The Perl and Raku Conference 2025: Greenville, South Carolina - June 27-29 Learn more

package Math::Random;
use strict;
use Carp;
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $AUTOLOAD);
require Exporter;
require DynaLoader;
require AutoLoader;
@ISA = qw(Exporter DynaLoader);
$VERSION = '0.72';
@EXPORT = qw(random_normal
random_permutation
random_permuted_index
random_uniform
random_uniform_integer
random_seed_from_phrase
random_get_seed
random_set_seed_from_phrase
random_set_seed
);
@EXPORT_OK = qw(random_beta
random_chi_square
random_exponential
random_f
random_gamma
random_multivariate_normal
random_multinomial
random_noncentral_chi_square
random_noncentral_f
random_normal
random_permutation
random_permuted_index
random_uniform
random_poisson
random_uniform_integer
random_negative_binomial
random_binomial
random_seed_from_phrase
random_get_seed
random_set_seed_from_phrase
random_set_seed
);
%EXPORT_TAGS = ( all => [ @EXPORT_OK ] );
sub AUTOLOAD {
# This AUTOLOAD is used to 'autoload' constants from the constant()
# XS function. If a constant is not found then control is passed
# to the AUTOLOAD in AutoLoader.
my $constname;
($constname = $AUTOLOAD) =~ s/.*:://;
croak "& not defined" if $constname eq 'constant';
my $val = constant($constname, @_ ? $_[0] : 0);
if ($! != 0) {
if ($! =~ /Invalid/) {
$AutoLoader::AUTOLOAD = $AUTOLOAD;
goto &AutoLoader::AUTOLOAD;
}
else {
croak "Your vendor has not defined Math::Random macro $constname";
}
}
*$AUTOLOAD = sub () { $val };
goto &$AUTOLOAD;
}
bootstrap Math::Random $VERSION;
### set seeds by default
salfph(get_seed() || scalar(localtime));
#####################################################################
# RANDOM DEVIATE GENERATORS #
#####################################################################
sub random_beta { # Arguments: ($n,$aa,$bb)
croak "Usage: random_beta(\$n,\$aa,\$bb)" if scalar(@_) < 3;
my($n, $aa, $bb) = @_;
croak("($aa = \$aa < 1.0E-37) or ($bb = \$bb < 1.0E-37)\nin ".
"random_beta(\$n,\$aa,\$bb)")
if (($aa < 1.0E-37) or ($bb < 1.0E-37));
return genbet($aa,$bb) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = genbet($aa,$bb); }
return @ans;
}
sub random_chi_square { # Arguments: ($n,$df)
croak "Usage: random_chi_square(\$n,\$df)" if scalar(@_) < 2;
my($n, $df) = @_;
croak "$df = \$df <= 0\nin random_chi_square(\$n,\$df)" if ($df <= 0);
return genchi($df) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = genchi($df); }
return @ans;
}
sub random_exponential { # Arguments: ($n,$av), defaults (1,1)
return wantarray() ? (genexp(1)) : genexp(1)
if scalar(@_) == 0; # default behavior if no arguments
my($n, $av) = @_;
$av = 1 unless defined($av); # default $av is 1
croak "$av = \$av < 0\nin random_exponential(\$n,\$av)" if ($av < 0);
return genexp($av) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = genexp($av); }
return @ans;
}
sub random_f { # Arguments: ($n,$dfn,$dfd)
croak "Usage: random_f(\$n,\$dfn,\$dfd)" if scalar(@_) < 3;
my($n, $dfn, $dfd) = @_;
croak("($dfn = \$dfn <= 0) or ($dfd = \$dfd <= 0)\nin ".
"random_f(\$n,\$dfn,\$dfd)") if (($dfn <= 0) or ($dfd <= 0));
return genf($dfn,$dfd) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = genf($dfn,$dfd); }
return @ans;
}
sub random_gamma { # Arguments: ($n,$a,$r)
croak "Usage: random_gamma(\$n,\$a,\$r)" if scalar(@_) < 3;
my($n, $a, $r) = @_;
croak "($a = \$a <= 0) or ($r = \$r <= 0)\nin random_gamma(\$n,\$a,\$r)"
if (($a <= 0) or ($r <= 0));
return gengam($a,$r) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = gengam($a,$r); }
return @ans;
}
sub random_multivariate_normal { # Arguments: ($n, @mean, @covar(2-dim'l))
croak "Usage: random_multivariate_normal(\$n,\@mean,\@covar(2-dim'l))"
if (scalar(@_)) < 3;
my $n = shift(@_); # first element is number of obs. desired
my $p = scalar(@_)/2; # best guess at dimension of deviate
# check outline of arguments
croak("Sizes of \@mean and \@covar don't match\nin ".
