time, since not everybody needs this)
$LOG_10
=
$self
->new(
$LOG_10
,
undef
,
undef
)
unless
ref
$LOG_10
;
#print "x = $x, dbd = $dbd, calc = $calc\n";
# got more than one digit before the dot, or more than one zero after the
# dot, so do:
# log(123) == log(1.23) + log(10) * 2
# log(0.0123) == log(1.23) - log(10) * 2
if
(
$scale
<=
$LOG_10_A
)
{
# use cached value
$l_10
=
$LOG_10
->copy();
# copy for mul
}
else
{
# else: slower, compute it (but don't cache it, because it could be big)
# also disable downgrade for this code path
local
$Math::BigFloat::downgrade
=
undef
;
$l_10
=
$self
->new(10)->blog(
undef
,
$scale
);
# scale+4, actually
}
$dbd
--
if
(
$dbd
> 1);
# 20 => dbd=2, so make it dbd=1
$l_10
->bmul(
$self
->new(
$dbd
));
# log(10) * (digits_before_dot-1)
my
$dbd_sign
=
'+'
;
if
(
$dbd
< 0)
{
$dbd
= -
$dbd
;
$dbd_sign
=
'-'
;
}
(
$x
->{_e},
$x
->{_es}) =
_e_sub(
$x
->{_e},
$MBI
->_new(
$dbd
),
$x
->{_es},
$dbd_sign
);
# 123 => 1.23
}
# Now: 0.1 <= $x < 10 (and possible correction in l_10)
### Since $x in the range 0.5 .. 1.5 is MUCH faster, we do a repeated div
### or mul by 2 (maximum times 3, since x < 10 and x > 0.1)
$HALF
=
$self
->new(
$HALF
)
unless
ref
(
$HALF
);
my
$twos
= 0;
# default: none (0 times)
my
$two
=
$self
->new(2);
while
(
$x
->bacmp(
$HALF
) <= 0)
{
$twos
--;
$x
->bmul(
$two
);
}
while
(
$x
->bacmp(
$two
) >= 0)
{
$twos
++;
$x
->bdiv(
$two
,
$scale
+4);
# keep all digits
}
# $twos > 0 => did mul 2, < 0 => did div 2 (never both)
# calculate correction factor based on ln(2)
if
(
$twos
!= 0)
{
$LOG_2
=
$self
->new(
$LOG_2
,
undef
,
undef
)
unless
ref
$LOG_2
;
if
(
$scale
<=
$LOG_2_A
)
{
# use cached value
$l_2
=
$LOG_2
->copy();
# copy for mul
}
else
{
# else: slower, compute it (but don't cache it, because it could be big)
# also disable downgrade for this code path
local
$Math::BigFloat::downgrade
=
undef
;
$l_2
=
$two
->blog(
undef
,
$scale
);
# scale+4, actually
}
$l_2
->bmul(
$twos
);
# * -2 => subtract, * 2 => add
}
$self
->_log(
$x
,
$scale
);
# need to do the "normal" way
$x
->badd(
$l_10
)
if
defined
$l_10
;
# correct it by ln(10)
$x
->badd(
$l_2
)
if
defined
$l_2
;
# and maybe by ln(2)
# all done, $x contains now the result
}
sub
blcm
{
# (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
# does not modify arguments, but returns new object
# Lowest Common Multiplicator
my
(
$self
,
@arg
) = objectify(0,
@_
);
my
$x
=
$self
->new(
shift
@arg
);
while
(
@arg
) {
$x
= Math::BigInt::__lcm(
$x
,
shift
@arg
); }
$x
;
}
sub
bgcd
{
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
my
$y
=
shift
;
$y
= __PACKAGE__->new(
$y
)
if
!
ref
(
$y
);
my
$self
=
ref
(
$y
);
my
$x
=
$y
->copy()->babs();
# keep arguments
return
$x
->bnan()
if
$x
->{sign} !~ /^[+-]$/
# x NaN?
|| !
$x
->is_int();
# only for integers now
while
(
@_
)
{
my
$t
=
shift
;
$t
=
$self
->new(
$t
)
if
!
ref
(
$t
);
$y
=
$t
->copy()->babs();
return
$x
->bnan()
if
$y
->{sign} !~ /^[+-]$/
# y NaN?
|| !
$y
->is_int();
# only for integers now
# greatest common divisor
while
(!
$y
->is_zero())
{
(
$x
,
$y
) = (
$y
->copy(),
$x
->copy()->bmod(
$y
));
}
last
if
$x
->is_one();
}
$x
;
}
##############################################################################
sub
_e_add
{
# Internal helper sub to take two positive integers and their signs and
# then add them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
# output ($CALC,('+'|'-'))
my
(
$x
,
$y
,
$xs
,
$ys
) =
@_
;
# if the signs are equal we can add them (-5 + -3 => -(5 + 3) => -8)
if
(
$xs
eq
$ys
)
{
$x
=
$MBI
->_add (
$x
,
$y
);
# a+b
# the sign follows $xs
return
(
$x
,
$xs
);
}
my
$a
=
$MBI
->_acmp(
$x
,
$y
);
if
(
$a
> 0)
{
$x
=
$MBI
->_sub (
$x
,
$y
);
# abs sub
}
elsif
(
$a
== 0)
{
$x
=
$MBI
->_zero();
# result is 0
$xs
=
'+'
;
}
else
# a < 0
{
$x
=
$MBI
->_sub (
$y
,
$x
, 1 );
# abs sub
$xs
=
$ys
;
}
(
$x
,
$xs
);
}
sub
_e_sub
{
# Internal helper sub to take two positive integers and their signs and
# then subtract them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
# output ($CALC,('+'|'-'))
my
(
$x
,
$y
,
$xs
,
$ys
) =
@_
;
# flip sign
$ys
=~
tr
/+-/-+/;
_e_add(
$x
,
$y
,
$xs
,
$ys
);
# call add (does subtract now)
}
###############################################################################
# is_foo methods (is_negative, is_positive are inherited from BigInt)
sub
is_int
{
# return true if arg (BFLOAT or num_str) is an integer
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
return
1
if
(
$x
->{sign} =~ /^[+-]$/) &&
# NaN and +-inf aren't
$x
->{_es} eq
'+'
;
# 1e-1 => no integer
0;
}
sub
is_zero
{
# return true if arg (BFLOAT or num_str) is zero
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
return
1
if
$x
->{sign} eq
'+'
&&
$MBI
->_is_zero(
$x
->{_m});
0;
}
sub
is_one
{
# return true if arg (BFLOAT or num_str) is +1 or -1 if signis given
my
(
$self
,
$x
,
$sign
) =
ref
(
$_
[0]) ? (
undef
,
@_
) : objectify(1,
@_
);
$sign
=
'+'
if
!
defined
$sign
||
$sign
ne
'-'
;
return
1
if
(
$x
->{sign} eq
$sign
&&
$MBI
->_is_zero(
$x
->{_e}) &&
$MBI
->_is_one(
$x
->{_m}));
0;
}
sub
is_odd
{
# return true if arg (BFLOAT or num_str) is odd or false if even
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
return
1
if
(
$x
->{sign} =~ /^[+-]$/) &&
# NaN & +-inf aren't
(
$MBI
->_is_zero(
$x
->{_e}) &&
$MBI
->_is_odd(
$x
->{_m}));
0;
}
sub
is_even
{
# return true if arg (BINT or num_str) is even or false if odd
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
return
0
if
$x
->{sign} !~ /^[+-]$/;
# NaN & +-inf aren't
return
1
if
(
$x
->{_es} eq
'+'
# 123.45 is never
&&
$MBI
->_is_even(
$x
->{_m}));
# but 1200 is
0;
}
sub
bmul
{
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = objectify(2,
@_
);
}
return
$x
->bnan()
if
((
$x
->{sign} eq
$nan
) || (
$y
->{sign} eq
$nan
));
# inf handling
if
((
$x
->{sign} =~ /^[+-]inf$/) || (
$y
->{sign} =~ /^[+-]inf$/))
{
return
$x
->bnan()
if
$x
->is_zero() ||
$y
->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return
$x
->binf()
if
(
$x
->{sign} =~ /^\+/ &&
$y
->{sign} =~ /^\+/);
return
$x
->binf()
if
(
$x
->{sign} =~ /^-/ &&
$y
->{sign} =~ /^-/);
return
$x
->binf(
'-'
);
}
# handle result = 0
return
$x
->bzero()
if
$x
->is_zero() ||
$y
->is_zero();
return
$upgrade
->bmul(
$x
,
$y
,
$a
,
$p
,
$r
)
if
defined
$upgrade
&&
((!
$x
->isa(
$self
)) || (!
$y
->isa(
$self
)));
# aEb * cEd = (a*c)E(b+d)
$MBI
->_mul(
$x
->{_m},
$y
->{_m});
(
$x
->{_e},
$x
->{_es}) = _e_add(
$x
->{_e},
$y
->{_e},
$x
->{_es},
$y
->{_es});
# adjust sign:
$x
->{sign} =
$x
->{sign} ne
$y
->{sign} ?
