#include "zstd_compress_internal.h"
#include "hist.h"
#include "zstd_opt.h"
#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
#define ZSTD_FREQ_DIV 4 /* log factor when using previous stats to init next stats */
#define ZSTD_MAX_PRICE (1<<30)
#define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */
#if 0 /* approximation at bit level */
# define BITCOST_ACCURACY 0
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
# define WEIGHT(stat) ((void)opt, ZSTD_bitWeight(stat))
#elif 0 /* fractional bit accuracy */
# define BITCOST_ACCURACY 8
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
# define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat))
#else /* opt==approx, ultra==accurate */
# define BITCOST_ACCURACY 8
# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
# define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat))
#endif
MEM_STATIC U32 ZSTD_bitWeight(U32 stat)
{
return
(ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER);
}
MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat)
{
U32
const
stat = rawStat + 1;
U32
const
hb = ZSTD_highbit32(stat);
U32
const
BWeight = hb * BITCOST_MULTIPLIER;
U32
const
FWeight = (stat << BITCOST_ACCURACY) >> hb;
U32
const
weight = BWeight + FWeight;
assert
(hb + BITCOST_ACCURACY < 31);
return
weight;
}
#if (DEBUGLEVEL>=2)
MEM_STATIC
double
ZSTD_fCost(U32 price)
{
return
(
double
)price / (BITCOST_MULTIPLIER*8);
}
#endif
static
int
ZSTD_compressedLiterals(optState_t
const
*
const
optPtr)
{
return
optPtr->literalCompressionMode != ZSTD_lcm_uncompressed;
}
static
void
ZSTD_setBasePrices(optState_t* optPtr,
int
optLevel)
{
if
(ZSTD_compressedLiterals(optPtr))
optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel);
optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel);
optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel);
optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel);
}
static
U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex,
int
malus)
{
U32 s, sum=0;
DEBUGLOG(5,
"ZSTD_downscaleStat (nbElts=%u)"
, (unsigned)lastEltIndex+1);
assert
(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31);
for
(s=0; s<lastEltIndex+1; s++) {
table[s] = 1 + (table[s] >> (ZSTD_FREQ_DIV+malus));
sum += table[s];
}
return
sum;
}
static
void
ZSTD_rescaleFreqs(optState_t*
const
optPtr,
const
BYTE
*
const
src,
size_t
const
srcSize,
int
const
optLevel)
{
int
const
compressedLiterals = ZSTD_compressedLiterals(optPtr);
DEBUGLOG(5,
"ZSTD_rescaleFreqs (srcSize=%u)"
, (unsigned)srcSize);
optPtr->priceType = zop_dynamic;
if
(optPtr->litLengthSum == 0) {
if
(srcSize <= ZSTD_PREDEF_THRESHOLD) {
DEBUGLOG(5,
"(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef"
);
optPtr->priceType = zop_predef;
}
assert
(optPtr->symbolCosts != NULL);
if
(optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) {
optPtr->priceType = zop_dynamic;
if
(compressedLiterals) {
unsigned lit;
assert
(optPtr->litFreq != NULL);
optPtr->litSum = 0;
for
(lit=0; lit<=MaxLit; lit++) {
U32
const
scaleLog = 11;
U32
const
bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit);
assert
(bitCost <= scaleLog);
optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1
;
optPtr->litSum += optPtr->litFreq[lit];
} }
{ unsigned ll;
FSE_CState_t llstate;
FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable);
optPtr->litLengthSum = 0;
for
(ll=0; ll<=MaxLL; ll++) {
U32
const
scaleLog = 10;
U32
const
bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll);
assert
(bitCost < scaleLog);
optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1
;
optPtr->litLengthSum += optPtr->litLengthFreq[ll];
} }
{ unsigned ml;
FSE_CState_t mlstate;
FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable);
optPtr->matchLengthSum = 0;
for
(ml=0; ml<=MaxML; ml++) {
U32
const
scaleLog = 10;
U32
const
bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml);
assert
(bitCost < scaleLog);
optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1
;
optPtr->matchLengthSum += optPtr->matchLengthFreq[ml];
} }
{ unsigned of;
