NAME
Math::PlanePath::DragonCurve  dragon curve
SYNOPSIS
use Math::PlanePath::DragonCurve;
my $path = Math::PlanePath::DragonCurve>new;
my ($x, $y) = $path>n_to_xy (123);
DESCRIPTION
This is the dragon or paper folding curve by Heighway, Harter, et al.
98 54 2
   
1011,76 32 1
 
1716 1312 01 < Y=0
  
1819,1514,2223 1
  
2021,2524 2

2627 3

32 2928 4
 
3130 5
^ ^ ^ ^ ^ ^ ^
5 4 3 2 1 X=0 1 ...
The curve visits "inside" X,Y points twice. The first of these is X=2,Y=1 which is N=7 and also N=11. The segments N=6,7,8 and N=10,11,12 have touched, but the path doesn't cross itself. The doubled vertices are all like this, touching but not crossing and no edges repeating.
Arms
The curve fills a quarter of the plane and four copies mesh together perfectly when rotated by 90, 180 and 270 degrees. The arms
parameter can choose 1 to 4 curve arms successively advancing.
For example arms=4 begins as follows, with N=0,4,8,12,etc being the first arm, N=1,5,9,13 the second, N=2,6,10,14 the third and N=3,7,11,15 the fourth.
arms => 4
20  16

9 5/12  8 23
   
17  13/6  0/1/2/3  4/15  19
   
21 10  14/7  11

18  22
With four arms every X,Y point is visited twice (except the origin 0,0 where all four begin) and every edge between the points is traversed once.
Level Angle
The first step N=1 is to the right along the X axis and the path then slowly spirals anticlockwise and progressively fatter. The end of each replication is N=2^level which is at level*45 degrees around,
N X,Y angle radial dist
   
1 1,0 0 1
2 1,1 45 sqrt(2)
4 0,2 90 sqrt(4)=2
8 2,2 135 sqrt(8)
16 4,0 180 sqrt(16)=4
32 4,4 225 sqrt(32)
...
Here's points N=0 to N=2^9=512. "0" is the origin and "+" is N=512. Notice it's spiralled around fullcircle to angle 45 degrees up again, like the initial N=2.
* * * *
* * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * *
* * * * * * * + * *
* * * * * * * *
* * * * * * *
* * * * * * * *
* * * * * *
* * * *
* * * * * * *
* * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * 0 * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * *
At a power of two Nlevel=2^level for N=2 or higher, the curve always goes upward from Nlevel1 to Nlevel, and then goes to the left for Nlevel+1. For example at N=16 the curve goes up N=15 to N=16, then left for N=16 to N=17. Likewise at N=32, etc. The spiral curls around ever further but the selfsimilar twist back means the Nlevel endpoint is always at this same up/left orientation. See "Total Turn" below for the net direction in general.
Level Ranges
The X,Y extents of the path through to Nlevel=2^level can be expressed as a "length" in the direction of the Xlevel,Ylevel endpoint and a "width" across.
level even, so endpoint is a straight line
k = level/2
++ < Lmax
 
 E < Lend = 2^k at Nlevel=2^level

++

O  < Lstart=0
 
++ < Lmin
^ ^
Wmin Wmax
Lmax = (7*2^k  4)/6 if k even
(7*2^k  2)/6 if k odd
Lmin =  (2^k  1)/3 if k even
 (2^k  2)/3 if k odd
Wmax = (2*2^k  2) / 3 if k even
(2*2^k  1) / 3 if k odd
Wmin = Lmin
For example level=2 is to Nlevel=2^2=4 and k=level/2=1 is odd so it measures as follows,
4 < Lmax = (7*2^1  2)/6 = 2

32

01 < Lmin = (2^1  2)/3 = 0
^ ^Wmax = (2*2^1  1)/3 = 1

Wmin = Lmin = 0
Or level=4 is to Nlevel=2^4=16 and k=4/2=2 is even. It measures as follows. The lengthways "L" measures are in the direction of the N=16 endpoint and the "W" measures are across.
98 54 < Wmax = (2*2^2  2)/3 = 2
   
