Dancer2::Manual::Deployment - common ways to put your Dancer app into use
version 0.400001
Dancer has been designed to be flexible, and this flexibility extends to your choices when deploying your Dancer app.
To start your application, just run plackup:
$ plackup bin/app.psgi HTTP::Server::PSGI: Accepting connections at http://0:5000/
Point your browser at it, and away you go!
This option can be useful for small personal web apps or internal apps, but if you want to make your app available to the world, it probably won't suit you.
While developing your application, it is often handy to have the server automatically reload your application when changes are made. There are two recommended ways of handling this with Dancer: using plackup -r and Plack::Loader::Shotgun. Both have their advantages and disadvantages (which will be explained below).
plackup -r
Regardless of the method you use, it is not recommended that you automatically reload your applications in a production environment, for reasons of performance, deployment best practices, etc.
For Dancer 1 programmers that used the auto_reload option, please use one of these alternatives instead:
auto_reload
Plack's built-in reloader will reload your application anytime a file in your application's directory (usually, /bin ) changes. You will likely want to monitor your lib/ directory too, using the -R option:
-R
$ plackup -r -R lib bin/app.psgi
There is a performance hit associated with this, as Plack will spin off a separate process that monitors files in the application and other specified directories. If the timestamp of any files in a watched directory changes, the application is recompiled and reloaded.
See the plackup docs for more information on the -r and -R options.
-r
There may be circumstances where Plack's built-in reloader won't work for you, be it for the way it looks for changes, or because there are many directories you need to monitor, or you want to reload the application any time one of the modules in Perl's lib/ path changes. Plack::Loader::Shotgun makes this easy by recompiling the application on every request.
To use Shotgun, specify it using the loader argument to plackup (-L) :
plackup (-L)
$ plackup -L Shotgun bin/app.psgi
The Shotgun, while effective, can quickly cause you performance issues, even during the development phase of your application. As the number of plugins you use in your application grows, as the number of static resources (images, etc.) grows, the more requests your server process needs to handle. Since each request recompiles the application, even simple page refreshes can get unbearably slow over time. Use with caution.
You can bypass Shotgun's auto-reloading of specific modules with the -M switch:
-M
$ plackup -L Shotgun -M<MyApp::Foo> -M<MyApp::Bar> bin/app.psgi
On Windows, Shotgun loader is known to cause huge memory leaks in a fork-emulation layer. If you are aware of this and still want to run the loader, please use the following command:
> set PLACK_SHOTGUN_MEMORY_LEAK=1 && plackup -L Shotgun bin\app.psgi HTTP::Server::PSGI: Accepting connections at http://0:5000/
Please note: if you are using Dancer 2's asynchronous capabilities, using Shotgun will kill Twiggy. If you need async processing, consider an alternative to Shotgun.
You can run your Dancer app from Apache using the following examples:
In its simplest form, your Dancer app can be run as a simple CGI script out-of-the-box. You will need to enable the Apache mod_cgi or mod_cgid modules (a2enmod cgi or a2enmod cgid on Debian-based systems) and mod_rewrite (a2enmod rewrite). The Perl module Plack::Runner is required.
a2enmod cgi
a2enmod cgid
a2enmod rewrite
The following is an example apache configuration. Depending on your Apache configuration layout, this should be placed in httpd.conf or sites-available/*site*. The configuration options can also be placed in .htaccess files if you prefer.
httpd.conf
sites-available/*site*
.htaccess
<VirtualHost *:80> ServerName www.example.com # /srv/www.example.com is the root of your # dancer application DocumentRoot /srv/www.example.com/public ServerAdmin you@example.com <Directory "/srv/www.example.com/public"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch AddHandler cgi-script .cgi # Apache 2.2 Order allow,deny Allow from all # Apache 2.4 Require all granted </Directory> RewriteEngine On RewriteCond %{REQUEST_FILENAME} !-f RewriteRule ^(.*)$ /dispatch.cgi$1 [QSA,L] ErrorLog /var/log/apache2/www.example.com-error.log CustomLog /var/log/apache2/www.example.com-access_log common </VirtualHost>
Now you can access your dancer application URLs as if you were using the embedded web server.
http://www.example.com/
This option is a no-brainer, easy to setup and low maintenance, but serves requests slower than all other options, as each time a request is made to your server, Apache will start your application. This might be suitable for a small, occasionally-used sites, as the application is not using resources when it is not being accessed. For anything more, you probably want to use FastCGI instead (see next section).