"random_multivariate_normal(\$n, \@mean, \@covar(2-dim'l))")
unless (($p == int($p)) and ("$_[$p - 1]" !~ /^ARRAY/) and
("$_[$p]" =~ /^ARRAY/));
# linearize input - it seems faster to push
my @linear = ();
push @linear, splice(@_, 0, $p); # fill first $p slots w/ mean
# expand array references
my $ref;
foreach $ref (@_) { # for the rest of the input
# check length of row of @covariance
croak("\@covar is not a $p by $p array ($p is size of \@mean)\nin ".
"random_multivariate_normal(\$n, \@mean, \@covar(2-dim'l))")
unless (scalar(@{$ref}) == $p);
push @linear, @{$ref};
}
# load float working array with linearized input
putflt(@linear) or
croak "Unable to allocate memory\nin random_multivariate_normal";
# initialize parameter array for multivariate normal generator
psetmn($p) or
croak "Unable to allocate memory\nin random_multivariate_normal";
unless (wantarray()) {
### if called in a scalar context, returns single refernce to obs
pgenmn();
return [ getflt($p) ];
}
# otherwise return an $n by $p array of obs.
my @ans = (0) x $n;
foreach $ref (@ans) {
pgenmn();
$ref = [ getflt($p) ];
}
return @ans;
}
sub random_multinomial { # Arguments: ($n,@p)
my($n, @p) = @_;
my $ncat = scalar(@p); # number of categories
$n = int($n);
croak "$n = \$n < 0\nin random_multinomial(\$n,\@p)" if ($n < 0);
croak "$ncat = (length of \@p) < 2\nin random_multinomial(\$n,\@p)"
if ($ncat < 2);
rspriw($ncat) or croak "Unable to allocate memory\nin random_multinomial";
my($i,$sum,$val) = (0,0,0);
pop @p;
rsprfw(scalar(@p)) or
croak "Unable to allocate memory\nin random_multinomial";
foreach $val (@p) {
croak "$val = (some \$p[i]) < 0 or > 1\nin random_multinomial(\$n,\@p)"
if (($val < 0) or ($val > 1));
svprfw($i,$val);
$i++;
$sum += $val;
}
croak "Sum of \@p > 1\nin random_multinomial(\$n,\@p)" if ($sum > 0.99999);
pgnmul($n, $ncat);
### get the results
$i = 0;
foreach $val (@p) {
$val = gvpriw($i);
$i++;
}
push @p, gvpriw($i);
return @p;
}
sub random_noncentral_chi_square { # Arguments: ($n,$df,$nonc)
croak "Usage: random_noncentral_chi_square(\$n,\$df,\$nonc)"
if scalar(@_) < 3;
my($n, $df, $nonc) = @_;
croak("($df = \$df < 1) or ($nonc = \$nonc) < 0\n".
"in random_noncentral_chi_square(\$n,\$df,\$nonc)")
if (($df < 1) or ($nonc < 0));
return gennch($df,$nonc) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = gennch($df,$nonc); }
return @ans;
}
sub random_noncentral_f { # Arguments: ($n,$dfn,$dfd,$nonc)
croak "Usage: random_noncentral_f(\$n,\$dfn,\$dfd,\$nonc)"
if scalar(@_) < 4;
my($n, $dfn, $dfd, $nonc) = @_;
croak("($dfn = \$dfn < 1) or ($dfd = \$dfd <= 0) or ($nonc ".
"= \$nonc < 0)\nin random_noncentral_f(\$n,\$dfn,\$dfd,\$nonc)")
if (($dfn < 1) or ($dfd <= 0) or ($nonc < 0));
return gennf($dfn,$dfd,$nonc) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = gennf($dfn,$dfd,$nonc); }
return @ans;
}
sub random_normal { # Arguments: ($n,$av,$sd), defaults (1,0,1)
return wantarray() ? (gennor(0,1)) : gennor(0,1)
if scalar(@_) == 0; # default behavior if no arguments
my($n, $av, $sd) = @_;
$av = 0 unless defined($av); # $av defaults to 0
$sd = 1 unless defined($sd); # $sd defaults to 1, even if $av specified
croak "$sd = \$sd < 0\nin random_normal([\$n[,\$av[,\$sd]]])" if ($sd < 0);
return gennor($av,$sd) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = gennor($av,$sd); }
return @ans;
}
sub random_permutation { # Argument: (@array) - array to be permuted.