1011,76 32
 
16 1312 01
 
1514 < Wmin = (2^2  1)/3 = 1
^ ^Lmin = Wmin = 1

Lmax = (7*2^2  4)/6 = 4
The formulas are all integer values, but the fractions 7/6, 1/3 and 2/3 show the limits as the level increases. If scaled so that length Lend=2^k is reckoned as 1 unit then Lmax extends 1/6 past the end, Lmin and Wmin extend 1/3, and Wmax extends across 2/3.
++ 
   1/6 total length
   = 1/6+1+1/3 = 3/2
 E  
 
 
 \  1
 \ 
 \ 
 \ 
 
 O  
  
   1/3
  
++ 
1/3 2/3
total width = 1/3+2/3 = 1
Paper Folding
The path is called a paper folding curve because it can be generated by thinking of a long strip of paper folded in half repeatedly and then unfolded so each crease is a 90 degree angle. The effect is that the curve repeats in successive doublings turned by 90 degrees and reversed.
The first segment unfolds, pivoting at the "1",
2
> 
unfold / 
===>  

01 01
Then the same again with that L shape, pivoting at the "2", then after that pivoting at the "4", and so on.
4



32
2 
 unfold ^ 
 ===> \_ 
 
01 01
It can be shown that this unfolding doesn't overlap itself but the corners may touch, such as at the X=2,Y=1 etc noted above.
FUNCTIONS
See "FUNCTIONS" in Math::PlanePath for behaviour common to all path classes.
$path = Math::PlanePath::DragonCurve>new ()
$path = Math::PlanePath::DragonCurve>new (arms => $int)

Create and return a new path object.
The optional
arms
parameter can make 1 to 4 copies of the curve, each arm successively advancing. ($x,$y) = $path>n_to_xy ($n)

Return the X,Y coordinates of point number
$n
on the path. Points begin at 0 and if$n < 0
then the return is an empty list.Fractional positions give an X,Y position along a straight line between the integer positions.
$n = $path>xy_to_n ($x,$y)

Return the point number for coordinates
$x,$y
. If there's nothing at$x,$y
then returnundef
.The curve visits an
$x,$y
twice for various points (all the "inside" points). The smaller of the two N values is returned. @n_list = $path>xy_to_n_list ($x,$y)

Return a list of N point numbers for coordinates
$x,$y
.The origin 0,0 has
arms_count()
many N since it's the starting point for each arm. Other points have up to two Ns for a given$x,$y
. If arms=4 then every$x,$y
except the origin has exactly two Ns. $n = $path>n_start()

Return 0, the first N in the path.
Level Methods
($n_lo, $n_hi) = $path>level_to_n_range($level)

Return
(0, 2**$level)
, or for multiple arms return(0, $arms * 2**$level + ($arms1))
.There are 2^level segments in a curve level, so 2^level+1 points numbered from 0. For multiple arms there are arms*(2^level+1) points, numbered from 0 so n_hi = arms*(2^level+1)1.
FORMULAS
Various formulas for coordinates, lengths and area can be found in the author's long mathematical writeup
X,Y to N
The current code uses the DragonMidpoint
xy_to_n()
by rotating 45 degrees and offsetting to the midpoints of the four edges around the target X,Y. The DragonMidpoint
algorithm then gives four candidate N values and those which convert back to the desired X,Y in the DragonCurve
n_to_xy()
are the results for xy_to_n_list()
.
Xmid,Ymid = X+Y, YX # rotate 45 degrees
for dx = 0 or 1
for dy = 0 or 1
N candidate = DragonMidpoint xy_to_n(Xmid+dx,Ymid+dy)
Since there's at most two DragonCurve
Ns at a given X,Y the loop can stop when two Ns are found.
Only the "leaving" edges will convert back to the target N, so only two of the four edges actually need to be considered. Is there a way to identify them? For arm 1 and 3 the leaving edges are up,down on odd points (meaning sum X+Y odd) and right,left for even points (meaning sum X+Y even). But for arm 2 and 4 it's the other way around. Without an easy way to determine the arm this doesn't seem to help.
X,Y is Visited
Whether a given X,Y is visited by the curve can be determined from one or two segments (rather then up to four for X,Y to N).
 S midpoint Xmid = X+Y
 Ymid = YX
*TX,YS*
 T midpoint Xmid1
 Ymid+1
Segment S is to the East of X,Y. The arm it falls on can be determined as per "X,Y to N" in Math::PlanePath::DragonMidpoint. Numbering arm(S) = 0,1,2,3 then
X,Y Visited