'-'
:
'+'
;
return
$x
->bnorm()->round(
$a
,
$p
,
$r
,
$y
);
}
sub
bdiv
{
# (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return
# (BFLOAT,BFLOAT) (quo,rem) or BFLOAT (only rem)
# set up parameters
my
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = objectify(2,
@_
);
}
return
$self
->_div_inf(
$x
,
$y
)
if
((
$x
->{sign} !~ /^[+-]$/) || (
$y
->{sign} !~ /^[+-]$/) ||
$y
->is_zero());
# x== 0 # also: or y == 1 or y == -1
return
wantarray
? (
$x
,
$self
->bzero()) :
$x
if
$x
->is_zero();
# upgrade ?
return
$upgrade
->bdiv(
$upgrade
->new(
$x
),
$y
,
$a
,
$p
,
$r
)
if
defined
$upgrade
;
# we need to limit the accuracy to protect against overflow
my
$fallback
= 0;
my
(
@params
,
$scale
);
(
$x
,
@params
) =
$x
->_find_round_parameters(
$a
,
$p
,
$r
,
$y
);
return
$x
if
$x
->is_nan();
# error in _find_round_parameters?
# no rounding at all, so must use fallback
if
(
scalar
@params
== 0)
{
# simulate old behaviour
$params
[0] =
$self
->div_scale();
# and round to it as accuracy
$scale
=
$params
[0]+4;
# at least four more for proper round
$params
[2] =
$r
;
# round mode by caller or undef
$fallback
= 1;
# to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale
=
abs
(
$params
[0] ||
$params
[1]) + 4;
# take whatever is defined
}
my
$rem
;
$rem
=
$self
->bzero()
if
wantarray
;
$y
=
$self
->new(
$y
)
unless
$y
->isa(
'Math::BigFloat'
);
my
$lx
=
$MBI
->_len(
$x
->{_m});
my
$ly
=
$MBI
->_len(
$y
->{_m});
$scale
=
$lx
if
$lx
>
$scale
;
$scale
=
$ly
if
$ly
>
$scale
;
my
$diff
=
$ly
-
$lx
;
$scale
+=
$diff
if
$diff
> 0;
# if lx << ly, but not if ly << lx!
# already handled inf/NaN/-inf above:
# check that $y is not 1 nor -1 and cache the result:
my
$y_not_one
= !(
$MBI
->_is_zero(
$y
->{_e}) &&
$MBI
->_is_one(
$y
->{_m}));
# flipping the sign of $y will also flip the sign of $x for the special
# case of $x->bsub($x); so we can catch it below:
my
$xsign
=
$x
->{sign};
$y
->{sign} =~
tr
/+-/-+/;
if
(
$xsign
ne
$x
->{sign})
{
# special case of $x /= $x results in 1
$x
->bone();
# "fixes" also sign of $y, since $x is $y
}
else
{
# correct $y's sign again
$y
->{sign} =~
tr
/+-/-+/;
# continue with normal div code:
# make copy of $x in case of list context for later reminder calculation
if
(
wantarray
&&
$y_not_one
)
{
$rem
=
$x
->copy();
}
$x
->{sign} =
$x
->{sign} ne
$y
->sign() ?
'-'
:
'+'
;
# check for / +-1 ( +/- 1E0)
if
(
$y_not_one
)
{
# promote BigInts and it's subclasses (except when already a BigFloat)
$y
=
$self
->new(
$y
)
unless
$y
->isa(
'Math::BigFloat'
);
# calculate the result to $scale digits and then round it
# a * 10 ** b / c * 10 ** d => a/c * 10 ** (b-d)
$MBI
->_lsft(
$x
->{_m},
$MBI
->_new(
$scale
),10);
$MBI
->_div (
$x
->{_m},
$y
->{_m});
# a/c
# correct exponent of $x
(
$x
->{_e},
$x
->{_es}) = _e_sub(
$x
->{_e},
$y
->{_e},
$x
->{_es},
$y
->{_es});
# correct for 10**scale
(
$x
->{_e},
$x
->{_es}) = _e_sub(
$x
->{_e},
$MBI
->_new(
$scale
),
$x
->{_es},
'+'
);
$x
->bnorm();
# remove trailing 0's
}
}
# ende else $x != $y
# shortcut to not run through _find_round_parameters again
if
(
defined
$params
[0])
{
delete
$x
->{_a};
# clear before round
$x
->bround(
$params
[0],
$params
[2]);
# then round accordingly
}
else
{
delete
$x
->{_p};
# clear before round
$x
->bfround(
$params
[1],
$params
[2]);
# then round accordingly
}
if
(
$fallback
)
{
# clear a/p after round, since user did not request it
delete
$x
->{_a};
delete
$x
->{_p};
}
if
(
wantarray
)
{
if
(
$y_not_one
)
{
$rem
->bmod(
$y
,
@params
);
# copy already done
}
if
(
$fallback
)
{
# clear a/p after round, since user did not request it
delete
$rem
->{_a};
delete
$rem
->{_p};
}
return
(
$x
,
$rem
);
}
$x
;
}
sub
bmod
{
# (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return reminder
# set up parameters
my
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = objectify(2,
@_
);
}
# handle NaN, inf, -inf
if
((
$x
->{sign} !~ /^[+-]$/) || (
$y
->{sign} !~ /^[+-]$/))
{
my
(
$d
,
$re
) =
$self
->SUPER::_div_inf(
$x
,
$y
);
$x
->{sign} =
$re
->{sign};
$x
->{_e} =
$re
->{_e};
$x
->{_m} =
$re
->{_m};
return
$x
->round(
$a
,
$p
,
$r
,
$y
);
}
if
(
$y
->is_zero())
{
return
$x
->bnan()
if
$x
->is_zero();
return
$x
;
}
return
$x
->bzero()
if
$x
->is_zero()
|| (
$x
->is_int() &&
# check that $y == +1 or $y == -1:
(
$MBI
->_is_zero(
$y
->{_e}) &&
$MBI
->_is_one(
$y
->{_m})));
my
$cmp
=
$x
->bacmp(
$y
);
# equal or $x < $y?
return
$x
->bzero(
$a
,
$p
)
if
$cmp
== 0;
# $x == $y => result 0
# only $y of the operands negative?
my
$neg
= 0;
$neg
= 1
if
$x
->{sign} ne
$y
->{sign};
$x
->{sign} =
$y
->{sign};
# calc sign first
return
$x
->round(
$a
,
$p
,
$r
)
if
$cmp
< 0 &&
$neg
== 0;
# $x < $y => result $x
my
$ym
=
$MBI
->_copy(
$y
->{_m});
# 2e1 => 20
$MBI
->_lsft(
$ym
,
$y
->{_e}, 10)
if
$y
->{_es} eq
'+'
&& !
$MBI
->_is_zero(
$y
->{_e});
# if $y has digits after dot
my
$shifty
= 0;
# correct _e of $x by this
if
(
$y
->{_es} eq
'-'
)
# has digits after dot
{
# 123 % 2.5 => 1230 % 25 => 5 => 0.5
$shifty
=
$MBI
->_num(
$y
->{_e});
# no more digits after dot
$MBI
->_lsft(
$x
->{_m},
$y
->{_e}, 10);
# 123 => 1230, $y->{_m} is already 25
}
# $ym is now mantissa of $y based on exponent 0
my
$shiftx
= 0;
# correct _e of $x by this
if
(
$x
->{_es} eq
'-'
)
# has digits after dot
{
# 123.4 % 20 => 1234 % 200
$shiftx
=
$MBI
->_num(
$x
->{_e});
# no more digits after dot
$MBI
->_lsft(
$ym
,
$x
->{_e}, 10);
# 123 => 1230
}
# 123e1 % 20 => 1230 % 20
if
(
$x
->{_es} eq
'+'
&& !
$MBI
->_is_zero(
$x
->{_e}))
{
$MBI
->_lsft(
$x
->{_m},
$x
->{_e},10);
# es => '+' here
}
$x
->{_e} =
$MBI
->_new(
$shiftx
);
$x
->{_es} =
'+'
;
$x
->{_es} =
'-'
if
$shiftx
!= 0 ||
$shifty
!= 0;
$MBI
->_add(
$x
->{_e},
$MBI
->_new(
$shifty
))
if
$shifty
!= 0;
# now mantissas are equalized, exponent of $x is adjusted, so calc result
$x
->{_m} =
$MBI
->_mod(
$x
->{_m},
$ym
);
$x
->{sign} =
'+'
if
$MBI
->_is_zero(
$x
->{_m});
# fix sign for -0
$x
->bnorm();
if
(
$neg
!= 0)
# one of them negative => correct in place
{
my
$r
=
$y
-
$x
;
$x
->{_m} =
$r
->{_m};
$x
->{_e} =
$r
->{_e};
$x
->{_es} =
$r
->{_es};
$x
->{sign} =
'+'
if
$MBI
->_is_zero(
$x
->{_m});
# fix sign for -0
$x
->bnorm();
}
$x
->round(
$a
,
$p
,
$r
,
$y
);
# round and return
}
sub
broot
{
# calculate $y'th root of $x
# set up parameters
my
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = objectify(2,
@_
);
}
# NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
return
$x
->bnan()
if
$x
->{sign} !~ /^\+/ ||
$y
->is_zero() ||
$y
->{sign} !~ /^\+$/;
return
$x
if
$x
->is_zero() ||
$x
->is_one() ||
$x
->is_inf() ||
$y
->is_one();
# we need to limit the accuracy to protect against overflow
my
$fallback
= 0;
my
(
@params
,
$scale
);
(
$x
,
@params
) =
$x
->_find_round_parameters(
$a
,
$p
,
$r
);
return
$x
if
$x
->is_nan();