FSE_CState_t ofstate;
FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable);
optPtr->offCodeSum = 0;
for
(of=0; of<=MaxOff; of++) {
U32
const
scaleLog = 10;
U32
const
bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of);
assert
(bitCost < scaleLog);
optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1
;
optPtr->offCodeSum += optPtr->offCodeFreq[of];
} }
}
else
{
assert
(optPtr->litFreq != NULL);
if
(compressedLiterals) {
unsigned lit = MaxLit;
HIST_count_simple(optPtr->litFreq, &lit, src, srcSize);
optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
}
{ unsigned ll;
for
(ll=0; ll<=MaxLL; ll++)
optPtr->litLengthFreq[ll] = 1;
}
optPtr->litLengthSum = MaxLL+1;
{ unsigned ml;
for
(ml=0; ml<=MaxML; ml++)
optPtr->matchLengthFreq[ml] = 1;
}
optPtr->matchLengthSum = MaxML+1;
{ unsigned of;
for
(of=0; of<=MaxOff; of++)
optPtr->offCodeFreq[of] = 1;
}
optPtr->offCodeSum = MaxOff+1;
}
}
else
{
if
(compressedLiterals)
optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0);
optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0);
optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0);
}
ZSTD_setBasePrices(optPtr, optLevel);
}
static
U32 ZSTD_rawLiteralsCost(
const
BYTE
*
const
literals, U32
const
litLength,
const
optState_t*
const
optPtr,
int
optLevel)
{
if
(litLength == 0)
return
0;
if
(!ZSTD_compressedLiterals(optPtr))
return
(litLength << 3) * BITCOST_MULTIPLIER;
if
(optPtr->priceType == zop_predef)
return
(litLength*6) * BITCOST_MULTIPLIER;
{ U32 price = litLength * optPtr->litSumBasePrice;
U32 u;
for
(u=0; u < litLength; u++) {
assert
(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice);
price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel);
}
return
price;
}
}
static
U32 ZSTD_litLengthPrice(U32
const
litLength,
const
optState_t*
const
optPtr,
int
optLevel)
{
if
(optPtr->priceType == zop_predef)
return
WEIGHT(litLength, optLevel);
{ U32
const
llCode = ZSTD_LLcode(litLength);
return
(LL_bits[llCode] * BITCOST_MULTIPLIER)
+ optPtr->litLengthSumBasePrice
- WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
}
}
static
int
ZSTD_litLengthContribution(U32
const
litLength,
const
optState_t*
const
optPtr,
int
optLevel)
{
if
(optPtr->priceType >= zop_predef)
return
(
int
)WEIGHT(litLength, optLevel);
{ U32
const
llCode = ZSTD_LLcode(litLength);
int
const
contribution = (
int
)(LL_bits[llCode] * BITCOST_MULTIPLIER)
+ (
int
)WEIGHT(optPtr->litLengthFreq[0], optLevel)
- (
int
)WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
#if 1
return
contribution;
#else
return
MAX(0, contribution);
#endif
}
}
static
int
ZSTD_literalsContribution(
const
BYTE
*
const
literals, U32
const
litLength,
const
optState_t*
const
optPtr,
int
optLevel)
{
int
const
contribution = (
int
)ZSTD_rawLiteralsCost(literals, litLength, optPtr, optLevel)
+ ZSTD_litLengthContribution(litLength, optPtr, optLevel);
return
contribution;
}
FORCE_INLINE_TEMPLATE U32
ZSTD_getMatchPrice(U32
const
offset,
U32
const
matchLength,
const
optState_t*
const
optPtr,
int
const
optLevel)
{
U32 price;
U32
const
offCode = ZSTD_highbit32(offset+1);
U32
const
mlBase = matchLength - MINMATCH;
assert
(matchLength >= MINMATCH);
if
(optPtr->priceType == zop_predef)
return
WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER);
price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel));
if
((optLevel<2)
&& offCode >= 20)
price += (offCode-19)*2 * BITCOST_MULTIPLIER;
{ U32
const
mlCode = ZSTD_MLcode(mlBase);
price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel));
}
price += BITCOST_MULTIPLIER / 5;
DEBUGLOG(8,
"ZSTD_getMatchPrice(ml:%u) = %u"
, matchLength, price);
return
price;
}
static
void
ZSTD_updateStats(optState_t*
const
optPtr,
U32 litLength,
const
BYTE
* literals,
U32 offsetCode, U32 matchLength)
{
if
(ZSTD_compressedLiterals(optPtr)) {
U32 u;
for
(u=0; u < litLength; u++)
optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
optPtr->litSum += litLength*ZSTD_LITFREQ_ADD;
}
{ U32
const
llCode = ZSTD_LLcode(litLength);
optPtr->litLengthFreq[llCode]++;
optPtr->litLengthSum++;