if arms_count()==4 yes # whole plane
if arm(S) < arms_count() yes
if arm(S)==2 and arms_count()==1 no
if arm(T) < arms_count() yes
This works because when two arms touch they approach and leave by a right angle, without crossing. So two opposite segments S and T identify the two possible arms coming to the X,Y point.


\
 
\


An arm only touches its immediate neighbour, ie. arm1 or arm+1 mod 4. This means if arm(S)==2 then arm(T) can only be 1,2,3, not 0. So if arms_count()
is 1 then arm(T) cannot be on the curve and no need to run its segment check.
The only exception to the rightangle touching rule is at the origin X,Y = 0,0. In that case Xmid,Ymid = 0,0 is on the first arm and X,Y is correctly determined to be on the curve. If S was not to the East but some other direction away from X,Y then this wouldn't be so.
Turn
At each point the curve always turns either left or right, it never goes straight ahead. The bit above the lowest 1bit in N gives the turn direction.
N = 0b...z10000 (possibly no trailing 0s)
z bit Turn
 
0 left
1 right
For example N=12 is binary 0b1100, the lowest 1 bit is 0b_1__ and the bit above that is a 1, which means turn to the right. Or N=18 is binary 0b10010, the lowest 1 is 0b___1_ and the bit above that is 0, so turn left there.
This z bit can be picked out with some bit twiddling
$mask = $n & $n; # lowest 1 bit, 000100..00
$z = $n & ($mask << 1); # the bit above it
$turn = ($z == 0 ? 'left' : 'right');
This sequence is in Knuth volume 2 "Seminumerical Algorithms" answer to section 4.5.3 question 41 and is called the "dragon sequence". It's expressed there recursively as
d(0) = 1 # unused, since first turn at N=1
d(2N) = d(N) # shift down looking for low 1bit
d(4N+1) = 0 # bit above lowest 1bit is 0
d(4N+3) = 1 # bit above lowest 1bit is 1
Next Turn
The bits also give the turn after next by looking at the bit above the lowest 0bit. This works because 011..11 + 1 = 100..00 so the bit above the lowest 0 becomes the bit above the lowest 1.
N = 0b...w01111 (possibly no trailing 1s)
w bit Next Turn
 