my $n = scalar(@_); # number of elements to be permuted
return () if $n == 0;
rspriw($n) or
croak "Unable to allocate memory\nin random_permutation";
pgnprm($n);
my($val, $i) = (0,0);
my @ans = (0) x $n;
foreach $val (@ans) {
$val = gvpriw($i);
$i++;
}
return @_[@ans];
}
sub random_permuted_index { # Argument: $n = scalar(@array) (for permutation)
croak "Usage: random_permuted_index(\$n)" if scalar(@_) < 1;
my $n = int(shift(@_)); # number of elements to be permuted
croak "$n = \$n < 0 in random_permuted_index(\$n)" if $n < 0;
return () if $n == 0;
rspriw($n) or
croak "Unable to allocate memory\nin random_permuted_index";
pgnprm($n);
my($val, $i) = (0,0);
my @ans = (0) x $n;
foreach $val (@ans) {
$val = gvpriw($i);
$i++;
}
return @ans;
}
sub random_uniform { # Arguments: ($n,$low,$high), defaults (1,0,1)
return wantarray() ? (genunf(0,1)) : genunf(0,1)
if scalar(@_) == 0;
croak "Usage: random_uniform([\$n,[\$low,\$high]])"
if scalar(@_) == 2; # only default is (0,1) for ($low,$high) both undef
my($n, $low, $high) = @_;
$low = 0 unless defined($low); # default for $low is 0
$high = 1 unless defined($high); # default for $high is 1
croak("$low = \$low > \$high = $high\nin ".
"random_uniform([\$n,[\$low,\$high]])") if ($low > $high);
return genunf($low,$high) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = genunf($low,$high); }
return @ans;
}
sub random_poisson { # Arguments: ($n, $mu)
croak "Usage: random_poisson(\$n,\$mu)" if scalar(@_) < 2;
my($n, $mu) = @_;
croak "$mu = \$mu < 0\nin random_poisson(\$n,\$mu)" if ($mu < 0);
return ignpoi($mu) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = ignpoi($mu); }
return @ans;
}
sub random_uniform_integer { # Arguments: ($n,$low,$high)
croak "Usage: random_uniform_integer(\$n,\$low,\$high)" if scalar(@_) < 3;
my($n, $low, $high) = @_;
$low = int($low);
$high = int($high);
croak("$low = \$low > \$high = $high\nin ".
"random_uniform_integer(\$n,\$low,\$high)") if ($low > $high);
my $range = $high - $low;
croak("$range = (\$high - \$low) > 2147483561\nin ".
"random_uniform_integer(\$n,\$low,\$high)") if ($range > 2147483561);
return ($low + ignuin(0,$range)) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = $low + ignuin(0,$range); }
return @ans;
}
sub random_negative_binomial { # Arguments: ($n,$ne,$p)
croak "Usage: random_negative_binomial(\$n,\$ne,\$p)" if scalar(@_) < 3;
my($n, $ne, $p) = @_;
$ne = int($ne);
croak("($ne = \$ne <= 0) or ($p = \$p <= 0 or >= 1)\nin ".
"random_negative_binomial(\$n,\$ne,\$p)")
if (($ne <= 0) or (($p <= 0) or ($p >= 1)));
return ignnbn($ne,$p) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = ignnbn($ne,$p); }
return @ans;
}
sub random_binomial { # Arguments: ($n,$nt,$p)
croak "Usage: random_binomial(\$n,\$nt,\$p)" if scalar(@_) < 3;
my($n, $nt, $p) = @_;
$nt = int($nt);
croak("($nt = \$nt < 0) or ($p = \$p < 0 or > 1)\nin ".
"random_binomial(\$n,\$nt,\$p)")
if (($nt < 0) or (($p < 0) or ($p > 1)));
return ignbin($nt,$p) unless wantarray();
my $val;
my @ans = (0) x $n;
foreach $val (@ans) { $val = ignbin($nt,$p); }
return @ans;
}
#####################################################################
# SEED HANDLER FUNCTIONS #
#####################################################################
sub random_seed_from_phrase { # Argument $phrase
my $phrase = shift(@_);
$phrase ||= "";
return phrtsd($phrase);
}
sub random_get_seed { # no argument
return getsd();
}
sub random_set_seed_from_phrase { # Argument $phrase
my $phrase = shift(@_);
$phrase ||= "";
salfph($phrase);
return 1;
}
sub random_set_seed { # Argument @seed
my($seed1,$seed2) = @_;
croak("Usage: random_set_seed(\@seed)\n\@seed[0,1] must be two integers ".