# error in _find_round_parameters?
# no rounding at all, so must use fallback
if
(
scalar
@params
== 0)
{
# simulate old behaviour
$params
[0] =
$self
->div_scale();
# and round to it as accuracy
$scale
=
$params
[0]+4;
# at least four more for proper round
$params
[2] =
$r
;
# iound mode by caller or undef
$fallback
= 1;
# to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale
=
abs
(
$params
[0] ||
$params
[1]) + 4;
# take whatever is defined
}
# when user set globals, they would interfere with our calculation, so
# disable them and later re-enable them
no
strict
'refs'
;
my
$abr
=
"$self\::accuracy"
;
my
$ab
=
$$abr
;
$$abr
=
undef
;
my
$pbr
=
"$self\::precision"
;
my
$pb
=
$$pbr
;
$$pbr
=
undef
;
# we also need to disable any set A or P on $x (_find_round_parameters took
# them already into account), since these would interfere, too
delete
$x
->{_a};
delete
$x
->{_p};
# need to disable $upgrade in BigInt, to avoid deep recursion
local
$Math::BigInt::upgrade
=
undef
;
# should be really parent class vs MBI
# remember sign and make $x positive, since -4 ** (1/2) => -2
my
$sign
= 0;
$sign
= 1
if
$x
->{sign} eq
'-'
;
$x
->{sign} =
'+'
;
my
$is_two
= 0;
if
(
$y
->isa(
'Math::BigFloat'
))
{
$is_two
= (
$y
->{sign} eq
'+'
&&
$MBI
->_is_two(
$y
->{_m}) &&
$MBI
->_is_zero(
$y
->{_e}));
}
else
{
$is_two
= (
$y
== 2);
}
# normal square root if $y == 2:
if
(
$is_two
)
{
$x
->bsqrt(
$scale
+4);
}
elsif
(
$y
->is_one(
'-'
))
{
# $x ** -1 => 1/$x
my
$u
=
$self
->bone()->bdiv(
$x
,
$scale
);
# copy private parts over
$x
->{_m} =
$u
->{_m};
$x
->{_e} =
$u
->{_e};
$x
->{_es} =
$u
->{_es};
}
else
{
# calculate the broot() as integer result first, and if it fits, return
# it rightaway (but only if $x and $y are integer):
my
$done
= 0;
# not yet
if
(
$y
->is_int() &&
$x
->is_int())
{
my
$i
=
$MBI
->_copy(
$x
->{_m} );
$MBI
->_lsft(
$i
,
$x
->{_e}, 10 )
unless
$MBI
->_is_zero(
$x
->{_e});
my
$int
= Math::BigInt->bzero();
$int
->{value} =
$i
;
$int
->broot(
$y
->as_number());
# if ($exact)
if
(
$int
->copy()->bpow(
$y
) ==
$x
)
{
# found result, return it
$x
->{_m} =
$int
->{value};
$x
->{_e} =
$MBI
->_zero();
$x
->{_es} =
'+'
;
$x
->bnorm();
$done
= 1;
}
}
if
(
$done
== 0)
{
my
$u
=
$self
->bone()->bdiv(
$y
,
$scale
+4);
delete
$u
->{_a};
delete
$u
->{_p};
# otherwise it conflicts
$x
->bpow(
$u
,
$scale
+4);
# el cheapo
}
}
$x
->bneg()
if
$sign
== 1;
# shortcut to not run through _find_round_parameters again
if
(
defined
$params
[0])
{
$x
->bround(
$params
[0],
$params
[2]);
# then round accordingly
}
else
{
$x
->bfround(
$params
[1],
$params
[2]);
# then round accordingly
}
if
(
$fallback
)
{
# clear a/p after round, since user did not request it
delete
$x
->{_a};
delete
$x
->{_p};
}
# restore globals
$$abr
=
$ab
;
$$pbr
=
$pb
;
$x
;
}
sub
bsqrt
{
# calculate square root
my
(
$self
,
$x
,
$a
,
$p
,
$r
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
@_
) : objectify(1,
@_
);
return
$x
->bnan()
if
$x
->{sign} !~ /^[+]/;
# NaN, -inf or < 0
return
$x
if
$x
->{sign} eq
'+inf'
;
# sqrt(inf) == inf
return
$x
->round(
$a
,
$p
,
$r
)
if
$x
->is_zero() ||
$x
->is_one();
# we need to limit the accuracy to protect against overflow
my
$fallback
= 0;
my
(
@params
,
$scale
);
(
$x
,
@params
) =
$x
->_find_round_parameters(
$a
,
$p
,
$r
);
return
$x
if
$x
->is_nan();
# error in _find_round_parameters?
# no rounding at all, so must use fallback
if
(
scalar
@params
== 0)
{
# simulate old behaviour
$params
[0] =
$self
->div_scale();
# and round to it as accuracy
$scale
=
$params
[0]+4;
# at least four more for proper round
$params
[2] =
$r
;
# round mode by caller or undef
$fallback
= 1;
# to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale
=
abs
(
$params
[0] ||
$params
[1]) + 4;
# take whatever is defined
}
# when user set globals, they would interfere with our calculation, so
# disable them and later re-enable them
no
strict
'refs'
;
my
$abr
=
"$self\::accuracy"
;
my
$ab
=
$$abr
;
$$abr
=
undef
;
my
$pbr
=
"$self\::precision"
;
my
$pb
=
$$pbr
;
$$pbr
=
undef
;
# we also need to disable any set A or P on $x (_find_round_parameters took
# them already into account), since these would interfere, too
delete
$x
->{_a};
delete
$x
->{_p};
# need to disable $upgrade in BigInt, to avoid deep recursion
local
$Math::BigInt::upgrade
=
undef
;
# should be really parent class vs MBI
my
$i
=
$MBI
->_copy(
$x
->{_m} );
$MBI
->_lsft(
$i
,
$x
->{_e}, 10 )
unless
$MBI
->_is_zero(
$x
->{_e});
my
$xas
= Math::BigInt->bzero();
$xas
->{value} =
$i
;
my
$gs
=
$xas
->copy()->bsqrt();
# some guess
if
((
$x
->{_es} ne
'-'
)
# guess can't be accurate if there are
# digits after the dot
&& (
$xas
->bacmp(
$gs
*
$gs
) == 0))
# guess hit the nail on the head?
{
# exact result, copy result over to keep $x
$x
->{_m} =
$gs
->{value};
$x
->{_e} =
$MBI
->_zero();
$x
->{_es} =
'+'
;
$x
->bnorm();
# shortcut to not run through _find_round_parameters again
if
(
defined
$params
[0])
{
$x
->bround(
$params
[0],
$params
[2]);
# then round accordingly
}
else
{
$x
->bfround(
$params
[1],
$params
[2]);
# then round accordingly
}
if
(
$fallback
)
{
# clear a/p after round, since user did not request it
delete
$x
->{_a};
delete
$x
->{_p};
}
# re-enable A and P, upgrade is taken care of by "local"
${
"$self\::accuracy"
} =
$ab
; ${
"$self\::precision"
} =
$pb
;
return
$x
;
}
# sqrt(2) = 1.4 because sqrt(2*100) = 1.4*10; so we can increase the accuracy
# of the result by multipyling the input by 100 and then divide the integer
# result of sqrt(input) by 10. Rounding afterwards returns the real result.
# The following steps will transform 123.456 (in $x) into 123456 (in $y1)
my
$y1
=
$MBI
->_copy(
$x
->{_m});
my
$length
=
$MBI
->_len(
$y1
);
# Now calculate how many digits the result of sqrt(y1) would have
my
$digits
=
int
(
$length
/ 2);
# But we need at least $scale digits, so calculate how many are missing
my
$shift
=
$scale
-
$digits
;
# That should never happen (we take care of integer guesses above)
# $shift = 0 if $shift < 0;
# Multiply in steps of 100, by shifting left two times the "missing" digits
my
$s2
=
$shift
* 2;
# We now make sure that $y1 has the same odd or even number of digits than
# $x had. So when _e of $x is odd, we must shift $y1 by one digit left,
# because we always must multiply by steps of 100 (sqrt(100) is 10) and not
# steps of 10. The length of $x does not count, since an even or odd number
# of digits before the dot is not changed by adding an even number of digits
# after the dot (the result is still odd or even digits long).
$s2
++
if
$MBI
->_is_odd(
$x
->{_e});
$MBI
->_lsft(
$y1
,
$MBI
->_new(
$s2
), 10);
# now take the square root and truncate to integer
$y1
=
$MBI
->_sqrt(
$y1
);
# By "shifting" $y1 right (by creating a negative _e) we calculate the final
# result, which is than later rounded to the desired scale.
# calculate how many zeros $x had after the '.' (or before it, depending
# on sign of $dat, the result should have half as many:
my
$dat
=
$MBI
->_num(
$x
->{_e});
$dat
= -
$dat
if
$x
->{_es} eq
'-'
;
$dat
+=
$length
;
if
(
$dat
> 0)
{
# no zeros after the dot (e.g. 1.23, 0.49 etc)
# preserve half as many digits before the dot than the input had
# (but round this "up")
$dat
=
int
((
$dat
+1)/2);
}
else
{
$dat
=
int
((
$dat
)/2);
}
$dat
-=
$MBI
->_len(
$y1
);
if
(
$dat
< 0)
{
$dat
=
abs
(
$dat
);
$x
->{_e} =
$MBI
->_new(
$dat
);
$x
->{_es} =
'-'
;
}
else
{
$x
->{_e} =
$MBI
->_new(
$dat
);
$x
->{_es} =
'+'
;
}
$x
->{_m} =
$y1
;
$x
->bnorm();
# shortcut to not run through _find_round_parameters again
if
(
defined
$params
[0])
{
$x
->bround(
$params
[0],
$params
[2]);
# then round accordingly
}
else
{
$x
->bfround(
$params
[1],
$params
[2]);
# then round accordingly
}
if
(
$fallback
)
{
# clear a/p after round, since user did not request it
delete
$x
->{_a};
delete
$x
->{_p};
}
# restore globals
$$abr
=
$ab
;
$$pbr
=
$pb
;
$x
;
}
sub
bfac
{
# (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
# compute factorial number, modifies first argument
# set up parameters
my
(
$self
,
$x
,
@r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
(
$self
,
$x
,
@r
) = objectify(1,
@_
)
if
!
ref
(
$x
);
return
$x
if
$x
->{sign} eq
'+inf'
;
# inf => inf
return
$x
->bnan()
if
((
$x
->{sign} ne
'+'
) ||
# inf, NaN, <0 etc => NaN
(
$x
->{_es} ne
'+'
));
# digits after dot?
# use BigInt's bfac() for faster calc
if
(!