}
{ U32
const
offCode = ZSTD_highbit32(offsetCode+1);
assert
(offCode <= MaxOff);
optPtr->offCodeFreq[offCode]++;
optPtr->offCodeSum++;
}
{ U32
const
mlBase = matchLength - MINMATCH;
U32
const
mlCode = ZSTD_MLcode(mlBase);
optPtr->matchLengthFreq[mlCode]++;
optPtr->matchLengthSum++;
}
}
MEM_STATIC U32 ZSTD_readMINMATCH(
const
void
* memPtr, U32 length)
{
switch
(length)
{
default
:
case
4 :
return
MEM_read32(memPtr);
case
3 :
if
(MEM_isLittleEndian())
return
MEM_read32(memPtr)<<8;
else
return
MEM_read32(memPtr)>>8;
}
}
static
U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const
BYTE
*
const
ip)
{
U32*
const
hashTable3 = ms->hashTable3;
U32
const
hashLog3 = ms->hashLog3;
const
BYTE
*
const
base = ms->window.base;
U32 idx = *nextToUpdate3;
U32
const
target = (U32)(ip - base);
size_t
const
hash3 = ZSTD_hash3Ptr(ip, hashLog3);
assert
(hashLog3 > 0);
while
(idx < target) {
hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
idx++;
}
*nextToUpdate3 = target;
return
hashTable3[hash3];
}
static
U32 ZSTD_insertBt1(
ZSTD_matchState_t* ms,
const
BYTE
*
const
ip,
const
BYTE
*
const
iend,
U32
const
mls,
const
int
extDict)
{
const
ZSTD_compressionParameters*
const
cParams = &ms->cParams;
U32*
const
hashTable = ms->hashTable;
U32
const
hashLog = cParams->hashLog;
size_t
const
h = ZSTD_hashPtr(ip, hashLog, mls);
U32*
const
bt = ms->chainTable;
U32
const
btLog = cParams->chainLog - 1;
U32
const
btMask = (1 << btLog) - 1;
U32 matchIndex = hashTable[h];
size_t
commonLengthSmaller=0, commonLengthLarger=0;
const
BYTE
*
const
base = ms->window.base;
const
BYTE
*
const
dictBase = ms->window.dictBase;
const
U32 dictLimit = ms->window.dictLimit;
const
BYTE
*
const
dictEnd = dictBase + dictLimit;
const
BYTE
*
const
prefixStart = base + dictLimit;
const
BYTE
* match;
const
U32 current = (U32)(ip-base);
const
U32 btLow = btMask >= current ? 0 : current - btMask;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = smallerPtr + 1;
U32 dummy32;
U32
const
windowLow = ms->window.lowLimit;
U32 matchEndIdx = current+8+1;
size_t
bestLength = 8;
U32 nbCompares = 1U << cParams->searchLog;
#ifdef ZSTD_C_PREDICT
U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0);
U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1);
predictedSmall += (predictedSmall>0);
predictedLarge += (predictedLarge>0);
#endif /* ZSTD_C_PREDICT */
DEBUGLOG(8,
"ZSTD_insertBt1 (%u)"
, current);
assert
(ip <= iend-8);
hashTable[h] = current;
assert
(windowLow > 0);
while
(nbCompares-- && (matchIndex >= windowLow)) {
U32*
const
nextPtr = bt + 2*(matchIndex & btMask);
size_t
matchLength = MIN(commonLengthSmaller, commonLengthLarger);
assert
(matchIndex < current);
#ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */
const
U32* predictPtr = bt + 2*((matchIndex-1) & btMask);
if
(matchIndex == predictedSmall) {
*smallerPtr = matchIndex;
if
(matchIndex <= btLow) { smallerPtr=&dummy32;
break
; }
smallerPtr = nextPtr+1;
matchIndex = nextPtr[1];
predictedSmall = predictPtr[1] + (predictPtr[1]>0);
continue
;
}
if
(matchIndex == predictedLarge) {
*largerPtr = matchIndex;
if
(matchIndex <= btLow) { largerPtr=&dummy32;
break
; }
largerPtr = nextPtr;
matchIndex = nextPtr[0];
predictedLarge = predictPtr[0] + (predictPtr[0]>0);
continue
;
}
#endif
if
(!extDict || (matchIndex+matchLength >= dictLimit)) {
assert
(matchIndex+matchLength >= dictLimit);
match = base + matchIndex;
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
}
else
{
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
if
(matchIndex+matchLength >= dictLimit)
match = base + matchIndex;
}
if
(matchLength > bestLength) {
bestLength = matchLength;
if
(matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
}
if
(ip+matchLength == iend) {
break
;
}
if
(match[matchLength] < ip[matchLength]) {
*smallerPtr = matchIndex;
commonLengthSmaller = matchLength;
if
(matchIndex <= btLow) { smallerPtr=&dummy32;
break
; }
smallerPtr = nextPtr+1;
matchIndex = nextPtr[1];
}
else
{
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if
(matchIndex <= btLow) { largerPtr=&dummy32;