"in the range (1,1) to (2147483562,2147483398)\nand usually comes ".
"from a call to random_get_seed() ".
"or\nrandom_seed_from_phrase(\$phrase).")
unless (((($seed1 == int($seed1)) and ($seed2 == int($seed2))) and
(($seed1 > 0) and ($seed2 > 0))) and
(($seed1 < 2147483563) and ($seed2 < 2147483399)));
setall($seed1,$seed2);
return 1;
}
#####################################################################
# HELPER ROUTINES #
# These use the C work arrays and are not intended for export #
# (Currently only used in random_multivariate_normal) #
#####################################################################
sub getflt {
my $n = $_[0];
my $val;
my $i = 0;
my @junk = (0) x $n;
foreach $val (@junk) {
$val = gvprfw($i);
$i++;
}
return @junk;
}
sub putflt {
my $n = scalar(@_);
rsprfw($n) or return 0;
my $val;
my $i = 0;
foreach $val (@_) { # load up floats
svprfw($i,$val);
$i++;
}
return 1;
}
# Autoload methods go after =cut, and are processed by the autosplit program.
1;
__END__
=head1 NAME
B<Math::Random> - Random Number Generators
=head1 SYNOPSIS
=over 4
=item *
use Math::Random;
Exports the following routines by default (see L<"Default Routines">):
random_set_seed_from_phrase
random_get_seed
random_seed_from_phrase
random_set_seed
random_uniform
random_uniform_integer
random_permutation
random_permuted_index
random_normal
In this case the extended routines (see L<"Extended Routines">) can be
used by qualifying them explicitly with C<Math::Random::>, for
example: C<$stdexp = Math::Random::random_exponential();>
=item *
use Math::Random qw(random_beta
random_chi_square
random_exponential
random_f
random_gamma
random_multivariate_normal
random_multinomial
random_noncentral_chi_square
random_noncentral_f
random_normal
random_permutation
random_permuted_index
random_uniform
random_poisson
random_uniform_integer
random_negative_binomial
random_binomial
random_seed_from_phrase
random_get_seed
random_set_seed_from_phrase
random_set_seed );
Exports all the routines explicitly. Use a subset of the list for the
routines you want.
=item *
use Math::Random qw(:all);
Exports all the routines, as well.
=back
=head1 DESCRIPTION
B<Math::Random> is a B<Perl> port of the B<C> version of B<randlib>,
which is a suite of routines for generating random deviates. See
L<"RANDLIB"> for more information.
This port supports all of the distributions from which the B<Fortran>
and B<C> versions generate deviates. The major functionalities that
are excluded are the multiple generators/splitting facility and
antithetic random number generation. These facilities, along with
some of the distributions which I<are> included, are probably not of
interest except to the very sophisticated user. If there is
sufficient interest, the excluded facilities will be included in a
future release. The code to perform the excluded facilities is
available as B<randlib> in B<Fortran> and B<C> source.
=head2 Default Routines
The routines which are exported by default are the only ones that the
average Perl programmer is likely to need.
=over 4
=item C<random_set_seed_from_phrase($phrase)>
Sets the seed of the base generator to a value determined by
I<$phrase>. If the module is installed with the default option, the
value depends on the machine collating sequence. It should, however,
be the same for 7-bit ASCII character strings on all ASCII machines.
In the original randlib, the value generated for a given I<$phrase>
was consistent from implementation to implementation (it did not rely
on the machine collating sequence). Check with your Perl
administrator to see if the module was installed with the original
seed generator.
B<Note:> When the Perl processor loads
package B<Math::Random> the seed is set to a value based on the
current time. The seed changes each time B<Math::Random> generates
something random.
The ability to set the seed is useful for debugging, or for those who
like reproducible runs.
=item C<random_get_seed()>
Returns an array of length two which contains the two integers
constituting the seed (assuming a call in array context). An
invocation in a scalar context returns the integer 2, which is
probably not useful.
=item C<random_seed_from_phrase($phrase)>
Returns an array of length two which contains the two integers
constituting the seed (assuming a call in array context). An
invocation in a scalar context returns the integer 2, which is
probably not useful. The seed generated is the seed used to set the
seed in a call to C<random_set_seed_from_phrase>.