$MBI
->_is_zero(
$x
->{_e}))
{
$MBI
->_lsft(
$x
->{_m},
$x
->{_e},10);
# change 12e1 to 120e0
$x
->{_e} =
$MBI
->_zero();
# normalize
$x
->{_es} =
'+'
;
}
$MBI
->_fac(
$x
->{_m});
# calculate factorial
$x
->bnorm()->round(
@r
);
# norm again and round result
}
sub
_pow
{
# Calculate a power where $y is a non-integer, like 2 ** 0.5
my
(
$x
,
$y
,
$a
,
$p
,
$r
) =
@_
;
my
$self
=
ref
(
$x
);
# if $y == 0.5, it is sqrt($x)
$HALF
=
$self
->new(
$HALF
)
unless
ref
(
$HALF
);
return
$x
->bsqrt(
$a
,
$p
,
$r
,
$y
)
if
$y
->bcmp(
$HALF
) == 0;
# Using:
# a ** x == e ** (x * ln a)
# u = y * ln x
# _ _
# Taylor: | u u^2 u^3 |
# x ** y = 1 + | --- + --- + ----- + ... |
# |_ 1 1*2 1*2*3 _|
# we need to limit the accuracy to protect against overflow
my
$fallback
= 0;
my
(
$scale
,
@params
);
(
$x
,
@params
) =
$x
->_find_round_parameters(
$a
,
$p
,
$r
);
return
$x
if
$x
->is_nan();
# error in _find_round_parameters?
# no rounding at all, so must use fallback
if
(
scalar
@params
== 0)
{
# simulate old behaviour
$params
[0] =
$self
->div_scale();
# and round to it as accuracy
$params
[1] =
undef
;
# disable P
$scale
=
$params
[0]+4;
# at least four more for proper round
$params
[2] =
$r
;
# round mode by caller or undef
$fallback
= 1;
# to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale
=
abs
(
$params
[0] ||
$params
[1]) + 4;
# take whatever is defined
}
# when user set globals, they would interfere with our calculation, so
# disable them and later re-enable them
no
strict
'refs'
;
my
$abr
=
"$self\::accuracy"
;
my
$ab
=
$$abr
;
$$abr
=
undef
;
my
$pbr
=
"$self\::precision"
;
my
$pb
=
$$pbr
;
$$pbr
=
undef
;
# we also need to disable any set A or P on $x (_find_round_parameters took
# them already into account), since these would interfere, too
delete
$x
->{_a};
delete
$x
->{_p};
# need to disable $upgrade in BigInt, to avoid deep recursion
local
$Math::BigInt::upgrade
=
undef
;
my
(
$limit
,
$v
,
$u
,
$below
,
$factor
,
$next
,
$over
);
$u
=
$x
->copy()->blog(
undef
,
$scale
)->bmul(
$y
);
$v
=
$self
->bone();
# 1
$factor
=
$self
->new(2);
# 2
$x
->bone();
# first term: 1
$below
=
$v
->copy();
$over
=
$u
->copy();
$limit
=
$self
->new(
"1E-"
. (
$scale
-1));
#my $steps = 0;
while
(3 < 5)
{
# we calculate the next term, and add it to the last
# when the next term is below our limit, it won't affect the outcome
# anymore, so we stop
$next
=
$over
->copy()->bdiv(
$below
,
$scale
);
last
if
$next
->bacmp(
$limit
) <= 0;
$x
->badd(
$next
);
# calculate things for the next term
$over
*=
$u
;
$below
*=
$factor
;
$factor
->binc();
last
if
$x
->{sign} !~ /^[-+]$/;
#$steps++;
}
# shortcut to not run through _find_round_parameters again
if
(
defined
$params
[0])
{
$x
->bround(
$params
[0],
$params
[2]);
# then round accordingly
}
else
{
$x
->bfround(
$params
[1],
$params
[2]);
# then round accordingly
}
if
(
$fallback
)
{
# clear a/p after round, since user did not request it
delete
$x
->{_a};
delete
$x
->{_p};
}
# restore globals
$$abr
=
$ab
;
$$pbr
=
$pb
;
$x
;
}
sub
bpow
{
# (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
# compute power of two numbers, second arg is used as integer
# modifies first argument
# set up parameters
my
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
,
$a
,
$p
,
$r
) = objectify(2,
@_
);
}
return
$x
->bnan()
if
$x
->{sign} eq
$nan
||
$y
->{sign} eq
$nan
;
return
$x
if
$x
->{sign} =~ /^[+-]inf$/;
# cache the result of is_zero
my
$y_is_zero
=
$y
->is_zero();
return
$x
->bone()
if
$y_is_zero
;
return
$x
if
$x
->is_one() ||
$y
->is_one();
my
$x_is_zero
=
$x
->is_zero();
return
$x
->_pow(
$y
,
$a
,
$p
,
$r
)
if
!
$x_is_zero
&& !
$y
->is_int();
# non-integer power
my
$y1
=
$y
->as_number()->{value};
# make MBI part
# if ($x == -1)
if
(
$x
->{sign} eq
'-'
&&
$MBI
->_is_one(
$x
->{_m}) &&
$MBI
->_is_zero(
$x
->{_e}))
{
# if $x == -1 and odd/even y => +1/-1 because +-1 ^ (+-1) => +-1
return
$MBI
->_is_odd(
$y1
) ?
$x
:
$x
->babs(1);
}
if
(
$x_is_zero
)
{
return
$x
->bone()
if
$y_is_zero
;
return
$x
if
$y
->{sign} eq
'+'
;
# 0**y => 0 (if not y <= 0)
# 0 ** -y => 1 / (0 ** y) => 1 / 0! (1 / 0 => +inf)
return
$x
->binf();
}
my
$new_sign
=
'+'
;
$new_sign
=
$MBI
->_is_odd(
$y1
) ?
'-'
:
'+'
if
$x
->{sign} ne
'+'
;
# calculate $x->{_m} ** $y and $x->{_e} * $y separately (faster)
$x
->{_m} =
$MBI
->_pow(
$x
->{_m},
$y1
);
$x
->{_e} =
$MBI
->_mul (
$x
->{_e},
$y1
);
$x
->{sign} =
$new_sign
;
$x
->bnorm();
if
(
$y
->{sign} eq
'-'
)
{
# modify $x in place!
my
$z
=
$x
->copy();
$x
->bone();
return
scalar
$x
->bdiv(
$z
,
$a
,
$p
,
$r
);
# round in one go (might ignore y's A!)
}
$x
->round(
$a
,
$p
,
$r
,
$y
);
}
###############################################################################
# rounding functions
sub
bfround
{
# precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
# $n == 0 means round to integer
# expects and returns normalized numbers!
my
$x
=
shift
;
my
$self
=
ref
(
$x
) ||
$x
;
$x
=
$self
->new(
shift
)
if
!
ref
(
$x
);
my
(
$scale
,
$mode
) =
$x
->_scale_p(
@_
);
return
$x
if
!
defined
$scale
||
$x
->modify(
'bfround'
);
# no-op
# never round a 0, +-inf, NaN
if
(
$x
->is_zero())
{
$x
->{_p} =
$scale
if
!
defined
$x
->{_p} ||
$x
->{_p} <
$scale
;
# -3 < -2
return
$x
;
}
return
$x
if
$x
->{sign} !~ /^[+-]$/;
# don't round if x already has lower precision
return
$x
if
(
defined
$x
->{_p} &&
$x
->{_p} < 0 &&
$scale
<
$x
->{_p});
$x
->{_p} =
$scale
;
# remember round in any case
delete
$x
->{_a};
# and clear A
if
(
$scale
< 0)
{
# round right from the '.'
return
$x
if
$x
->{_es} eq
'+'
;
# e >= 0 => nothing to round
$scale
= -
$scale
;
# positive for simplicity
my
$len
=
$MBI
->_len(
$x
->{_m});
# length of mantissa
# the following poses a restriction on _e, but if _e is bigger than a
# scalar, you got other problems (memory etc) anyway
my
$dad
= -(0+ (
$x
->{_es}.