break
; }
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
{ U32 positions = 0;
if
(bestLength > 384) positions = MIN(192, (U32)(bestLength - 384));
assert
(matchEndIdx > current + 8);
return
MAX(positions, matchEndIdx - (current + 8));
}
}
FORCE_INLINE_TEMPLATE
void
ZSTD_updateTree_internal(
ZSTD_matchState_t* ms,
const
BYTE
*
const
ip,
const
BYTE
*
const
iend,
const
U32 mls,
const
ZSTD_dictMode_e dictMode)
{
const
BYTE
*
const
base = ms->window.base;
U32
const
target = (U32)(ip - base);
U32 idx = ms->nextToUpdate;
DEBUGLOG(6,
"ZSTD_updateTree_internal, from %u to %u (dictMode:%u)"
,
idx, target, dictMode);
while
(idx < target) {
U32
const
forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict);
assert
(idx < (U32)(idx + forward));
idx += forward;
}
assert
((
size_t
)(ip - base) <= (
size_t
)(U32)(-1));
assert
((
size_t
)(iend - base) <= (
size_t
)(U32)(-1));
ms->nextToUpdate = target;
}
void
ZSTD_updateTree(ZSTD_matchState_t* ms,
const
BYTE
* ip,
const
BYTE
* iend) {
ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict);
}
FORCE_INLINE_TEMPLATE
U32 ZSTD_insertBtAndGetAllMatches (
ZSTD_match_t* matches,
ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const
BYTE
*
const
ip,
const
BYTE
*
const
iLimit,
const
ZSTD_dictMode_e dictMode,
const
U32 rep[ZSTD_REP_NUM],
U32
const
ll0,
const
U32 lengthToBeat,
U32
const
mls
)
{
const
ZSTD_compressionParameters*
const
cParams = &ms->cParams;
U32
const
sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
const
BYTE
*
const
base = ms->window.base;
U32
const
current = (U32)(ip-base);
U32
const
hashLog = cParams->hashLog;
U32
const
minMatch = (mls==3) ? 3 : 4;
U32*
const
hashTable = ms->hashTable;
size_t
const
h = ZSTD_hashPtr(ip, hashLog, mls);
U32 matchIndex = hashTable[h];
U32*
const
bt = ms->chainTable;
U32
const
btLog = cParams->chainLog - 1;
U32
const
btMask= (1U << btLog) - 1;
size_t
commonLengthSmaller=0, commonLengthLarger=0;
const
BYTE
*
const
dictBase = ms->window.dictBase;
U32
const
dictLimit = ms->window.dictLimit;
const
BYTE
*
const
dictEnd = dictBase + dictLimit;
const
BYTE
*
const
prefixStart = base + dictLimit;
U32
const
btLow = (btMask >= current) ? 0 : current - btMask;
U32
const
windowLow = ZSTD_getLowestMatchIndex(ms, current, cParams->windowLog);
U32
const
matchLow = windowLow ? windowLow : 1;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = bt + 2*(current&btMask) + 1;
U32 matchEndIdx = current+8+1;
U32 dummy32;
U32 mnum = 0;
U32 nbCompares = 1U << cParams->searchLog;
const
ZSTD_matchState_t* dms = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL;
const
ZSTD_compressionParameters*
const
dmsCParams =
dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL;
const
BYTE
*
const
dmsBase = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL;
const
BYTE
*
const
dmsEnd = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL;
U32
const
dmsHighLimit = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0;
U32
const
dmsLowLimit = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0;
U32
const
dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0;
U32
const
dmsHashLog = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog;
U32
const
dmsBtLog = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog;
U32
const
dmsBtMask = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0;
U32
const
dmsBtLow = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit;
size_t
bestLength = lengthToBeat-1;
DEBUGLOG(8,
"ZSTD_insertBtAndGetAllMatches: current=%u"
, current);
assert
(ll0 <= 1);
{ U32
const
lastR = ZSTD_REP_NUM + ll0;
U32 repCode;
for
(repCode = ll0; repCode < lastR; repCode++) {
U32
const
repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
U32
const
repIndex = current - repOffset;
U32 repLen = 0;
assert
(current >= dictLimit);
if
(repOffset-1
< current-dictLimit) {
if
(ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch)) {
repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch;
}
}
else
{
const
BYTE
*
const
repMatch = dictMode == ZSTD_dictMatchState ?