0 left
1 right
For example at N=12=0b1100 the lowest 0 is the least significant bit 0b___0, and above that is a 0 too, so at N=13 the turn is to the left. Or for N=18=0b10010 the lowest 0 is again the least significant bit, but above it is a 1, so at N=19 the turn is to the right.
This too can be found with some bit twiddling, as for example
$mask = $n ^ ($n+1); # low one and below 000111..11
$w = $n & ($mask + 1); # the bit above there
$turn = ($w == 0 ? 'left' : 'right');
Total Turn
The total turn is the count of 0<>1 transitions in the runs of bits of N, which is the same as how many bit pairs of N (including overlaps) are different so "01" or "10".
This can be seen from the segment replacements resulting from bits of N,
N bits from high to low, start in "plain" state
plain state
0 bit > no change
1 bit > count left, and go to reversed state
reversed state
0 bit > count left, and go to plain state
1 bit > no change
The 0 or 1 counts are from the different side a segment expands on in plain or reversed state. Segment A to B expands to an "L" shape bend which is on the right in plain state, but on the left in reversed state.
plain state reverse state
A = = = = B +
\ ^ 0bit / \
\ / turn / \ 1bit
0bit \ / 1bit left/ \
\ / turn / v
+ left A = = = = B
In both cases a rotate of +45 degrees keeps the very first segment of the whole curve in a fixed direction (along the X axis), which means the southeast slope shown is nochange. This is the 0 of plain or the 1 of reversed. And the northeast slope which is the other new edge is a turn towards the left.
It can be seen the "state" above is simply the previous bit, so the effect for the bits of N is to count a left turn at each transition from 0>1 or 1>0. Initial "plain" state means the infinite zero bits at the high end of N are included. For example N=9 is 0b1001 so three left turns for curve direction south to N=10 (as can be seen in the diagram above).
1 00 1 N=9
^ ^ ^
+++three transitions,
so three left turns for direction south
The transitions can also be viewed as a count of how many runs of contiguous 0s or 1s, up to the highest 1bit.
1 00 1 three blocks of 0s and 1s
This can be calculated by some bit twiddling with a shift and xor to turn transitions into 1bits which can then be counted, as per Jorg Arndt (fxtbook section 1.31.3.1 "The Dragon Curve").
total turn = count_1_bits ($n ^ ($n >> 1))
The reversing structure of the curve shows up in the total turn at each point. The total turns for a block of 2^N is followed by its own reversal plus 1. For example,
>
N=0 to N=7 0, 1, 2, 1, 2, 3, 2, 1
N=15 to N=8 1, 2, 3, 2, 3, 4, 3, 2 each is +1
<
N to dX,dY
n_to_dxdy()
is the "total turn" per above, or for fractional N then an offset according to the "next turn" above. If using the bit twiddling operators described then the two can be calculated separately.
The current n_to_dxdy()
code tries to support floating point or other number types without bitwise XOR etc by processing bits high to low with a state table which combines the calculations for total turn and next turn. The state encodes
total turn 0 to 3
next turn 0 or 1
previous bit 0 or 1 (the bit above the current bit)
The "next turn" remembers the bit above lowest 0 seen so far (or 0 initially). The "total turn" counts 0>1 or 1>0 transitions. The "previous bit" shows when there's a transition, or what bit is above when a 0 is seen. It also works not to have this previous bit in the state but instead pick out two bits each time.
At the end of bit processing any "previous bit" in state is no longer needed and can be masked out to lookup the final four dx, dy, next dx, next dy.
OEIS
The Dragon curve is in Sloane's Online Encyclopedia of Integer Sequences in many forms (and see DragonMidpoint
for its forms too),
http://oeis.org/A014577 (etc)
A038189 turn, 0=left,1=right, bit above lowest 1, extra 0
A089013 same, but initial extra 1
A082410 turn, 1=left,0=right, reversing complement, extra 0
A099545 turn, 1=left,3=right, as [odd part n] mod 4
so turn by 90 degrees * 1 or 3
A034947 turn, 1=left,1=right, Jacobi (1/n)
A112347 turn, 1=left,1=right, Kronecker (1/n), extra 0
A121238 turn, 1=left,1=right, 1^(n + some partitions) extra 1
A014577 next turn, 1=left,0=right
A014707 next turn, 0=left,1=right
A014709 next turn, 1=left,2=right
A014710 next turn, 2=left,1=right
A143347 paperfolding constant, 0=left,1=right in binary