$MBI
->_num(
$x
->{_e})));
# digits after dot
my
$zad
= 0;
# zeros after dot
$zad
=
$dad
-
$len
if
(-
$dad
< -
$len
);
# for 0.00..00xxx style
# p rint "scale $scale dad $dad zad $zad len $len\n";
# number bsstr len zad dad
# 0.123 123e-3 3 0 3
# 0.0123 123e-4 3 1 4
# 0.001 1e-3 1 2 3
# 1.23 123e-2 3 0 2
# 1.2345 12345e-4 5 0 4
# do not round after/right of the $dad
return
$x
if
$scale
>
$dad
;
# 0.123, scale >= 3 => exit
# round to zero if rounding inside the $zad, but not for last zero like:
# 0.0065, scale -2, round last '0' with following '65' (scale == zad case)
return
$x
->bzero()
if
$scale
<
$zad
;
if
(
$scale
==
$zad
)
# for 0.006, scale -3 and trunc
{
$scale
= -
$len
;
}
else
{
# adjust round-point to be inside mantissa
if
(
$zad
!= 0)
{
$scale
=
$scale
-
$zad
;
}
else
{
my
$dbd
=
$len
-
$dad
;
$dbd
= 0
if
$dbd
< 0;
# digits before dot
$scale
=
$dbd
+
$scale
;
}
}
}
else
{
# round left from the '.'
# 123 => 100 means length(123) = 3 - $scale (2) => 1
my
$dbt
=
$MBI
->_len(
$x
->{_m});
# digits before dot
my
$dbd
=
$dbt
+ (
$x
->{_es} .
$MBI
->_num(
$x
->{_e}));
# should be the same, so treat it as this
$scale
= 1
if
$scale
== 0;
# shortcut if already integer
return
$x
if
$scale
== 1 &&
$dbt
<=
$dbd
;
# maximum digits before dot
++
$dbd
;
if
(
$scale
>
$dbd
)
{
# not enough digits before dot, so round to zero
return
$x
->bzero;
}
elsif
(
$scale
==
$dbd
)
{
# maximum
$scale
= -
$dbt
;
}
else
{
$scale
=
$dbd
-
$scale
;
}
}
# pass sign to bround for rounding modes '+inf' and '-inf'
my
$m
=
bless
{
sign
=>
$x
->{sign},
value
=>
$x
->{_m} },
'Math::BigInt'
;
$m
->bround(
$scale
,
$mode
);
$x
->{_m} =
$m
->{value};
# get our mantissa back
$x
->bnorm();
}
sub
bround
{
# accuracy: preserve $N digits, and overwrite the rest with 0's
my
$x
=
shift
;
my
$self
=
ref
(
$x
) ||
$x
;
$x
=
$self
->new(
shift
)
if
!
ref
(
$x
);
if
((
$_
[0] || 0) < 0)
{
}
my
(
$scale
,
$mode
) =
$x
->_scale_a(
@_
);
return
$x
if
!
defined
$scale
||
$x
->modify(
'bround'
);
# no-op
# scale is now either $x->{_a}, $accuracy, or the user parameter
# test whether $x already has lower accuracy, do nothing in this case
# but do round if the accuracy is the same, since a math operation might
# want to round a number with A=5 to 5 digits afterwards again
return
$x
if
defined
$x
->{_a} &&
$x
->{_a} <
$scale
;
# scale < 0 makes no sense
# scale == 0 => keep all digits
# never round a +-inf, NaN
return
$x
if
(
$scale
<= 0) ||
$x
->{sign} !~ /^[+-]$/;
# 1: never round a 0
# 2: if we should keep more digits than the mantissa has, do nothing
if
(
$x
->is_zero() ||
$MBI
->_len(
$x
->{_m}) <=
$scale
)
{
$x
->{_a} =
$scale
if
!
defined
$x
->{_a} ||
$x
->{_a} >
$scale
;
return
$x
;
}
# pass sign to bround for '+inf' and '-inf' rounding modes
my
$m
=
bless
{
sign
=>
$x
->{sign},
value
=>
$x
->{_m} },
'Math::BigInt'
;
$m
->bround(
$scale
,
$mode
);
# round mantissa
$x
->{_m} =
$m
->{value};
# get our mantissa back
$x
->{_a} =
$scale
;
# remember rounding
delete
$x
->{_p};
# and clear P
$x
->bnorm();
# del trailing zeros gen. by bround()
}
sub
bfloor
{
# return integer less or equal then $x
my
(
$self
,
$x
,
$a
,
$p
,
$r
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
@_
) : objectify(1,
@_
);
return
$x
if
$x
->modify(
'bfloor'
);
return
$x
if
$x
->{sign} !~ /^[+-]$/;
# nan, +inf, -inf
# if $x has digits after dot
if
(
$x
->{_es} eq
'-'
)
{
$x
->{_m} =
$MBI
->_rsft(
$x
->{_m},
$x
->{_e},10);
# cut off digits after dot
$x
->{_e} =
$MBI
->_zero();
# trunc/norm
$x
->{_es} =
'+'
;
# abs e
$MBI
->_inc(
$x
->{_m})
if
$x
->{sign} eq
'-'
;
# increment if negative
}
$x
->round(
$a
,
$p
,
$r
);
}
sub
bceil
{
# return integer greater or equal then $x
my
(
$self
,
$x
,
$a
,
$p
,
$r
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
@_
) : objectify(1,
@_
);
return
$x
if
$x
->modify(
'bceil'
);
return
$x
if
$x
->{sign} !~ /^[+-]$/;
# nan, +inf, -inf
# if $x has digits after dot
if
(
$x
->{_es} eq
'-'
)
{
$x
->{_m} =
$MBI
->_rsft(
$x
->{_m},
$x
->{_e},10);
# cut off digits after dot
$x
->{_e} =
$MBI
->_zero();
# trunc/norm
$x
->{_es} =
'+'
;
# abs e
$MBI
->_inc(
$x
->{_m})
if
$x
->{sign} eq
'+'
;
# increment if positive
}
$x
->round(
$a
,
$p
,
$r
);
}
sub
brsft
{
# shift right by $y (divide by power of $n)
# set up parameters
my
(
$self
,
$x
,
$y
,
$n
,
$a
,
$p
,
$r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
,
$n
,
$a
,
$p
,
$r
) = objectify(2,
@_
);
}
return
$x
if
$x
->modify(
'brsft'
);
return
$x
if
$x
->{sign} !~ /^[+-]$/;
# nan, +inf, -inf
$n
= 2
if
!
defined
$n
;
$n
=
$self
->new(
$n
);
# negative amount?
return
$x
->blsft(
$y
->copy()->babs(),
$n
)
if
$y
->{sign} =~ /^-/;
# the following call to bdiv() will return either quo or (quo,reminder):
$x
->bdiv(
$n
->bpow(
$y
),
$a
,
$p
,
$r
,
$y
);
}
sub
blsft
{
# shift left by $y (multiply by power of $n)
# set up parameters
my
(
$self
,
$x
,
$y
,
$n
,
$a
,
$p
,
$r
) = (
ref
(
$_
[0]),
@_
);
# objectify is costly, so avoid it
if
((!
ref
(
$_
[0])) || (
ref
(
$_
[0]) ne
ref
(
$_
[1])))
{
(
$self
,
$x
,
$y
,
$n
,
$a
,
$p
,
$r
) = objectify(2,
@_
);
}
return
$x
if
$x
->modify(
'blsft'
);
return
$x
if
$x
->{sign} !~ /^[+-]$/;
# nan, +inf, -inf
$n
= 2
if
!
defined
$n
;
$n
=
$self
->new(
$n
);
# negative amount?
return
$x
->brsft(
$y
->copy()->babs(),
$n
)
if
$y
->{sign} =~ /^-/;
$x
->bmul(
$n
->bpow(
$y
),
$a
,
$p
,
$r
,
$y
);
}
###############################################################################
sub
DESTROY
{
# going through AUTOLOAD for every DESTROY is costly, avoid it by empty sub
}
sub
AUTOLOAD
{
# make fxxx and bxxx both work by selectively mapping fxxx() to MBF::bxxx()
# or falling back to MBI::bxxx()
my
$name
=
$AUTOLOAD
;
$name
=~ s/(.*):://;
# split package
my
$c
= $1 ||
$class
;
no
strict
'refs'
;
$c
->
import
()
if
$IMPORT
== 0;
if
(!_method_alias(
$name
))
{
if
(!
defined
$name
)
{
# delayed load of Carp and avoid recursion
Carp::croak (
"$c: Can't call a method without name"
);
}
if
(!_method_hand_up(
$name
))
{
# delayed load of Carp and avoid recursion
Carp::croak (
"Can't call $c\-\>$name, not a valid method"
);
}
# try one level up, but subst. bxxx() for fxxx() since MBI only got bxxx()
$name
=~ s/^f/b/;
return
&{
"Math::BigInt"
.
"::$name"
}(
@_
);
}
my
$bname
=
$name
;
$bname
=~ s/^f/b/;
$c
.=
"::$name"
;
*{
$c
} = \&{
$bname
};
&{
$c
};
# uses @_
}
sub
exponent
{
# return a copy of the exponent
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
$_
[0]) : objectify(1,
@_
);
if
(
$x
->{sign} !~ /^[+-]$/)
{
my
$s
=
$x
->{sign};
$s
=~ s/^[+-]//;
return
Math::BigInt->new(
$s
);
# -inf, +inf => +inf
}
Math::BigInt->new(
$x
->{_es} .
