NAME

    AI::MXNet::NDArray - Multidimensional tensor object of MXNet.

DESCRIPTION

    AI::MXNet::NDArray - Imperative tensor operations on CPU/GPU
    In AI::MXNet, NDArray is the core data structure for all mathematical computations.
    An NDArray represents a multidimensional, fixed-size homogenous array.
    If you're familiar with the PDL, you might notice some similarities.
    However, NDArray is row-major, unlike the PDL that is column-major.
    Like the PDL, MXNet's NDArray enables imperative computation.

    Some NDArray advandages compared to PDL:
    MXNet's NDArray supports fast execution on a wide range of hardware configurations, including CPU, GPU, and multi-GPU machines.
    MXNet also scales to distributed systems in the cloud.
    MXNet's NDArray executes code lazily, allowing it to automatically parallelize multiple operations across the available hardware.

    An NDArray is a multidimensional array of numbers with the same type.
    We could represent the coordinates of a point in 3D space, e.g. [2, 1, 6] as a 1D array with shape (3).
    Similarly, we could represent a 2D array.
    Below, we present an array with length 2 along the first axis and length 3 along the second axis.

    [[0, 1, 2]
     [3, 4, 5]]
    Note that here the use of 'dimension' is overloaded. When we say a 2D array, we mean an array with 2 axes, not an array with two components.

    Each NDArray supports some important attributes that you'll often want to query:

    $ndarray->shape: The dimensions of the array.
    It is an array ref of integers indicating the length of the array along each axis.
    For a matrix with $n rows and $m columns, its shape will be [$n, $m].
    $ndarray->dtype: A string describing the type of its elements.
    Dtype (defined in AI::MXNet::Types) is one of (float32 float64 float16 uint8 int8 int32 int64)
    $ndarray->size: The total number of components in the array - equal to the product of the components of its shape.
    $ndarray->context: The device on which this array is stored, represented by an object of AI::MXNet::Context class, e.g. cpu() or gpu(1).

aspdl

    Returns a copied PDL array of current array.

    Returns
    -------
    array : PDL
        A copy of the array content.

asmpdl

    Returns copied PDL::Matrix objectt of current array.

    Requires caller to "use PDL::Matrix" in user space.

    Returns
    -------
    array : PDL::Matrix
        A copy of array content.

_slice

    Returns sliced NDArray that shares memory with the current one.

    Parameters
    ----------
    start : int
        Starting index of slice.
    stop : int
        Finishing index of slice.

_at

    Returns a sub NDArray that shares memory with current one.

    Parameters
    ----------
    idx : int
        index of the sub array.

reshape

    Returns a **view** of this array with a new shape without altering any data.
    One shape dimension can be -1. In this case, the value is inferred
    from the length of the array and remaining dimensions.

    Parameters
    ----------
    $new_shape : Shape
        new shape of NDArray
    :$reverse : bool, default 0
        If true then the special values are inferred from right to left.

ndim

    Returns the number of dimensions of this array.

moveaxis

    Moves the 'source' axis into the 'destination' position
    while leaving the other axes in their original order

    Parameters
    ----------
    source : int
        Original position of the axes to move.
    destination : int
        Destination position for each of the original axes.

    Returns
    -------
    result :NDArray
    Array with moved axes.

    Examples
    --------
    > $X = mx->nd->array([[1, 2, 3],
                          [4, 5, 6]]);
    > print Dumper($X->moveaxis(0, 1)->shape)
    > [3, 2]

broadcast_to

    Broadcasting the current NDArray into the given shape.

    Parameters
    ---------
    Shape $shape : the shape to broadcast

wait_to_read

    Block until all pending write operations on the NDArray are finished.

    This function will return when all the pending writes to the current
    NDArray are finished. There can be pending reads going on when the
    function returns.

shape

    Get the shape of current NDArray.

    Returns
    -------
    an array ref representing the shape of current ndarray

size

    Number of elements in the array.

context

    The context of the NDArray.

    Returns
    -------
    $context : AI::MXNet::Context

dtype

    The data type of current NDArray.

    Returns
    -------
    a data type string ('float32', 'float64', 'float16', 'uint8', 'int32')
    representing the data type of the ndarray.
    'float32' is the default dtype for the ndarray class.

copyto

    Copy the content of current array to another entity.

    When another entity is the NDArray, the content is copied over.
    When another entity is AI::MXNet::Context, a new NDArray in the context
    will be created.

    Parameters
    ----------
    other : NDArray or Context
        Target NDArray or context we want to copy data to.