B<Note:> the following two calls (for the same I<$phrase>) are
equivalent:
random_set_seed(random_seed_from_phrase($phrase));
and
random_set_seed_from_phrase($phrase);
=item C<random_set_seed(@seed)>
Sets the seed of the base generator to the value I<@seed>[0,1].
Usually, the argument I<@seed> should be the result of a call to
C<random_get_seed> or C<random_seed_from_phrase>. I<@seed>[0,1] must
be two integers in the range S<(1, 1)> to S<(2147483562, 2147483398)>,
inclusive.
=item C<random_uniform($n, $low, $high)>
=item C<random_uniform($n)>
=item C<random_uniform()>
When called in an array context, returns an array of I<$n> deviates
generated from a I<uniform($low,>S< >I<$high)> distribution. When
called in a scalar context, generates and returns only one such
deviate as a scalar, regardless of the value of I<$n>.
Argument restrictions: I<$low> must be less than or equal to I<$high>.
Defaults are (1, 0, 1). B<Note:> I<$high> must be specified if
I<$low> is specified.
=item C<random_uniform_integer($n, $low, $high)>
When called in an array context, returns an array of I<$n> integer
deviates generated from a I<uniform($low,>S< >I<$high)> distribution
on the integers. When called in a scalar context, generates and
returns only one such deviate as a scalar, regardless of the value of
I<$n>.
Argument restrictions: I<$low> and I<$high> are first rounded using
C<int()>; the resulting I<$low> must be less than or equal to I<$high>,
and the resulting range I<($high - $low)> must not be greater than
2147483561.
There are no defaults; all three arguments must be provided.
=item C<random_permutation(@array)>
Returns I<@array>, randomly permuted.
=item C<random_permuted_index($n)>
Returns an array of array indices, randomly permuted. The indices
used are S<(0, ... ,>(I<$n>S< - >1)). This produces the indices used
by C<random_permutation> for a given seed, without passing arrays.
B<Note:> the following are equivalent:
random_set_seed_from_phrase('jjv');
random_permutation(@array);
and
random_set_seed_from_phrase('jjv');
@array[(random_permuted_index(scalar(@array)))];
=item C<random_normal($n, $av, $sd)>
=item C<random_normal($n, $av)>
=item C<random_normal($n)>
=item C<random_normal()>
When called in an array context, returns an array of I<$n> deviates
generated from a I<normal($av, $sd^2)> distribution. When called in a
scalar context, generates and returns only one such deviate as a
scalar, regardless of the value of I<$n>.
Argument restrictions: I<$sd> must be non-negative.
Defaults are (1, 0, 1).
=back
=head2 Extended Routines
These routines generate deviates from many other distributions.
B<Note:> The parameterizations of these deviates are standard (insofar
as there I<is> a standard ... ) but particular attention should be
paid to the distributions of the I<beta> and I<gamma> deviates (noted
in C<random_beta> and C<random_gamma> below).
=over 4
=item C<random_beta($n, $aa, $bb)>
When called in an array context, returns an array of I<$n> deviates
generated from the I<beta> distribution with parameters I<$aa> and
I<$bb>. The density of the beta is:
X^(I<$aa> - 1) * (1 - X)^(I<$bb> - 1) / S<B>(I<$aa> , I<$bb>) for 0 < X <
1.
When called in a scalar context, generates and returns only one such
deviate as a scalar, regardless of the value of I<$n>.
Argument restrictions: Both I<$aa> and I<$bb> must not be less than
C<1.0E-37>.
There are no defaults; all three arguments must be provided.
=item C<random_binomial($n, $nt, $p)>
When called in an array context, returns an array of I<$n> outcomes
generated from the I<binomial> distribution with number of trials
I<$nt> and probability of an event in each trial I<$p>. When called
in a scalar context, generates and returns only one such outcome as a
scalar, regardless of the value of I<$n>.
Argument restrictions: I<$nt> is rounded using C<int()>; the result
must be non-negative. I<$p> must be between 0 and 1 inclusive.
There are no defaults; both arguments must be provided.
=item C<random_chi_square($n, $df)>
When called in an array context, returns an array of I<$n> deviates
generated from the I<chi-square> distribution with I<$df> degrees of
freedom. When called in a scalar context, generates and returns only
one such deviate as a scalar, regardless of the value of I<$n>.
Argument restrictions: I<$df> must be positive.
There are no defaults; both arguments must be provided.