$MBI
->_str(
$x
->{_e}));
}
sub
mantissa
{
# return a copy of the mantissa
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
$_
[0]) : objectify(1,
@_
);
if
(
$x
->{sign} !~ /^[+-]$/)
{
my
$s
=
$x
->{sign};
$s
=~ s/^[+]//;
return
Math::BigInt->new(
$s
);
# -inf, +inf => +inf
}
my
$m
= Math::BigInt->new(
$MBI
->_str(
$x
->{_m}));
$m
->bneg()
if
$x
->{sign} eq
'-'
;
$m
;
}
sub
parts
{
# return a copy of both the exponent and the mantissa
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
$_
[0]) : objectify(1,
@_
);
if
(
$x
->{sign} !~ /^[+-]$/)
{
my
$s
=
$x
->{sign};
$s
=~ s/^[+]//;
my
$se
=
$s
;
$se
=~ s/^[-]//;
return
(
$self
->new(
$s
),
$self
->new(
$se
));
# +inf => inf and -inf,+inf => inf
}
my
$m
= Math::BigInt->bzero();
$m
->{value} =
$MBI
->_copy(
$x
->{_m});
$m
->bneg()
if
$x
->{sign} eq
'-'
;
(
$m
, Math::BigInt->new(
$x
->{_es} .
$MBI
->_num(
$x
->{_e}) ));
}
##############################################################################
# private stuff (internal use only)
sub
import
{
my
$self
=
shift
;
my
$l
=
scalar
@_
;
my
$lib
=
''
;
my
@a
;
$IMPORT
=1;
for
(
my
$i
= 0;
$i
<
$l
;
$i
++)
{
if
(
$_
[
$i
] eq
':constant'
)
{
# This causes overlord er load to step in. 'binary' and 'integer'
# are handled by BigInt.
overload::constant
float
=>
sub
{
$self
->new(
shift
); };
}
elsif
(
$_
[
$i
] eq
'upgrade'
)
{
# this causes upgrading
$upgrade
=
$_
[
$i
+1];
# or undef to disable
$i
++;
}
elsif
(
$_
[
$i
] eq
'downgrade'
)
{
# this causes downgrading
$downgrade
=
$_
[
$i
+1];
# or undef to disable
$i
++;
}
elsif
(
$_
[
$i
] eq
'lib'
)
{
# alternative library
$lib
=
$_
[
$i
+1] ||
''
;
# default Calc
$i
++;
}
elsif
(
$_
[
$i
] eq
'with'
)
{
# alternative class for our private parts()
# XXX: no longer supported
# $MBI = $_[$i+1] || 'Math::BigInt';
$i
++;
}
else
{
push
@a
,
$_
[
$i
];
}
}
$lib
=~
tr
/a-zA-Z0-9,://cd;
# restrict to sane characters
# let use Math::BigInt lib => 'GMP'; use Math::BigFloat; still work
my
$mbilib
=
eval
{ Math::BigInt->config()->{lib} };
if
((
defined
$mbilib
) && (
$MBI
eq
'Math::BigInt::Calc'
))
{
# MBI already loaded
Math::BigInt->
import
(
'try'
,
"$lib,$mbilib"
,
'objectify'
);
}
else
{
# MBI not loaded, or with ne "Math::BigInt::Calc"
$lib
.=
",$mbilib"
if
defined
$mbilib
;
$lib
=~ s/^,//;
# don't leave empty
# replacement library can handle lib statement, but also could ignore it
# Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
# used in the same script, or eval inside import(). So we require MBI:
Math::BigInt->
import
(
try
=>
$lib
,
'objectify'
);
}
if
($@)
{
}
# find out which one was actually loaded
$MBI
= Math::BigInt->config()->{lib};
# register us with MBI to get notified of future lib changes
Math::BigInt::_register_callback(
$self
,
sub
{
$MBI
=
$_
[0]; } );
# any non :constant stuff is handled by our parent, Exporter
# even if @_ is empty, to give it a chance
$self
->SUPER::
import
(
@a
);
# for subclasses
$self
->export_to_level(1,
$self
,
@a
);
# need this, too
}
sub
bnorm
{
# adjust m and e so that m is smallest possible
# round number according to accuracy and precision settings
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
undef
,
$_
[0]) : objectify(1,
@_
);
return
$x
if
$x
->{sign} !~ /^[+-]$/;
# inf, nan etc
my
$zeros
=
$MBI
->_zeros(
$x
->{_m});
# correct for trailing zeros
if
(
$zeros
!= 0)
{
my
$z
=
$MBI
->_new(
$zeros
);
$x
->{_m} =
$MBI
->_rsft (
$x
->{_m},
$z
, 10);
if
(
$x
->{_es} eq
'-'
)
{
if
(
$MBI
->_acmp(
$x
->{_e},
$z
) >= 0)
{
$x
->{_e} =
$MBI
->_sub (
$x
->{_e},
$z
);
$x
->{_es} =
'+'
if
$MBI
->_is_zero(
$x
->{_e});
}
else
{
$x
->{_e} =
$MBI
->_sub (
$MBI
->_copy(
$z
),
$x
->{_e});
$x
->{_es} =
'+'
;
}
}
else
{
$x
->{_e} =
$MBI
->_add (
$x
->{_e},
$z
);
}
}
else
{
# $x can only be 0Ey if there are no trailing zeros ('0' has 0 trailing
# zeros). So, for something like 0Ey, set y to 1, and -0 => +0
$x
->{sign} =
'+'
,
$x
->{_es} =
'+'
,
$x
->{_e} =
$MBI
->_one()
if
$MBI
->_is_zero(
$x
->{_m});
}
$x
;
# MBI bnorm is no-op, so dont call it
}
##############################################################################
sub
as_hex
{
# return number as hexadecimal string (only for integers defined)
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
$_
[0]) : objectify(1,
@_
);
return
$x
->bstr()
if
$x
->{sign} !~ /^[+-]$/;
# inf, nan etc
return
'0x0'
if
$x
->is_zero();
return
$nan
if
$x
->{_es} ne
'+'
;
# how to do 1e-1 in hex!?
my
$z
=
$MBI
->_copy(
$x
->{_m});
if
(!
$MBI
->_is_zero(
$x
->{_e}))
# > 0
{
$MBI
->_lsft(
$z
,
$x
->{_e},10);
}
$z
= Math::BigInt->new(
$x
->{sign} .
$MBI
->_num(
$z
));
$z
->as_hex();
}
sub
as_bin
{
# return number as binary digit string (only for integers defined)
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
$_
[0]) : objectify(1,
@_
);
return
$x
->bstr()
if
$x
->{sign} !~ /^[+-]$/;
# inf, nan etc
return
'0b0'
if
$x
->is_zero();
return
$nan
if
$x
->{_es} ne
'+'
;
# how to do 1e-1 in hex!?
my
$z
=
$MBI
->_copy(
$x
->{_m});
if
(!
$MBI
->_is_zero(
$x
->{_e}))
# > 0
{
$MBI
->_lsft(
$z
,
$x
->{_e},10);
}
$z
= Math::BigInt->new(
$x
->{sign} .
$MBI
->_num(
$z
));
$z
->as_bin();
}
sub
as_oct
{
# return number as octal digit string (only for integers defined)
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
$_
[0]) : objectify(1,
@_
);
return
$x
->bstr()
if
$x
->{sign} !~ /^[+-]$/;
# inf, nan etc
return
'0'
if
$x
->is_zero();
return
$nan
if
$x
->{_es} ne
'+'
;
# how to do 1e-1 in hex!?
my
$z
=
$MBI
->_copy(
$x
->{_m});
if
(!
$MBI
->_is_zero(
$x
->{_e}))
# > 0
{
$MBI
->_lsft(
$z
,
$x
->{_e},10);
}
$z
= Math::BigInt->new(
$x
->{sign} .
$MBI
->_num(
$z
));
$z
->as_oct();
}
sub
as_number
{
# return copy as a bigint representation of this BigFloat number
my
(
$self
,
$x
) =
ref
(
$_
[0]) ? (
ref
(
$_
[0]),
$_
[0]) : objectify(1,
@_
);
my
$z
=
$MBI
->_copy(
$x
->{_m});
if
(
$x
->{_es} eq
'-'
)
# < 0
{
$MBI
->_rsft(
$z
,
$x
->{_e},10);
}
elsif
(!
$MBI
->_is_zero(
$x
->{_e}))
# > 0
{
$MBI
->_lsft(
$z
,
$x
->{_e},10);
}
$z
= Math::BigInt->new(
$x
->{sign} .
$MBI
->_num(
$z
));
$z
;
}
sub
length
{
my
$x
=
shift
;
my
$class
=
ref
(
$x
) ||
$x
;
$x
=
$class
->new(
shift
)
unless
ref
(
$x
);
return
1
if
$MBI
->_is_zero(
$x
->{_m});
my
$len
=
$MBI
->_len(
$x
->{_m});
$len
+=
$MBI
->_num(
$x
->{_e})
if
$x
->{_es} eq
'+'
;
if
(
wantarray
())
{
my
$t
= 0;
$t
=
$MBI
->_num(
$x
->{_e})
if
$x
->{_es} eq
'-'
;
return
(
$len
,
$t
);
}
$len
;
}
1;
__END__
=head1 NAME
Math::BigFloat - Arbitrary size floating point math package
=head1 SYNOPSIS
use Math::BigFloat;
# Number creation
$x = Math::BigFloat->new($str); # defaults to 0
$nan = Math::BigFloat->bnan(); # create a NotANumber
$zero = Math::BigFloat->bzero(); # create a +0
$inf = Math::BigFloat->binf(); # create a +inf
$inf = Math::BigFloat->binf('-'); # create a -inf
$one = Math::BigFloat->bone(); # create a +1
$one = Math::BigFloat->bone('-'); # create a -1
# Testing
$x->is_zero(); # true if arg is +0
$x->is_nan(); # true if arg is NaN
$x->is_one(); # true if arg is +1
$x->is_one('-'); # true if arg is -1
$x->is_odd(); # true if odd, false for even
$x->is_even(); # true if even, false for odd
$x->is_pos(); # true if >= 0
$x->is_neg(); # true if < 0
$x->is_inf(sign); # true if +inf, or -inf (default is '+')
$x->bcmp($y); # compare numbers (undef,<0,=0,>0)