To list all currently loaded modules, type apachectl -M (apache2ctl -M on Debian/Ubuntu).
apachectl -M
apache2ctl -M
This has all the easy-to-setup and low-maintenance advantages of CGI, but is much faster for each request, as it keeps a copy of the application running all the time.
You will still need to enable mod_rewrite, but will need to use a FastCGI module instead of a CGI module. There are 3 available: mod_fcgid, mod_fastcgi and mod_proxy_fcgi. For this example, we will use mod_fastcgi (a2enmod fastcgi in Debian).
mod_rewrite
a2enmod fastcgi
The CGI configuration above now changes as follows (differences highlighted with XXX):
<VirtualHost *:80> ServerName www.example.com # /srv/www.example.com is the root of your # dancer application DocumentRoot /srv/www.example.com/public ServerAdmin you@example.com # XXX Start a FastCGI server to run in the background FastCgiServer /srv/www.example.com/public/dispatch.fcgi <Directory "/srv/www.example.com/public"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch # XXX Use FastCGI handler instead of CGI AddHandler fastcgi-script .fcgi # Apache 2.2 Order allow,deny Allow from all # Apache 2.4 Require all granted </Directory> RewriteEngine On RewriteCond %{REQUEST_FILENAME} !-f # Run FastCGI dispatcher instead of CGI dispatcher RewriteRule ^(.*)$ /dispatch.fcgi$1 [QSA,L] ErrorLog /var/log/apache2/www.example.com-error.log CustomLog /var/log/apache2/www.example.com-access_log common </VirtualHost>
This is the easiest way to get a production server up and running, as there is no need to worry about daemonizing your application. Apache manages all that for you.
You can use apache2ctl restart or apache2ctl graceful to reload your application. The latter will be more friendly to your users in a production environment. If your application loads relatively quickly, then it should go unnoticed.
apache2ctl restart
apache2ctl graceful
See http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html for FastCGI configuration options. An example configuration:
FastCgiServer /srv/www.example.com/public/dispatch.fcgi -processes 5 -initial-env DANCER_ENVIRONMENT="production"
You can run your app from Apache using PSGI (Plack), with a config like the following:
<VirtualHost myapp.example.com> ServerName www.myapp.example.com ServerAlias myapp.example.com DocumentRoot /websites/myapp.example.com <Directory /home/myapp/myapp> AllowOverride None Order allow,deny Allow from all </Directory> <Location /> SetHandler perl-script PerlResponseHandler Plack::Handler::Apache2 PerlSetVar psgi_app /websites/myapp.example.com/app.psgi </Location> ErrorLog /websites/myapp.example.com/logs/error_log CustomLog /websites/myapp.example.com/logs/access_log common </VirtualHost>
To set the environment you want to use for your application (production or development), you can set it this way:
<VirtualHost> ... SetEnv DANCER_ENVIRONMENT "production" ... </VirtualHost>
If you want to deploy multiple applications under the same VirtualHost (using one application per directory, for example) you can use the following example Apache configuration.
VirtualHost
This example uses the FastCGI dispatcher that comes with Dancer, but you should be able to adapt this to use any other way of deployment described in this guide. The only purpose of this example is to show how to deploy multiple applications under the same base directory/virtualhost.