=item C<random_exponential($n, $av)>
=item C<random_exponential($n)>
=item C<random_exponential()>
When called in an array context, returns an array of I<$n> deviates
generated from the I<exponential> distribution with mean I<$av>. When
called in a scalar context, generates and returns only one such
deviate as a scalar, regardless of the value of I<$n>.
Argument restrictions: I<$av> must be non-negative.
Defaults are (1, 1).
=item C<random_f($n, $dfn, $dfd)>
When called in an array context, returns an array of I<$n> deviates
generated from the I<F> (variance ratio) distribution with degrees of
freedom I<$dfn> (numerator) and I<$dfd> (denominator). When called in
a scalar context, generates and returns only one such deviate as a
scalar, regardless of the value of I<$n>.
Argument restrictions: Both I<$dfn> and I<$dfd> must be positive.
There are no defaults; all three arguments must be provided.
=item C<random_gamma($n, $a, $r)>
When called in an array context, returns an array of I<$n> deviates
generated from the I<gamma> distribution with parameters I<$a> and
I<$r>. The density of the gamma is:
(I<$a>**I<$r>) / Gamma(I<$r>) * X**(I<$r> - 1) * Exp(-I<$a>*X)
When called in a scalar context, generates and returns only one such
deviate as a scalar, regardless of the value of I<$n>.
Argument restrictions: Both I<$a> and I<$r> must be positive.
There are no defaults; all three arguments must be provided.
=item C<random_multinomial($n, @p)>
When called in an array context, returns single observation from the
I<multinomial> distribution, with I<$n> events classified into as many
categories as the length of I<@p>. The probability of an event being
classified into category I<i> is given by the I<i>th element of I<@p>.
The observation is an array with length equal to I<@p>, so when called
in a scalar context it returns the length of @p. The sum of the
elements of the observation is equal to I<$n>.
Argument restrictions: I<$n> is rounded with C<int()> before it is
used; the result must be non-negative. I<@p> must have length at
least 2. All elements of I<@p> except the last must be between 0 and
1 inclusive, and sum to no more than 0.99999. B<Note:> The last
element of I<@p> is a dummy to indicate the number of categories, and
it is adjusted to bring the sum of the elements of I<@p> to 1.
There are no defaults; both arguments must be provided.
=item C<random_multivariate_normal($n, @mean, @covar)>
When called in an array context, returns an array of I<$n> deviates
(each deviate being an array reference) generated from the
I<multivariate normal> distribution with mean vector I<@mean> and
variance-covariance matrix I<@covar>. When called in a scalar
context, generates and returns only one such deviate as an array
reference, regardless of the value of I<$n>.
Argument restrictions: If the dimension of the deviate to be generated
is I<p>, I<@mean> should be a length I<p> array of real numbers.
I<@covar> should be a length I<p> array of references to length I<p>
arrays of real numbers (i.e. a I<p> by I<p> matrix). Further,
I<@covar> should be a symmetric positive-definite matrix, although the
B<Perl> code does not check positive-definiteness, and the underlying
B<C> code assumes the matrix is symmetric. Given that the
variance-covariance matrix is symmetric, it doesn't matter if the
references refer to rows or columns. If a non-positive definite
matrix is passed to the function, it will abort with the following
message:
COVM not positive definite in SETGMN
Also, a non-symmetric I<@covar> may produce deviates without
complaint, although they may not be from the expected distribution.
For these reasons, you are encouraged to I<verify the arguments
passed>.
The B<Perl> code I<does> check the dimensionality of I<@mean> and
I<@covar> for consistency. It does so by checking that the length of
the argument vector passed is odd, that what should be the last
element of I<@mean> and the first element of I<@covar> look like they
are a number followed by an array reference respectively, and that the
arrays referred to in I<@covar> are as long as I<@mean>.
There are no defaults; all three arguments must be provided.
=item C<random_negative_binomial($n, $ne, $p)>
When called in an array context, returns an array of I<$n> outcomes
generated from the I<negative binomial> distribution with number of
events I<$ne> and probability of an event in each trial I<$p>. When
called in a scalar context, generates and returns only one such
outcome as a scalar, regardless of the value of I<$n>.
Argument restrictions: I<$ne> is rounded using C<int()>, the result
must be positive. I<$p> must be between 0 and 1 exclusive.
There are no defaults; both arguments must be provided.
=item C<random_noncentral_chi_square($n, $df, $nonc)>
When called in an array context, returns an array of I<$n> deviates
generated from the I<noncentral chi-square> distribution with I<$df>
degrees of freedom and noncentrality parameter I<$nonc>. When called
in a scalar context, generates and returns only one such deviate as a
scalar, regardless of the value of I<$n>.