$x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
$x->sign(); # return the sign, either +,- or NaN
$x->digit($n); # return the nth digit, counting from right
$x->digit(-$n); # return the nth digit, counting from left
# The following all modify their first argument. If you want to preserve
# $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
# necessary when mixing $a = $b assignments with non-overloaded math.
# set
$x->bzero(); # set $i to 0
$x->bnan(); # set $i to NaN
$x->bone(); # set $x to +1
$x->bone('-'); # set $x to -1
$x->binf(); # set $x to inf
$x->binf('-'); # set $x to -inf
$x->bneg(); # negation
$x->babs(); # absolute value
$x->bnorm(); # normalize (no-op)
$x->bnot(); # two's complement (bit wise not)
$x->binc(); # increment x by 1
$x->bdec(); # decrement x by 1
$x->badd($y); # addition (add $y to $x)
$x->bsub($y); # subtraction (subtract $y from $x)
$x->bmul($y); # multiplication (multiply $x by $y)
$x->bdiv($y); # divide, set $x to quotient
# return (quo,rem) or quo if scalar
$x->bmod($y); # modulus ($x % $y)
$x->bpow($y); # power of arguments ($x ** $y)
$x->blsft($y, $n); # left shift by $y places in base $n
$x->brsft($y, $n); # right shift by $y places in base $n
# returns (quo,rem) or quo if in scalar context
$x->blog(); # logarithm of $x to base e (Euler's number)
$x->blog($base); # logarithm of $x to base $base (f.i. 2)
$x->band($y); # bit-wise and
$x->bior($y); # bit-wise inclusive or
$x->bxor($y); # bit-wise exclusive or
$x->bnot(); # bit-wise not (two's complement)
$x->bsqrt(); # calculate square-root
$x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
$x->bfac(); # factorial of $x (1*2*3*4*..$x)
$x->bround($N); # accuracy: preserve $N digits
$x->bfround($N); # precision: round to the $Nth digit
$x->bfloor(); # return integer less or equal than $x
$x->bceil(); # return integer greater or equal than $x
# The following do not modify their arguments:
bgcd(@values); # greatest common divisor
blcm(@values); # lowest common multiplicator
$x->bstr(); # return string
$x->bsstr(); # return string in scientific notation
$x->as_int(); # return $x as BigInt
$x->exponent(); # return exponent as BigInt
$x->mantissa(); # return mantissa as BigInt
$x->parts(); # return (mantissa,exponent) as BigInt
$x->length(); # number of digits (w/o sign and '.')
($l,$f) = $x->length(); # number of digits, and length of fraction
$x->precision(); # return P of $x (or global, if P of $x undef)
$x->precision($n); # set P of $x to $n
$x->accuracy(); # return A of $x (or global, if A of $x undef)
$x->accuracy($n); # set A $x to $n
# these get/set the appropriate global value for all BigFloat objects
Math::BigFloat->precision(); # Precision
Math::BigFloat->accuracy(); # Accuracy
Math::BigFloat->round_mode(); # rounding mode
=head1 DESCRIPTION
All operators (including basic math operations) are overloaded if you
declare your big floating point numbers as
$i = new Math::BigFloat '12_3.456_789_123_456_789E-2';
Operations with overloaded operators preserve the arguments, which is
exactly what you expect.
=head2 Canonical notation
Input to these routines are either BigFloat objects, or strings of the
following four forms:
=over 2
=item *
C</^[+-]\d+$/>
=item *
C</^[+-]\d+\.\d*$/>
=item *
C</^[+-]\d+E[+-]?\d+$/>
=item *
C</^[+-]\d*\.\d+E[+-]?\d+$/>
=back
all with optional leading and trailing zeros and/or spaces. Additionally,
numbers are allowed to have an underscore between any two digits.
Empty strings as well as other illegal numbers results in 'NaN'.
bnorm() on a BigFloat object is now effectively a no-op, since the numbers
are always stored in normalized form. On a string, it creates a BigFloat
object.
=head2 Output
Output values are BigFloat objects (normalized), except for bstr() and bsstr().
The string output will always have leading and trailing zeros stripped and drop
a plus sign. C<bstr()> will give you always the form with a decimal point,
while C<bsstr()> (s for scientific) gives you the scientific notation.
Input bstr() bsstr()
'-0' '0' '0E1'
' -123 123 123' '-123123123' '-123123123E0'
'00.0123' '0.0123' '123E-4'
'123.45E-2' '1.2345' '12345E-4'
'10E+3' '10000' '1E4'
Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
return either undef, <0, 0 or >0 and are suited for sort.
Actual math is done by using the class defined with C<with => Class;> (which
defaults to BigInts) to represent the mantissa and exponent.
The sign C</^[+-]$/> is stored separately. The string 'NaN' is used to
represent the result when input arguments are not numbers, as well as
the result of dividing by zero.
=head2 C<mantissa()>, C<exponent()> and C<parts()>
C<mantissa()> and C<exponent()> return the said parts of the BigFloat
as BigInts such that:
$m = $x->mantissa();
$e = $x->exponent();
$y = $m * ( 10 ** $e );
print "ok\n" if $x == $y;
C<< ($m,$e) = $x->parts(); >> is just a shortcut giving you both of them.
A zero is represented and returned as C<0E1>, B<not> C<0E0> (after Knuth).
Currently the mantissa is reduced as much as possible, favouring higher
exponents over lower ones (e.g. returning 1e7 instead of 10e6 or 10000000e0).
This might change in the future, so do not depend on it.
=head2 Accuracy vs. Precision
See also: L<Rounding|Rounding>.
Math::BigFloat supports both precision (rounding to a certain place before or
after the dot) and accuracy (rounding to a certain number of digits). For a
full documentation, examples and tips on these topics please see the large
section about rounding in L<Math::BigInt>.
Since things like C<sqrt(2)> or C<1 / 3> must presented with a limited
accuracy lest a operation consumes all resources, each operation produces
no more than the requested number of digits.
If there is no gloabl precision or accuracy set, B<and> the operation in
question was not called with a requested precision or accuracy, B<and> the
input $x has no accuracy or precision set, then a fallback parameter will
be used. For historical reasons, it is called C<div_scale> and can be accessed
via:
$d = Math::BigFloat->div_scale(); # query
Math::BigFloat->div_scale($n); # set to $n digits
The default value for C<div_scale> is 40.
In case the result of one operation has more digits than specified,
it is rounded. The rounding mode taken is either the default mode, or the one
supplied to the operation after the I<scale>:
$x = Math::BigFloat->new(2);
Math::BigFloat->accuracy(5); # 5 digits max
$y = $x->copy()->bdiv(3); # will give 0.66667
$y = $x->copy()->bdiv(3,6); # will give 0.666667
$y = $x->copy()->bdiv(3,6,undef,'odd'); # will give 0.666667
Math::BigFloat->round_mode('zero');
$y = $x->copy()->bdiv(3,6); # will also give 0.666667
Note that C<< Math::BigFloat->accuracy() >> and C<< Math::BigFloat->precision() >>
set the global variables, and thus B<any> newly created number will be subject
to the global rounding B<immediately>. This means that in the examples above, the
C<3> as argument to C<bdiv()> will also get an accuracy of B<5>.
It is less confusing to either calculate the result fully, and afterwards
round it explicitly, or use the additional parameters to the math
functions like so:
use Math::BigFloat;
$x = Math::BigFloat->new(2);
$y = $x->copy()->bdiv(3);
print $y->bround(5),"\n"; # will give 0.66667
or
use Math::BigFloat;
$x = Math::BigFloat->new(2);
$y = $x->copy()->bdiv(3,5); # will give 0.66667
print "$y\n";
=head2 Rounding
=over 2
=item ffround ( +$scale )
Rounds to the $scale'th place left from the '.', counting from the dot.
The first digit is numbered 1.
=item ffround ( -$scale )
Rounds to the $scale'th place right from the '.', counting from the dot.
=item ffround ( 0 )
Rounds to an integer.
=item fround ( +$scale )
Preserves accuracy to $scale digits from the left (aka significant digits)
and pads the rest with zeros. If the number is between 1 and -1, the
significant digits count from the first non-zero after the '.'
=item fround ( -$scale ) and fround ( 0 )
These are effectively no-ops.
=back
All rounding functions take as a second parameter a rounding mode from one of
the following: 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.
The default rounding mode is 'even'. By using
C<< Math::BigFloat->round_mode($round_mode); >> you can get and set the default
mode for subsequent rounding. The usage of C<$Math::BigFloat::$round_mode> is
no longer supported.
The second parameter to the round functions then overrides the default
temporarily.
The C<as_number()> function returns a BigInt from a Math::BigFloat. It uses
'trunc' as rounding mode to make it equivalent to:
$x = 2.5;
$y = int($x) + 2;
You can override this by passing the desired rounding mode as parameter to
C<as_number()>:
$x = Math::BigFloat->new(2.5);
$y = $x->as_number('odd'); # $y = 3
=head1 METHODS
=head2 accuracy
$x->accuracy(5); # local for $x
CLASS->accuracy(5); # global for all members of CLASS
# Note: This also applies to new()!
$A = $x->accuracy(); # read out accuracy that affects $x
$A = CLASS->accuracy(); # read out global accuracy
Set or get the global or local accuracy, aka how many significant digits the
results have. If you set a global accuracy, then this also applies to new()!