<VirtualHost *:80> ServerName localhost DocumentRoot "/path/to/rootdir" RewriteEngine On RewriteCond %{REQUEST_FILENAME} !-f <Directory "/path/to/rootdir"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all AddHandler fastcgi-script .fcgi </Directory> RewriteRule /App1(.*)$ /App1/public/dispatch.fcgi$1 [QSA,L] RewriteRule /App2(.*)$ /App2/public/dispatch.fcgi$1 [QSA,L] ... RewriteRule /AppN(.*)$ /AppN/public/dispatch.fcgi$1 [QSA,L] </VirtualHost>
Of course, if your Apache configuration allows that, you can put the RewriteRules in a .htaccess file directly within the application's directory, which lets you add a new application without changing the Apache configuration.
A number of Perl web servers supporting PSGI are available on cpan:
Starman is a high performance web server, with support for preforking, signals, multiple interfaces, graceful restarts and dynamic worker pool configuration.
Starman
Twiggy is an AnyEvent web server, it's light and fast.
Twiggy
AnyEvent
Corona is a Coro based web server.
Corona
Coro
Similar to running standalone, use plackup to start your application (see Plack and specific servers above for all available options):
$ plackup bin/app.psgi $ plackup -E deployment -s Starman --workers=10 -p 5001 -a bin/app.psgi
As you can see, the scaffolded Perl script for your app can be used as a PSGI startup file.
Content compression (gzip, deflate) can be easily enabled via a Plack middleware (see "Plack::Middleware" in Plack): Plack::Middleware::Deflater. It's a middleware to encode the response body in gzip or deflate, based on the Accept-Encoding HTTP request header.
Accept-Encoding
Enable it as you would enable any Plack middleware. First you need to install Plack::Middleware::Deflater, then in the handler (usually app.psgi) edit it to use Plack::Builder, as described above:
use Dancer2; use MyWebApp; use Plack::Builder; builder { enable 'Deflater'; dance; };
To test if content compression works, trace the HTTP request and response before and after enabling this middleware. Among other things, you should notice that the response is gzip or deflate encoded, and contains a header Content-Encoding set to gzip or deflate.
Content-Encoding
gzip
deflate
You can turn your app into proper service running in background using one of the following examples:
Ubic is an extensible perlish service manager. You can use it to start and stop any services, automatically start them on reboots or daemon failures, and implement custom status checks.
A basic PSGI service description (usually in /etc/ubic/service/application):
/etc/ubic/service/application
use parent qw(Ubic::Service::Plack); # if your application is not installed in @INC path: sub start { my $self = shift; $ENV{PERL5LIB} = '/path/to/your/application/lib'; $self->SUPER::start(@_); } __PACKAGE__->new( server => 'Starman', app => '/path/to/your/application/app.psgi', port => 5000, user => 'www-data', );
Run ubic start application to start the service.
ubic start application
daemontools is a collection of tools for managing UNIX services. You can use it to easily start/restart/stop services.
A basic script to start an application: (in /service/application/run)
/service/application/run
#!/bin/sh # if your application is not installed in @INC path: export PERL5LIB='/path/to/your/application/lib' exec 2>&1 \ /usr/local/bin/plackup -s Starman -a /path/to/your/application/app.psgi -p 5000
Another option would be to run your app stand-alone as described above, but then use a proxy or load balancer to accept incoming requests (on the standard port 80, say) and feed them to your Dancer app. Also, in this case you might want to look at the behind_proxy configuration option, to make sure that all the URLs are constructed properly.
behind_proxy
behind_proxy: 1
This setup can be achieved using various software; examples would include:
You could set up a VirtualHost for your web app, and proxy all requests through to it:
<VirtualHost mywebapp.example.com:80> ProxyPass / http://localhost:3000/ ProxyPassReverse / http://localhost:3000/ </VirtualHost>
Or, if you want your webapp to share an existing VirtualHost, you could have it under a specified dir:
ProxyPass /mywebapp/ http://localhost:3000/ ProxyPassReverse /mywebapp/ http://localhost:3000/
It is important for you to note that the Apache2 modules mod_proxy and mod_proxy_http must be enabled:
mod_proxy
mod_proxy_http
$ a2enmod proxy $ a2enmod proxy_http
It is also important to set permissions for proxying for security purposes, below is an example.