A090678 1=same turn as previous, 0=different
These numerous turn sequences differ only in having left or right represented as 0, 1, 1, etc, and possibly "extra" initial 0 or 1 at n=0 arising from the definitions and the first turn being at n=N=1. The "next turn" forms begin at n=0 for turn at N=1 and so are the turn at N=n+1.
A005811 direction total turn
A088748 direction total turn + 1
A037834 direction total turn  1
A136004 direction total turn + 4
A246960 direction 0,1,2,3 = total turn mod 4
A173318 cumulative(total turn)
A164910 cumulative(total turn + 1)
A166242 2^(total turn), by double/halving
A000975 N of new maximum total turn, binary 10101...
A268411 direction of horizontals, 0=East, 1=West
A043724 N of East
A043725 N of North
A043726 N of West
A043727 N of South
A088431 turn sequence run lengths
A007400 2*runlength
A091072 N positions of the left turns, being odd part form 4K+1
A091067 N positions of the right turns, being odd part form 4K+3
A255068 N positions where next turn right
A060833 N positions where previous turn right
A106836 N steps between right turns
A088742 N steps between left turns
A255070 num right turns 1 to N
A236840 2* num right turns 1 to N
A003460 turns N=1 to N=2^n1 packed as bits 1=left,0=right
low to high, then written in octal
A126937 points numbered like SquareSpiral (start N=0 and flip Y)
A038503 num segments East in level k
A038504 num segments North in level k
A038505 num segments West in level k
A000749 num segments South in level k
A146559 X at N=2^k, for k>=1, being Re((i+1)^k)
A009545 Y at N=2^k, for k>=1, being Im((i+1)^k)
A227036 boundary length N=0 to N=2^k
also right boundary length to N=2^(k+1)
A203175 left boundary length N=0 to N=2^k
= differences of total boundary
= squares on left boundary
A003476 squares on right boundary
= single points N=0 to N=2^(k1) inclusive
A164395 single points N=0 to N=2^k1 inclusive, for k=4 up
A003230 area enclosed N=0 to N=2^k, for k=4 up
same as double points
A003478 area enclosed by left side,
also area increment
A003477 area of each blob (touching enclosed unit squares)
A003479 join area between N=2^k replications
A003229 join area increment,
also area left side extra over doubling
A077949 same
A289265 growth rate r = 1.695 of boundaries etc
A272031 fractal dimension log(r)/log(sqrt(2))
For reference, "dragonlike" A059125 is similar to the turn sequence A014707, but differs in having the "middle" values for each replication come from successive values of the sequence itself, or some such.
A088431 and A007400
The run lengths A088431 and A007400 are from a continued fraction expansion of an infinite sum
1 1 1 1 1 1
1 +  +  +  +  +  + ... +  + ...
2 4 16 256 65536 2^(2^k)
Jeffrey Shallit and independently M. Kmosek show how continued fraction terms repeated in reverse give rise to this sort of power sum,
Jeffrey Shallit, "Simple Continued Fractions for Some Irrational Numbers", Journal of Number Theory, volume 11, 1979, pages 209217. http://www.cs.uwaterloo.ca/~shallit/papers.html http://www.cs.uwaterloo.ca/~shallit/Papers/scf.ps
(And which appears in Knuth "Art of Computer Programming", volume 2, section 4.5.3 exercise 41.)
A126937
The A126937 SquareSpiral
numbering has the dragon curve and square spiralling with their Y axes in opposite directions, as shown in its a126937.pdf. So the dragon curve turns up towards positive Y but the square spiral is numbered down towards negative Y (or vice versa). PlanePath
code for this starting at $i=0
would be
my $dragon = Math::PlanePath::DragonCurve>new;
my $square = Math::PlanePath::SquareSpiral>new (n_start => 0);
my ($x, $y) = $dragon>n_to_xy ($i);
my $A126937_of_i = $square>xy_to_n ($x, $y);
SEE ALSO
Math::PlanePath, Math::PlanePath::DragonRounded, Math::PlanePath::DragonMidpoint, Math::PlanePath::R5DragonCurve, Math::PlanePath::TerdragonCurve
Math::PlanePath::ComplexMinus, Math::PlanePath::ComplexPlus, Math::PlanePath::CCurve, Math::PlanePath::AlternatePaper
Graph::Maker::TwindragonAreaTree
http://rosettacode.org/wiki/Dragon_curve
HOME PAGE
http://user42.tuxfamily.org/mathplanepath/index.html
LICENSE
Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Kevin Ryde
MathPlanePath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.
MathPlanePath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with MathPlanePath. If not, see <http://www.gnu.org/licenses/>.