Warning! The accuracy I<sticks>, e.g. once you created a number under the
influence of C<< CLASS->accuracy($A) >>, all results from math operations with
that number will also be rounded.
In most cases, you should probably round the results explicitly using one of
L<round()>, L<bround()> or L<bfround()> or by passing the desired accuracy
to the math operation as additional parameter:
my $x = Math::BigInt->new(30000);
my $y = Math::BigInt->new(7);
print scalar $x->copy()->bdiv($y, 2); # print 4300
print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
=head2 precision()
$x->precision(-2); # local for $x, round at the second digit right of the dot
$x->precision(2); # ditto, round at the second digit left of the dot
CLASS->precision(5); # Global for all members of CLASS
# This also applies to new()!
CLASS->precision(-5); # ditto
$P = CLASS->precision(); # read out global precision
$P = $x->precision(); # read out precision that affects $x
Note: You probably want to use L<accuracy()> instead. With L<accuracy> you
set the number of digits each result should have, with L<precision> you
set the place where to round!
=head1 Autocreating constants
After C<use Math::BigFloat ':constant'> all the floating point constants
in the given scope are converted to C<Math::BigFloat>. This conversion
happens at compile time.
In particular
perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'
prints the value of C<2E-100>. Note that without conversion of
constants the expression 2E-100 will be calculated as normal floating point
number.
Please note that ':constant' does not affect integer constants, nor binary
nor hexadecimal constants. Use L<bignum> or L<Math::BigInt> to get this to
work.
=head2 Math library
Math with the numbers is done (by default) by a module called
Math::BigInt::Calc. This is equivalent to saying:
use Math::BigFloat lib => 'Calc';
You can change this by using:
use Math::BigFloat lib => 'BitVect';
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use Math::BigFloat lib => 'Foo,Math::BigInt::Bar';
Calc.pm uses as internal format an array of elements of some decimal base
(usually 1e7, but this might be different for some systems) with the least
significant digit first, while BitVect.pm uses a bit vector of base 2, most
significant bit first. Other modules might use even different means of
representing the numbers. See the respective module documentation for further
details.
Please note that Math::BigFloat does B<not> use the denoted library itself,
but it merely passes the lib argument to Math::BigInt. So, instead of the need
to do:
use Math::BigInt lib => 'GMP';
use Math::BigFloat;
you can roll it all into one line:
use Math::BigFloat lib => 'GMP';
It is also possible to just require Math::BigFloat:
require Math::BigFloat;
This will load the necessary things (like BigInt) when they are needed, and
automatically.
Use the lib, Luke! And see L<Using Math::BigInt::Lite> for more details than
you ever wanted to know about loading a different library.
=head2 Using Math::BigInt::Lite
It is possible to use L<Math::BigInt::Lite> with Math::BigFloat:
# 1
use Math::BigFloat with => 'Math::BigInt::Lite';
There is no need to "use Math::BigInt" or "use Math::BigInt::Lite", but you
can combine these if you want. For instance, you may want to use
Math::BigInt objects in your main script, too.
# 2
use Math::BigInt;
use Math::BigFloat with => 'Math::BigInt::Lite';
Of course, you can combine this with the C<lib> parameter.
# 3
use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'GMP,Pari';
There is no need for a "use Math::BigInt;" statement, even if you want to
use Math::BigInt's, since Math::BigFloat will needs Math::BigInt and thus
always loads it. But if you add it, add it B<before>:
# 4
use Math::BigInt;
use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'GMP,Pari';
Notice that the module with the last C<lib> will "win" and thus
it's lib will be used if the lib is available:
# 5
use Math::BigInt lib => 'Bar,Baz';
use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'Foo';
That would try to load Foo, Bar, Baz and Calc (in that order). Or in other
words, Math::BigFloat will try to retain previously loaded libs when you
don't specify it onem but if you specify one, it will try to load them.
Actually, the lib loading order would be "Bar,Baz,Calc", and then
"Foo,Bar,Baz,Calc", but independent of which lib exists, the result is the
same as trying the latter load alone, except for the fact that one of Bar or
Baz might be loaded needlessly in an intermidiate step (and thus hang around
and waste memory). If neither Bar nor Baz exist (or don't work/compile), they
will still be tried to be loaded, but this is not as time/memory consuming as
actually loading one of them. Still, this type of usage is not recommended due
to these issues.
The old way (loading the lib only in BigInt) still works though:
# 6
use Math::BigInt lib => 'Bar,Baz';
use Math::BigFloat;
You can even load Math::BigInt afterwards:
# 7
use Math::BigFloat;
use Math::BigInt lib => 'Bar,Baz';
But this has the same problems like #5, it will first load Calc
(Math::BigFloat needs Math::BigInt and thus loads it) and then later Bar or
Baz, depending on which of them works and is usable/loadable. Since this
loads Calc unnec., it is not recommended.
Since it also possible to just require Math::BigFloat, this poses the question
about what libary this will use:
require Math::BigFloat;
my $x = Math::BigFloat->new(123); $x += 123;
It will use Calc. Please note that the call to import() is still done, but
only when you use for the first time some Math::BigFloat math (it is triggered
via any constructor, so the first time you create a Math::BigFloat, the load
will happen in the background). This means:
require Math::BigFloat;
Math::BigFloat->import ( lib => 'Foo,Bar' );
would be the same as:
use Math::BigFloat lib => 'Foo, Bar';
But don't try to be clever to insert some operations in between:
require Math::BigFloat;
my $x = Math::BigFloat->bone() + 4; # load BigInt and Calc
Math::BigFloat->import( lib => 'Pari' ); # load Pari, too
$x = Math::BigFloat->bone()+4; # now use Pari
While this works, it loads Calc needlessly. But maybe you just wanted that?
B<Examples #3 is highly recommended> for daily usage.
=head1 BUGS
Please see the file BUGS in the CPAN distribution Math::BigInt for known bugs.
=head1 CAVEATS
=over 1
=item stringify, bstr()
Both stringify and bstr() now drop the leading '+'. The old code would return
'+1.23', the new returns '1.23'. See the documentation in L<Math::BigInt> for
reasoning and details.
=item bdiv
The following will probably not print what you expect:
print $c->bdiv(123.456),"\n";
It prints both quotient and reminder since print works in list context. Also,
bdiv() will modify $c, so be careful. You probably want to use
print $c / 123.456,"\n";
print scalar $c->bdiv(123.456),"\n"; # or if you want to modify $c
instead.
=item brsft
The following will probably not print what you expect:
my $c = Math::BigFloat->new('3.14159');
print $c->brsft(3,10),"\n"; # prints 0.00314153.1415
It prints both quotient and remainder, since print calls C<brsft()> in list
context. Also, C<< $c->brsft() >> will modify $c, so be careful.
You probably want to use
print scalar $c->copy()->brsft(3,10),"\n";
# or if you really want to modify $c
print scalar $c->brsft(3,10),"\n";
instead.
=item Modifying and =
Beware of:
$x = Math::BigFloat->new(5);
$y = $x;
It will not do what you think, e.g. making a copy of $x. Instead it just makes
a second reference to the B<same> object and stores it in $y. Thus anything
that modifies $x will modify $y (except overloaded math operators), and vice
versa. See L<Math::BigInt> for details and how to avoid that.
=item bpow
C<bpow()> now modifies the first argument, unlike the old code which left
it alone and only returned the result. This is to be consistent with
C<badd()> etc. The first will modify $x, the second one won't:
print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x ** $i,"\n"; # leave $x alone
=item precision() vs. accuracy()
A common pitfall is to use L<precision()> when you want to round a result to
a certain number of digits:
use Math::BigFloat;
Math::BigFloat->precision(4); # does not do what you think it does
my $x = Math::BigFloat->new(12345); # rounds $x to "12000"!
print "$x\n"; # print "12000"
my $y = Math::BigFloat->new(3); # rounds $y to "0"!
print "$y\n"; # print "0"
$z = $x / $y; # 12000 / 0 => NaN!
print "$z\n";
print $z->precision(),"\n"; # 4
Replacing L<precision> with L<accuracy> is probably not what you want, either:
use Math::BigFloat;
Math::BigFloat->accuracy(4); # enables global rounding:
my $x = Math::BigFloat->new(123456); # rounded immediately to "12350"
print "$x\n"; # print "123500"
my $y = Math::BigFloat->new(3); # rounded to "3
print "$y\n"; # print "3"
print $z = $x->copy()->bdiv($y),"\n"; # 41170
print $z->accuracy(),"\n"; # 4
What you want to use instead is:
use Math::BigFloat;
my $x = Math::BigFloat->new(123456); # no rounding
print "$x\n"; # print "123456"
my $y = Math::BigFloat->new(3); # no rounding
print "$y\n"; # print "3"
print $z = $x->copy()->bdiv($y,4),"\n"; # 41150
print $z->accuracy(),"\n"; # undef
In addition to computing what you expected, the last example also does B<not>
"taint" the result with an accuracy or precision setting, which would
influence any further operation.
=back
=head1 SEE ALSO
L<Math::BigInt>, L<Math::BigRat> and L<Math::Big> as well as
L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
The pragmas L<bignum>, L<bigint> and L<bigrat> might also be of interest
because they solve the autoupgrading/downgrading issue, at least partly.
The package at L<http://search.cpan.org/~tels/Math-BigInt> contains
more documentation including a full version history, testcases, empty
subclass files and benchmarks.
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 AUTHORS
Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels L<http://bloodgate.com> in 2001 - 2006, and still
at it in 2007.
=cut