<Proxy *> Order allow,deny Allow from all </Proxy>
Perlbal is a single-threaded event-based server written in Perl supporting HTTP load balancing, web serving, and a mix of the two, available from http://www.danga.com/perlbal/
Perlbal
It processes hundreds of millions of requests a day just for LiveJournal, Vox and TypePad and dozens of other "Web 2.0" applications.
It can also provide a management interface to let you see various information on requests handled etc.
It could easily be used to handle requests for your Dancer apps, too.
It can be easily installed from CPAN:
perl -MCPAN -e 'install Perlbal'
Once installed, you'll need to write a configuration file. See the examples provided with perlbal, but you'll probably want something like:
CREATE POOL my_dancers POOL my_dancers ADD 10.0.0.10:3030 POOL my_dancers ADD 10.0.0.11:3030 POOL my_dancers ADD 10.0.0.12:3030 POOL my_dancers ADD 10.0.0.13:3030 CREATE SERVICE my_webapp SET listen = 0.0.0.0:80 SET role = reverse_proxy SET pool = my_dancers SET persist_client = on SET persist_backend = on SET verify_backend = on ENABLE my_webapp
balance is a simple load-balancer from Inlab Software, available from http://www.inlab.de/balance.html.
balance
It could be used simply to hand requests to a standalone Dancer app. You could even run several instances of your Dancer app, on the same machine or on several machines, and use a machine running balance to distribute the requests between them, for some serious heavy traffic handling!
To listen on port 80, and send requests to a Dancer app on port 3000:
balance http localhost:3000
To listen on a specified IP only on port 80, and distribute requests between multiple Dancer apps on multiple other machines:
balance -b 10.0.0.1 80 10.0.0.2:3000 10.0.0.3:3000 10.0.0.4:3000
You can use Lighttpd's mod_proxy:
$HTTP["url"] =~ "/application" { proxy.server = ( "/" => ( "application" => ( "host" => "127.0.0.1", "port" => 3000 ) ) ) }
This configuration will proxy all request to the /application path to the path / on localhost:3000.
with Nginx:
upstream backendurl { server unix:THE_PATH_OF_YOUR_PLACKUP_SOCKET_HERE.sock; } server { listen 80; server_name YOUR_HOST_HERE; access_log /var/log/YOUR_ACCESS_LOG_HERE.log; error_log /var/log/YOUR_ERROR_LOG_HERE.log info; root YOUR_ROOT_PROJECT/public; location / { try_files $uri @proxy; access_log off; expires max; } location @proxy { proxy_set_header Host $http_host; proxy_set_header X-Forwarded-Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_pass http://backendurl; } }
You will need plackup to start a worker listening on a socket :
cd YOUR_PROJECT_PATH sudo -u www plackup -E production -s Starman --workers=2 -l THE_PATH_OF_YOUR_PLACKUP_SOCKET_HERE.sock -a bin/app.pl
A good way to start this is to use daemontools and place this line with all environments variables in the "run" file.
daemontools
HAProxy is a reliable high-performance TCP/HTTP load balancer written in C available from https://www.haproxy.org/.
HAProxy
Suppose we want to run an application at app.example.com:80 and would to use two backends listen on hosts app-be1.example.com:3000 and app-be2.example.com:3000.