Argument restrictions: I<$df> must be at least 1, I<$nonc> must be
non-negative.
There are no defaults; all three arguments must be provided.
=item C<random_noncentral_f($n, $dfn, $dfd, $nonc)>
When called in an array context, returns an array of I<$n> deviates
generated from the I<noncentral F> (variance ratio) distribution with
degrees of freedom I<$dfn> (numerator) and I<$dfd> (denominator); and
noncentrality parameter I<$nonc>. When called in a scalar context,
generates and returns only one such deviate as a scalar, regardless of
the value of I<$n>.
Argument restrictions: I<$dfn> must be at least 1, I<$dfd> must be
positive, and I<$nonc> must be non-negative.
There are no defaults; all four arguments must be provided.
=item C<random_poisson($n, $mu)>
When called in an array context, returns an array of I<$n> outcomes
generated from the I<Poisson> distribution with mean I<$mu>. When
called in a scalar context, generates and returns only one such
outcome as a scalar, regardless of the value of I<$n>.
Argument restrictions: I<$mu> must be non-negative.
There are no defaults; both arguments must be provided.
=back
=head1 ERROR HANDLING
The B<Perl> code should C<croak> if bad arguments are passed or if the
underlying B<C> code cannot allocate the necessary memory. The only
error which should kill the job without C<croak>ing is a non-positive
definite variance-covariance matrix passed to
C<random_multivarite_normal> (see L<"Extended Routines">).
=head1 RANDLIB
B<randlib> is available in B<Fortran> and B<C> source form, and will
soon be available in B<Fortran90> source as well. B<randlib.c> can be
obtained from B<statlib>. Send mail whose message is I<'send
randlib.c.shar from general'> to:
statlib@lib.stat.cmu.edu
B<randlib.c> can also be obtained by anonymous B<ftp> to:
odin.mdacc.tmc.edu (143.111.62.32)
where it is available as
/pub/source/randlib.c-1.3.tar.gz
For obvious reasons, the original B<randlib> (in B<Fortran>) has been
renamed to
/pub/source/randlib.f-1.3.tar.gz
on the same machine.
Our FTP index is on file C<./pub/index>.
If you have Internet access and a browser you might note the following
web site addresses:
University of Texas M. D. Anderson Cancer Center Home Page:
Department of Biomathematics Home Page:
Available software:
=head1 SUPPORT
This work was supported in part by grant CA-16672 from the National
Cancer Institute. We are grateful to Larry and Pat McNeil of Corpus
Cristi for their generous support. Some equipment used in this effort
was provided by IBM as part of a cooperative study agreement; we thank
them.
=head1 CODE MANIPULATION
The B<C> version of B<randlib> was obtained by translating the
original B<Fortran> B<randlib> using B<PROMULA.FORTRAN>, and
performing some hand crafting of the result.
Information on B<PROMULA.FORTRAN> can be obtained from:
PROMULA Development Corporation
3620 N. High Street, Suite 301
Columbus, Ohio 43214
(614) 263-5454
F<wrapper.c> (now obsolete) was created by using B<SWIG>, and
performing some modification of the result. B<SWIG> also produced the
skeleton of F<Random.pm>.
Information on B<SWIG> can be obtained from:
=head1 SOURCES
The following routines, which were written by others and lightly
modified for consistency in packaging, are included in B<randlib>.
=over 4
=item Bottom Level Routines
These routines are a transliteration of the B<Pascal> in the reference
to B<Fortran>, and thence to B<C>.
L'Ecuyer, P., and Cote, S. "Implementing a Random Number Package with
Splitting Facilities." ACM Transactions on Mathematical Software,
17:98-111 (1991).
=item Exponential
This code was obtained from Netlib.
Ahrens, J. H., and Dieter, U. "Computer Methods for Sampling from the
Exponential and Normal Distributions." Comm. ACM, 15,10 (Oct. 1972),
873-882.
=item Gamma
(Case R >= 1.0)
Ahrens, J. H., and Dieter, U. "Generating Gamma Variates by a Modified
Rejection Technique." Comm. ACM, 25,1 (Jan. 1982), 47-54.
Algorithm GD
(Case 0.0 <= R <= 1.0)
Ahrens, J. H., and Dieter, U. "Computer Methods for Sampling from
Gamma, Beta, Poisson and Binomial Distributions." Computing, 12 (1974),
223-246. Adaptation of algorithm GS.