dmsBase + repIndex - dmsIndexDelta :
dictBase + repIndex;
assert
(current >= windowLow);
if
( dictMode == ZSTD_extDict
&& ( ((repOffset-1)
< current - windowLow)
& (((U32)((dictLimit-1) - repIndex) >= 3) )
)
&& (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch;
}
if
(dictMode == ZSTD_dictMatchState
&& ( ((repOffset-1)
< current - (dmsLowLimit + dmsIndexDelta))
& ((U32)((dictLimit-1) - repIndex) >= 3) )
&& (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch;
} }
if
(repLen > bestLength) {
DEBUGLOG(8,
"found repCode %u (ll0:%u, offset:%u) of length %u"
,
repCode, ll0, repOffset, repLen);
bestLength = repLen;
matches[mnum].off = repCode - ll0;
matches[mnum].len = (U32)repLen;
mnum++;
if
( (repLen > sufficient_len)
| (ip+repLen == iLimit) ) {
return
mnum;
} } } }
if
((mls == 3)
&& (bestLength < mls)) {
U32
const
matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip);
if
((matchIndex3 >= matchLow)
& (current - matchIndex3 < (1<<18))
) {
size_t
mlen;
if
((dictMode == ZSTD_noDict)
|| (dictMode == ZSTD_dictMatchState)
|| (matchIndex3 >= dictLimit)) {
const
BYTE
*
const
match = base + matchIndex3;
mlen = ZSTD_count(ip, match, iLimit);
}
else
{
const
BYTE
*
const
match = dictBase + matchIndex3;
mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart);
}
if
(mlen >= mls
) {
DEBUGLOG(8,
"found small match with hlog3, of length %u"
,
(U32)mlen);
bestLength = mlen;
assert
(current > matchIndex3);
assert
(mnum==0);
matches[0].off = (current - matchIndex3) + ZSTD_REP_MOVE;
matches[0].len = (U32)mlen;
mnum = 1;
if
( (mlen > sufficient_len) |
(ip+mlen == iLimit) ) {
ms->nextToUpdate = current+1;
return
1;
} } }
}
hashTable[h] = current;
while
(nbCompares-- && (matchIndex >= matchLow)) {
U32*
const
nextPtr = bt + 2*(matchIndex & btMask);
const
BYTE
* match;
size_t
matchLength = MIN(commonLengthSmaller, commonLengthLarger);
assert
(current > matchIndex);
if
((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) {
assert
(matchIndex+matchLength >= dictLimit);
match = base + matchIndex;
if
(matchIndex >= dictLimit)
assert
(
memcmp
(match, ip, matchLength) == 0);
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit);
}
else
{
match = dictBase + matchIndex;
assert
(
memcmp
(match, ip, matchLength) == 0);
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
if
(matchIndex+matchLength >= dictLimit)
match = base + matchIndex;
}
if
(matchLength > bestLength) {
DEBUGLOG(8,
"found match of length %u at distance %u (offCode=%u)"
,
(U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE);
assert
(matchEndIdx > matchIndex);
if
(matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
bestLength = matchLength;
matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE;
matches[mnum].len = (U32)matchLength;
mnum++;
if
( (matchLength > ZSTD_OPT_NUM)
| (ip+matchLength == iLimit)
) {
if
(dictMode == ZSTD_dictMatchState) nbCompares = 0;
break
;
}
}
if
(match[matchLength] < ip[matchLength]) {
*smallerPtr = matchIndex;
commonLengthSmaller = matchLength;
if
(matchIndex <= btLow) { smallerPtr=&dummy32;
break
; }
smallerPtr = nextPtr+1;
matchIndex = nextPtr[1];
}
else
{
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if
(matchIndex <= btLow) { largerPtr=&dummy32;
break
; }
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
if
(dictMode == ZSTD_dictMatchState && nbCompares) {
size_t
const
dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls);
U32 dictMatchIndex = dms->hashTable[dmsH];
const
U32*
const
dmsBt = dms->chainTable;
commonLengthSmaller = commonLengthLarger = 0;
while
(nbCompares-- && (dictMatchIndex > dmsLowLimit)) {
const
U32*
const
nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask);
size_t
matchLength = MIN(commonLengthSmaller, commonLengthLarger);
const
BYTE
* match = dmsBase + dictMatchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart);
if
(dictMatchIndex+matchLength >= dmsHighLimit)
match = base + dictMatchIndex + dmsIndexDelta;
if
(matchLength > bestLength) {
matchIndex = dictMatchIndex + dmsIndexDelta;
DEBUGLOG(8,
"found dms match of length %u at distance %u (offCode=%u)"
,
(U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE);
if
(matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
bestLength = matchLength;
matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE;
matches[mnum].len = (U32)matchLength;
mnum++;