app.example.com:80
app-be1.example.com:3000
app-be2.example.com:3000
Here is HAProxy configuration file (haproxy.conf):
global nbproc 1 maxconn 4096 user nobody group nobody # haproxy logs will be collected by syslog # syslog: unix socket path or tcp pair (ipaddress:port) log /var/run/log local0 daemon # enable compression (haproxy v1.5-dev13 and above required) tune.comp.maxlevel 5 defaults log global option httpclose option httplog option dontlognull option forwardfor option abortonclose mode http balance roundrobin retries 3 timeout connect 5s timeout server 30s timeout client 30s timeout http-keep-alive 200m # enable compression (haproxy v1.5-dev13 and above required) compression algo gzip compression type text/html application/javascript text/css application/x-javascript text/javascript # application frontend (available at http://app.example.com) frontend app.example.com bind :80 # modify request headers reqadd X-Forwarded-Proto:\ http reqadd X-Forwarded-Port:\ 80 # modify response headers rspdel ^Server:.* rspdel ^X-Powered-By:.* rspadd Server:\ Dethklok\ (Unix/0.2.3) rate-limit sessions 1024 acl is-haproxy-stats path_beg /stats # uncomment if you'd like to get haproxy usage statistics # use_backend haproxy if is-haproxy-stats default_backend dynamic # haproxy statistics (available at http://app.example.com/stats) backend haproxy stats uri /stats stats refresh 180s stats realm app.example.com\ haproxy\ statistics # change credentials stats auth admin1:password1 stats auth admin2:password2 stats hide-version stats show-legends # application backends backend dynamic # change path_info to check and value of the Host header sent to application server option httpchk HEAD / HTTP/1.1\r\nHost:\ app.example.com server app1 app-be1.example.com:3000 check inter 30s server app2 app-be2.example.com:3000 check inter 30s
We will need to start the workers on each backend of our application. This can be done by starman utility:
# on app-be1.example.com $ starman --workers=2 --listen :3000 /path/to/app.pl # on app-be2.example.com $ starman --workers=2 --listen :3000 /path/to/app.pl
Then start the haproxy itself:
# check the configuration.. $ sudo haproxy -c -f haproxy.conf # now really start it.. $ sudo haproxy -f haproxy.conf
To run as a CGI app on lighttpd, just create a soft link to the dispatch.cgi script (created when you run dancer -a MyApp) inside your system's cgi-bin folder. Make sure mod_cgi is enabled.
dispatch.cgi
dancer -a MyApp
cgi-bin
mod_cgi
ln -s /path/to/MyApp/public/dispatch.cgi /usr/lib/cgi-bin/mycoolapp.cgi
Make sure mod_fcgi is enabled. You also must have FCGI installed.
mod_fcgi
This example configuration uses TCP/IP:
$HTTP["url"] == "^/app" { fastcgi.server += ( "/app" => ( "" => ( "host" => "127.0.0.1", "port" => "5000", "check-local" => "disable", ) ) ) }
Launch your application:
plackup -s FCGI --port 5000 bin/app.psgi
This example configuration uses a socket:
$HTTP["url"] =~ "^/app" { fastcgi.server += ( "/app" => ( "" => ( "socket" => "/tmp/fcgi.sock", "check-local" => "disable", ) ) ) }
plackup -s FCGI --listen /tmp/fcgi.sock bin/app.psgi
The following modules can be used to speed up an app in Dancer2:
CGI::Deurl::XS
Class::XSAccessor
Cpanel::JSON::XS
Crypt::URandom
HTTP::XSCookies
HTTP::XSHeaders
Math::Random::ISAAC::XS
MooX::TypeTiny
Type::Tiny::XS
URL::Encode::XS
YAML::XS
If you generated your application with dancer2 gen, you can easily install these with the following command:
dancer2 gen
cpanm --installdeps . --with-feature=accelerate
To build them, you will need access to a C compiler, and using these modules will prevent you from fatpacking your application.
These modules are installed by default when building a Docker container containing your application.
Dancer Core Developers
This software is copyright (c) 2023 by Alexis Sukrieh.
This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5 programming language system itself.
To install Dancer2, copy and paste the appropriate command in to your terminal.
cpanm
cpanm Dancer2
CPAN shell
perl -MCPAN -e shell install Dancer2
For more information on module installation, please visit the detailed CPAN module installation guide.