=item Normal
This code was obtained from netlib.
Ahrens, J. H., and Dieter, U. "Extensions of Forsythe's Method for
Random Sampling from the Normal Distribution." Math. Comput., 27,124
(Oct. 1973), 927-937.
=item Binomial
This code was kindly sent to Dr. Brown by Dr. Kachitvichyanukul.
Kachitvichyanukul, V., and Schmeiser, B. W. "Binomial Random Variate
Generation." Comm. ACM, 31, 2 (Feb. 1988), 216.
=item Poisson
This code was obtained from netlib.
Ahrens, J. H., and Dieter, U. "Computer Generation of Poisson Deviates
from Modified Normal Distributions." ACM Trans. Math. Software, 8, 2
(June 1982), 163-179.
=item Beta
This code was written by us following the recipe in the following.
Cheng, R. C. H. "Generating Beta Variables with Nonintegral Shape
Parameters." Comm. ACM, 21:317-322 (1978). (Algorithms BB and BC)
=item Linpack
Routines C<SPOFA> and C<SDOT> are used to perform the Cholesky
decomposition of the covariance matrix in C<SETGMN> (used for the
generation of multivariate normal deviates).
Dongarra, J. J., Moler, C. B., Bunch, J. R., and Stewart, G. W.
Linpack User's Guide. SIAM Press, Philadelphia. (1979)
=item Multinomial
The algorithm is from page 559 of Devroye, Luc Non-Uniform Random
Variate Generation. New York: Springer-Verlag, 1986.
=item Negative Binomial
The algorithm is from page 480 of Devroye, Luc Non-Uniform Random
Variate Generation. New York: Springer-Verlag, 1986.
=back
=head1 VERSION
This POD documents B<Math::Random> version 0.71.
=head1 AUTHORS
=over 4
=item *
B<Math::Random> (the B<Perl> port of B<Randlib>) was put together by
John Venier and Barry W. Brown with help from B<SWIG>. For version
0.61, Geoffrey Rommel made various cosmetic changes. Version 0.64 uses
plain vanilla XS rather than SWIG.
=item *
B<randlib> was compiled and written by Barry W. Brown, James Lovato,
Kathy Russell, and John Venier.
=item *
Correspondence regarding B<Math::Random> or B<randlib> should be
addressed to John Venier by email to
jvenier@mdanderson.org
=item *
Our address is:
Department of Biomathematics, Box 237
The University of Texas, M.D. Anderson Cancer Center
1515 Holcombe Boulevard
Houston, TX 77030
=item *
Geoffrey Rommel may be reached at grommel [at] cpan [dot] org.
=back
=head1 LEGALITIES
=over 4
=item *
The programs in the B<Perl> code distributed with B<Math::Random> and
in the B<C> code F<helper.c>, as well as the documentation, are
copyright by John Venier and Barry W. Brown for the University of
Texas M. D. Anderson Cancer Center in 1997. They may be distributed
and used under the same conditions as B<Perl>.
=item *
F<randlib.c>, F<com.c>, and F<randlib.h> are from B<randlib> (See
L<"RANDLIB">) and are distributed with the following legalities.
Code that appeared in an ACM publication is subject to their
algorithms policy:
Submittal of an algorithm for publication in one of the ACM
Transactions implies that unrestricted use of the algorithm within a
computer is permissible. General permission to copy and distribute
the algorithm without fee is granted provided that the copies are not
made or distributed for direct commercial advantage. The ACM
copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires
a fee and/or specific permission.
Krogh, F. "Algorithms Policy." ACM Tran. Math. Softw. 13 (1987),
183-186.
Note, however, that only the particular expression of an algorithm can
be copyrighted, not the algorithm per se; see 17 USC 102E<40>bE<41>.
We place the Randlib code that we have written in the public domain.
=item *
B<Math::Randlib> and B<randlib> are distributed with B<NO WARRANTY>.
See L<"NO WARRANTY">.
=back
=head1 NO WARRANTY
WE PROVIDE ABSOLUTELY NO WARRANTY OF ANY KIND EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THIS PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.
IN NO EVENT SHALL THE UNIVERSITY OF TEXAS OR ANY OF ITS COMPONENT
INSTITUTIONS INCLUDING M. D. ANDERSON HOSPITAL BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA OR
ITS ANALYSIS BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD
PARTIES FROM) THE PROGRAM.
(Above NO WARRANTY modified from the GNU NO WARRANTY statement.)
=cut