if
( (matchLength > ZSTD_OPT_NUM)
| (ip+matchLength == iLimit)
) {
break
;
}
}
if
(dictMatchIndex <= dmsBtLow) {
break
; }
if
(match[matchLength] < ip[matchLength]) {
commonLengthSmaller = matchLength;
dictMatchIndex = nextPtr[1];
}
else
{
commonLengthLarger = matchLength;
dictMatchIndex = nextPtr[0];
}
}
}
assert
(matchEndIdx > current+8);
ms->nextToUpdate = matchEndIdx - 8;
return
mnum;
}
FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
ZSTD_match_t* matches,
ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const
BYTE
* ip,
const
BYTE
*
const
iHighLimit,
const
ZSTD_dictMode_e dictMode,
const
U32 rep[ZSTD_REP_NUM],
U32
const
ll0,
U32
const
lengthToBeat)
{
const
ZSTD_compressionParameters*
const
cParams = &ms->cParams;
U32
const
matchLengthSearch = cParams->minMatch;
DEBUGLOG(8,
"ZSTD_BtGetAllMatches"
);
if
(ip < ms->window.base + ms->nextToUpdate)
return
0;
ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode);
switch
(matchLengthSearch)
{
case
3 :
return
ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3);
default
:
case
4 :
return
ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4);
case
5 :
return
ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5);
case
7 :
case
6 :
return
ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6);
}
}
typedef
struct
repcodes_s {
U32 rep[3];
} repcodes_t;
static
repcodes_t ZSTD_updateRep(U32
const
rep[3], U32
const
offset, U32
const
ll0)
{
repcodes_t newReps;
if
(offset >= ZSTD_REP_NUM) {
newReps.rep[2] = rep[1];
newReps.rep[1] = rep[0];
newReps.rep[0] = offset - ZSTD_REP_MOVE;
}
else
{
U32
const
repCode = offset + ll0;
if
(repCode > 0) {
U32
const
currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2];
newReps.rep[1] = rep[0];
newReps.rep[0] = currentOffset;
}
else
{
memcpy
(&newReps, rep,
sizeof
(newReps));
}
}
return
newReps;
}
static
U32 ZSTD_totalLen(ZSTD_optimal_t sol)
{
return
sol.litlen + sol.mlen;
}
#if 0 /* debug */
static
void
listStats(
const
U32* table,
int
lastEltID)
{
int
const
nbElts = lastEltID + 1;
int
enb;
for
(enb=0; enb < nbElts; enb++) {
(
void
)table;
RAWLOG(2,
"%4i,"
, table[enb]);
}
RAWLOG(2,
" \n"
);
}
#endif
FORCE_INLINE_TEMPLATE
size_t
ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize,
const
int
optLevel,
const
ZSTD_dictMode_e dictMode)
{
optState_t*
const
optStatePtr = &ms->opt;
const
BYTE
*
const
istart = (
const
BYTE
*)src;
const
BYTE
* ip = istart;
const
BYTE
* anchor = istart;
const
BYTE
*
const
iend = istart + srcSize;
const
BYTE
*
const
ilimit = iend - 8;
const
BYTE
*
const
base = ms->window.base;
const
BYTE
*
const
prefixStart = base + ms->window.dictLimit;
const
ZSTD_compressionParameters*
const
cParams = &ms->cParams;
U32
const
sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
U32
const
minMatch = (cParams->minMatch == 3) ? 3 : 4;
U32 nextToUpdate3 = ms->nextToUpdate;
ZSTD_optimal_t*
const
opt = optStatePtr->priceTable;
ZSTD_match_t*
const
matches = optStatePtr->matchTable;
ZSTD_optimal_t lastSequence;
DEBUGLOG(5,
"ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u"
,
(U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate);
assert
(optLevel <= 2);
ZSTD_rescaleFreqs(optStatePtr, (
const
BYTE
*)src, srcSize, optLevel);
ip += (ip==prefixStart);
while
(ip < ilimit) {
U32 cur, last_pos = 0;
{ U32
const
litlen = (U32)(ip - anchor);
U32
const
ll0 = !litlen;
U32
const
nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch);
if
(!nbMatches) { ip++;
continue
; }
{ U32 i ;
for
(i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
opt[0].mlen = 0;
opt[0].litlen = litlen;
opt[0].price = ZSTD_literalsContribution(anchor, litlen, optStatePtr, optLevel);
{ U32
const
maxML = matches[nbMatches-1].len;
U32
const
maxOffset = matches[nbMatches-1].off;
DEBUGLOG(6,
"found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series"
,
nbMatches, maxML, maxOffset, (U32)(ip-prefixStart));
if
(maxML > sufficient_len) {
lastSequence.litlen = litlen;
lastSequence.mlen = maxML;
lastSequence.off = maxOffset;
DEBUGLOG(6,
"large match (%u>%u), immediate encoding"
,
maxML, sufficient_len);
cur = 0;
last_pos = ZSTD_totalLen(lastSequence);
goto
_shortestPath;
} }
{ U32
const
literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
U32 pos;
U32 matchNb;
for
(pos = 1; pos < minMatch; pos++) {
opt[pos].price = ZSTD_MAX_PRICE;
}
for