    Returns
    -------
    dst : NDArray

copy

    Makes a copy of the current ndarray in the same context

    Returns
    ------
    $copy : NDArray

T

    Get transpose of the NDArray.
    Works only on 2-D matrices.

astype

    Returns copied ndarray of current array with the specified type.

    Parameters
    ----------
    $dtype : Dtype

    Returns
    -------
    $array : ndarray
        A copy of the array content.

as_in_context

    Returns an NDArray in the target context.
    If the array is already in that context, self is returned. Otherwise, a copy is
    made.

    Parameters
    ----------
    context : AI::MXNet::Context
        The target context we want the return value to live in.

    Returns
    -------
        A copy or self as an NDArray in the target context.

onehot_encode

    One hot encoding indices into matrix out.

    Parameters
    ----------
    indices: NDArray
        An NDArray containing indices of the categorical features.

    out: NDArray
        The result of the encoding.

    Returns
    -------
        $out: NDArray

empty

    Creates an empty uninitialized NDArray, with the specified shape.

    Parameters
    ----------
    $shape : Shape
        shape of the NDArray.

    :$ctx : AI::MXNet::Context, optional
        The context of the NDArray, defaults to current default context.

    :$dtype : Dtype, optional
        The dtype of the NDArray, defaults to 'float32'.

    :$stype: Stype, optional
        The stype of the NDArray, defaults to 'default'

    Returns
    -------
    out: Array
        The created NDArray.

zeros

    Creates a new NDArray filled with 0, with specified shape.

    Parameters
    ----------
    $shape : Shape
        shape of the NDArray.

    :$ctx : AI::MXNet::Context, optional
        The context of the NDArray, defaults to current default context.

    :$dtype : Dtype, optional
        The dtype of the NDArray, defaults to 'float32'.

    :$stype: Stype, optional
        The stype of the NDArray, defaults to 'default'
    Returns
    -------
    out: Array
        The created NDArray.

ones

    Creates a new NDArray filled with 1, with specified shape.

    Parameters
    ----------
    $shape : Shape
        shape of the NDArray.

    :$ctx : AI::MXNet::Context, optional
        The context of the NDArray, defaults to current default context.

    :$dtype : Dtype, optional
        The dtype of the NDArray, defaults to 'float32'.

    Returns
    -------
    out: Array
        The created NDArray.

full

    Creates a new NDArray filled with given value, with specified shape.

    Parameters
    ----------
    $shape : Shape
        shape of the NDArray.

    val : float or int
        The value to be filled with.

    :$ctx : AI::MXNet::Context, optional
        The context of the NDArray, defaults to current default context.

    :$dtype : Dtype, optional
        The dtype of the NDArray, defaults to 'float32'.

    Returns
    -------
    out: Array
        The created NDArray.

array

    Creates a new NDArray that is a copy of the source_array.

    Parameters
    ----------
    $source_array : AI::MXNet::NDArray PDL, PDL::Matrix, Array ref in PDL::pdl format
        Source data to create NDArray from.

    :$ctx : AI::MXNet::Context, optional
        The context of the NDArray, defaults to current default context.

    :$dtype : Dtype, optional
        The dtype of the NDArray, defaults to 'float32'.

    Returns
    -------
    out: Array
        The created NDArray.

concatenate

    Concatenates an array ref of NDArrays along the first dimension.

    Parameters
    ----------
    $arrays :  array ref of NDArrays
        Arrays to be concatenate. They must have identical shape except
        for the first dimension. They also must have the same data type.
    :$axis=0 : int
        The axis along which to concatenate.
    :$always_copy=1 : bool
        Default is 1. When not 1, if the arrays only contain one
        NDArray, that element will be returned directly, avoid copying.

    Returns
    -------
    An NDArray in the same context as $arrays->[0]->context.

arange

    Similar function in the MXNet ndarray as numpy.arange
    See Also https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html.

    Parameters
    ----------
    :$start=0 : number, optional
        Start of interval. The interval includes this value. The default start value is 0.
    :$stop= : number, optional
        End of interval. The interval does not include this value.
    :$step=1 : number, optional
        Spacing between the values
    :$repeat=1 : number, optional
        The repeating time of all elements.
        E.g repeat=3, the element a will be repeated three times --> a, a, a.
    :$infer_range=0 : Bool
        When set to 1, infer stop position from start, step, repeat, and
        output tensor size.
    :$ctx : Context, optional
        The context of the NDArray, defaultw to current default context.
    :$dtype : data type, optional
        The value type of the NDArray, defaults to float32

    Returns
    -------
    $out : NDArray
        The created NDArray

load

    Loads ndarrays from a binary file.

