The London Perl and Raku Workshop takes place on 26th Oct 2024. If your company depends on Perl, please consider sponsoring and/or attending.

NAME

AI::NNFlex::Hopfield - a fast, pure perl Hopfield network simulator

SYNOPSIS

 use AI::NNFlex::Hopfield;

 my $network = AI::NNFlex::Hopfield->new(config parameter=>value);

 $network->add_layer(nodes=>x);

 $network->init(); 



 use AI::NNFlex::Dataset;

 my $dataset = AI::NNFlex::Dataset->new([
                        [INPUTARRAY],
                        [INPUTARRAY]]);

 $network->learn($dataset);

 my $outputsRef = $dataset->run($network);

 my $outputsRef = $network->output();

DESCRIPTION

AI::NNFlex::Hopfield is a Hopfield network simulator derived from the AI::NNFlex class. THIS IS THE FIRST ALPHA CUT OF THIS MODULE! Any problems, let me know and I'll fix them.

Hopfield networks differ from feedforward networks in that they are effectively a single layer, with all nodes connected to all other nodes (except themselves), and are trained in a single operation. They are particularly useful for recognising corrupt bitmaps etc. I've left the multi layer architecture in this module (inherited from AI::NNFlex) for convenience of visualising 2d bitmaps, but effectively its a single layer.

Full documentation for AI::NNFlex::Dataset can be found in the modules own perldoc. It's documented here for convenience only.

CONSTRUCTOR

AI::NNFlex::Hopfield->new();

AI::NNFlex::Dataset

 new (  [[INPUT VALUES],[INPUT VALUES],
        [INPUT VALUES],[INPUT VALUES],..])

INPUT VALUES

These should be comma separated values. They can be applied to the network with ::run or ::learn

OUTPUT VALUES

These are the intended or target output values. Comma separated. These will be used by ::learn

METHODS

This is a short list of the main methods implemented in AI::NNFlex::Hopfield.

AI::NNFlex::Hopfield

add_layer

 Syntax:

 $network->add_layer(   nodes=>NUMBER OF NODES IN LAYER );

init

 Syntax:

 $network->init();

Initialises connections between nodes.

run

 $network->run($dataset)

Runs the dataset through the network and returns a reference to an array of output patterns.

EXAMPLES

See the code in ./examples.

PREREQs

Math::Matrix

ACKNOWLEDGEMENTS

SEE ALSO

 AI::NNFlex
 AI::NNFlex::Backprop

TODO

More detailed documentation. Better tests. More examples.

CHANGES

v0.1 - new module

COPYRIGHT

Copyright (c) 2004-2005 Charles Colbourn. All rights reserved. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

CONTACT

 charlesc@nnflex.g0n.net