(matchNb = 0; matchNb < nbMatches; matchNb++) {
U32
const
offset = matches[matchNb].off;
U32
const
end = matches[matchNb].len;
repcodes_t
const
repHistory = ZSTD_updateRep(rep, offset, ll0);
for
( ; pos <= end ; pos++ ) {
U32
const
matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel);
U32
const
sequencePrice = literalsPrice + matchPrice;
DEBUGLOG(7,
"rPos:%u => set initial price : %.2f"
,
pos, ZSTD_fCost(sequencePrice));
opt[pos].mlen = pos;
opt[pos].off = offset;
opt[pos].litlen = litlen;
opt[pos].price = sequencePrice;
ZSTD_STATIC_ASSERT(
sizeof
(opt[pos].rep) ==
sizeof
(repHistory));
memcpy
(opt[pos].rep, &repHistory,
sizeof
(repHistory));
} }
last_pos = pos-1;
}
}
for
(cur = 1; cur <= last_pos; cur++) {
const
BYTE
*
const
inr = ip + cur;
assert
(cur < ZSTD_OPT_NUM);
DEBUGLOG(7,
"cPos:%zi==rPos:%u"
, inr-istart, cur)
{ U32
const
litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1;
int
const
price = opt[cur-1].price
+ ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
+ ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
- ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
assert
(price < 1000000000);
if
(price <= opt[cur].price) {
DEBUGLOG(7,
"cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)"
,
inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen,
opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]);
opt[cur].mlen = 0;
opt[cur].off = 0;
opt[cur].litlen = litlen;
opt[cur].price = price;
memcpy
(opt[cur].rep, opt[cur-1].rep,
sizeof
(opt[cur].rep));
}
else
{
DEBUGLOG(7,
"cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)"
,
inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price),
opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]);
}
}
if
(inr > ilimit)
continue
;
if
(cur == last_pos)
break
;
if
( (optLevel==0)
&& (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) {
DEBUGLOG(7,
"move to next rPos:%u : price is <="
, cur+1);
continue
;
}
{ U32
const
ll0 = (opt[cur].mlen != 0);
U32
const
litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
U32
const
previousPrice = opt[cur].price;
U32
const
basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
U32
const
nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch);
U32 matchNb;
if
(!nbMatches) {
DEBUGLOG(7,
"rPos:%u : no match found"
, cur);
continue
;
}
{ U32
const
maxML = matches[nbMatches-1].len;
DEBUGLOG(7,
"cPos:%zi==rPos:%u, found %u matches, of maxLength=%u"
,
inr-istart, cur, nbMatches, maxML);
if
( (maxML > sufficient_len)
|| (cur + maxML >= ZSTD_OPT_NUM) ) {
lastSequence.mlen = maxML;
lastSequence.off = matches[nbMatches-1].off;
lastSequence.litlen = litlen;
cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0;
last_pos = cur + ZSTD_totalLen(lastSequence);
if
(cur > ZSTD_OPT_NUM) cur = 0;
goto
_shortestPath;
} }
for
(matchNb = 0; matchNb < nbMatches; matchNb++) {
U32
const
offset = matches[matchNb].off;
repcodes_t
const
repHistory = ZSTD_updateRep(opt[cur].rep, offset, ll0);
U32
const
lastML = matches[matchNb].len;
U32
const
startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch;
U32 mlen;
DEBUGLOG(7,
"testing match %u => offCode=%4u, mlen=%2u, llen=%2u"
,
matchNb, matches[matchNb].off, lastML, litlen);
for
(mlen = lastML; mlen >= startML; mlen--) {
U32
const
pos = cur + mlen;
int
const
price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
if
((pos > last_pos) || (price < opt[pos].price)) {
DEBUGLOG(7,
"rPos:%u (ml=%2u) => new better price (%.2f<%.2f)"
,
pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
while
(last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; }
opt[pos].mlen = mlen;
opt[pos].off = offset;
opt[pos].litlen = litlen;
opt[pos].price = price;
ZSTD_STATIC_ASSERT(
sizeof
(opt[pos].rep) ==
sizeof
(repHistory));
memcpy
(opt[pos].rep, &repHistory,
sizeof
(repHistory));
}
else
{
DEBUGLOG(7,
"rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)"
,
pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
if
(optLevel==0)
break
;
}
} } }
}
lastSequence = opt[last_pos];
cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0;
assert
(cur < ZSTD_OPT_NUM);
_shortestPath:
assert
(opt[0].mlen == 0);
{ U32
const
storeEnd = cur + 1;
U32 storeStart = storeEnd;
U32 seqPos = cur;
DEBUGLOG(6,
"start reverse traversal (last_pos:%u, cur:%u)"
,
last_pos, cur); (
void
)last_pos;
assert
(storeEnd < ZSTD_OPT_NUM);
DEBUGLOG(6,