    You can also use Storable to do the job if you only work with Perl.
    The advantage of load/save is the file is language agnostic.
    This means the file saved using save can be loaded by other language binding of mxnet.
    You also get the benefit being able to directly load/save from cloud storage(S3, HDFS)

    Parameters
    ----------
    fname : str
        The name of the file.Can be S3 or HDFS address (remember built with S3 support).
        Example of fname:

        - `s3://my-bucket/path/my-s3-ndarray`
        - `hdfs://my-bucket/path/my-hdfs-ndarray`
        - `/path-to/my-local-ndarray`

    Returns
    -------
    $out : array ref of NDArrays or hash ref with NDArrays

load_frombuffer

    Loads an array dictionary or list from a buffer

    See more details in 'save'.

    Parameters
    ----------
    buf : str
        Binary string containing contents of a file.

    Returns
    -------
    array ref of AI::MXNet::NDArray, AI::MXNet::NDArrayRowSparseNDArray or AI::MXNet::NDArray::CSR, or
    hash ref of AI::MXNet::NDArray, AI::MXNet::NDArrayRowSparseNDArray or AI::MXNet::NDArray::CSR
        Loaded data.

save

    Save array ref of NDArray or hash of str->NDArray to a binary file.

    You can also use Storable to do the job if you only work with Perl.
    The advantage of load/save is the file is language agnostic.
    This means the file saved using save can be loaded by other language binding of mxnet.
    You also get the benefit being able to directly load/save from cloud storage(S3, HDFS)

    Parameters
    ----------
    fname : str
        The name of the file.Can be S3 or HDFS address (remember built with S3 support).
        Example of fname:

        - `s3://my-bucket/path/my-s3-ndarray`
        - `hdfs://my-bucket/path/my-hdfs-ndarray`
        - `/path-to/my-local-ndarray`

    $data : array ref of NDArrays or hash ref of NDArrays
        The data to be saved.

imdecode

    Decode an image from string. Requires OpenCV to work.

    Parameters
    ----------
    $str_img : str
        binary image data
    :$clip_rect : iterable of 4 int
        clip decoded image to rectangle (x0, y0, x1, y1)
    :$out= : Maybe[NDArray]
        output buffer. can be 3 dimensional (c, h, w) or 4 dimensional (n, c, h, w)
    :$index : int
        output decoded image to i-th slice of 4 dimensional buffer
    :$channels=3 : int
        number of channels to output. Decode to grey scale when channels = 1.
    $mean= : Maybe[NDArray]
        subtract mean from decode image before outputting.

_new_empty_handle

    Returns a new empty handle.

    Empty handle can be used to hold result

    Returns
    -------
        a new empty ndarray handle

_new_alloc_handle

    Returns a new handle with specified shape and context.

    Empty handle is only used to hold results

    Returns
    -------
    a new empty ndarray handle

tostype

        Return a copy of the array with chosen storage type.

        Returns
        -------
        AI::MXNet::NDArray or AI::MXNet::NDArray::CSR or AI::MXNet::NDArray::RowSparse
            A copy of the array with the chosen storage stype

waitall

    Wait for all async operations to finish in MXNet.
    This function is used for benchmarks only.

_fresh_grad

        Parameters:
        ----------
        Maybe[Bool] $state=

        Whether this array's corresponding gradient array
        (registered via `autograd->mark_variables`) has been
        updated by `autograd->backward` since last reset.

        `_fresh_grad` need to be manually set to False
        after consuming gradient (usually after updating this
        array).

detach

    Returns a new NDArray, detached from the current graph.

attach_grad

        Attach a gradient buffer to this NDArray, so that `backward`
        can compute gradient with respect to it.

        Parameters
        ----------
        GradReq :$grad_req='write' : {'write', 'add', 'null'}
            How gradient will be accumulated.
            - 'write': gradient will be overwritten on every backward.
            - 'add': gradient will be added to existing value on every backward.
            - 'null': do not compute gradient for this NDArray.
        Maybe[Str] :$stype= : str, optional
            The storage type of the gradient array. Defaults to the same stype of this NDArray.

grad

    Returns gradient buffer attached to this NDArray.

backward

    Compute the gradients of this NDArray w.r.t variables.

    Parameters
    ----------
    :$out_grad= : NDArray, optional
        Gradient with respect to head.
    :$retain_graph=0 : bool, optional
        Whether to retain the computaion graph for another backward
        pass on the same graph. By default the computaion history
        is cleared.
    :$train_mode=1 : bool, optional
        Whether to compute gradient for training or inference.