"last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)"
,
storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off);
opt[storeEnd] = lastSequence;
while
(seqPos > 0) {
U32
const
backDist = ZSTD_totalLen(opt[seqPos]);
storeStart--;
DEBUGLOG(6,
"sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)"
,
seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off);
opt[storeStart] = opt[seqPos];
seqPos = (seqPos > backDist) ? seqPos - backDist : 0;
}
DEBUGLOG(6,
"sending selected sequences into seqStore"
)
{ U32 storePos;
for
(storePos=storeStart; storePos <= storeEnd; storePos++) {
U32
const
llen = opt[storePos].litlen;
U32
const
mlen = opt[storePos].mlen;
U32
const
offCode = opt[storePos].off;
U32
const
advance = llen + mlen;
DEBUGLOG(6,
"considering seq starting at %zi, llen=%u, mlen=%u"
,
anchor - istart, (unsigned)llen, (unsigned)mlen);
if
(mlen==0) {
assert
(storePos == storeEnd);
ip = anchor + llen;
continue
;
}
if
(offCode >= ZSTD_REP_NUM) {
rep[2] = rep[1];
rep[1] = rep[0];
rep[0] = offCode - ZSTD_REP_MOVE;
}
else
{
U32
const
repCode = offCode + (llen==0);
if
(repCode) {
U32
const
currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
if
(repCode >= 2) rep[2] = rep[1];
rep[1] = rep[0];
rep[0] = currentOffset;
} }
assert
(anchor + llen <= iend);
ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen-MINMATCH);
anchor += advance;
ip = anchor;
} }
ZSTD_setBasePrices(optStatePtr, optLevel);
}
}
return
(
size_t
)(iend - anchor);
}
size_t
ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize)
{
DEBUGLOG(5,
"ZSTD_compressBlock_btopt"
);
return
ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0
, ZSTD_noDict);
}
static
U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex,
int
bonus)
{
U32 s, sum=0;
assert
(ZSTD_FREQ_DIV+bonus >= 0);
for
(s=0; s<lastEltIndex+1; s++) {
table[s] <<= ZSTD_FREQ_DIV+bonus;
table[s]--;
sum += table[s];
}
return
sum;
}
MEM_STATIC
void
ZSTD_upscaleStats(optState_t* optPtr)
{
if
(ZSTD_compressedLiterals(optPtr))
optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0);
optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0);
optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0);
}
static
void
ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize)
{
U32 tmpRep[ZSTD_REP_NUM];
memcpy
(tmpRep, rep,
sizeof
(tmpRep));
DEBUGLOG(4,
"ZSTD_initStats_ultra (srcSize=%zu)"
, srcSize);
assert
(ms->opt.litLengthSum == 0);
assert
(seqStore->sequences == seqStore->sequencesStart);
assert
(ms->window.dictLimit == ms->window.lowLimit);
assert
(ms->window.dictLimit - ms->nextToUpdate <= 1);
ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2
, ZSTD_noDict);
ZSTD_resetSeqStore(seqStore);
ms->window.base -= srcSize;
ms->window.dictLimit += (U32)srcSize;
ms->window.lowLimit = ms->window.dictLimit;
ms->nextToUpdate = ms->window.dictLimit;
ZSTD_upscaleStats(&ms->opt);
}
size_t
ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize)
{
DEBUGLOG(5,
"ZSTD_compressBlock_btultra (srcSize=%zu)"
, srcSize);
return
ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2
, ZSTD_noDict);
}
size_t
ZSTD_compressBlock_btultra2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize)
{
U32
const
current = (U32)((
const
BYTE
*)src - ms->window.base);
DEBUGLOG(5,
"ZSTD_compressBlock_btultra2 (srcSize=%zu)"
, srcSize);
assert
(srcSize <= ZSTD_BLOCKSIZE_MAX);
if
( (ms->opt.litLengthSum==0)
&& (seqStore->sequences == seqStore->sequencesStart)
&& (ms->window.dictLimit == ms->window.lowLimit)
&& (current == ms->window.dictLimit)
&& (srcSize > ZSTD_PREDEF_THRESHOLD)
) {
ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize);
}
return
ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2
, ZSTD_noDict);
}
size_t
ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize)
{
return
ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0
, ZSTD_dictMatchState);
}
size_t
ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize)
{
return
ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2
, ZSTD_dictMatchState);
}
size_t
ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize)
{
return
ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0
, ZSTD_extDict);
}
size_t
ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
const
void
* src,
size_t
srcSize)
{
return
ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2
, ZSTD_extDict);
}