————————————————————————————————————————————————————————package
PDL::LinearAlgebra;
use
PDL::Ops;
use
PDL::Core;
use
PDL::NiceSlice;
use
PDL::Slices;
use
PDL::Exporter;
no
warnings
'uninitialized'
;
use
constant {
NO
=> 0,
WARN
=> 1,
BARF
=> 2,
};
use
strict;
our
$VERSION
=
'0.431'
;
$VERSION
=
eval
$VERSION
;
@PDL::LinearAlgebra::ISA
=
qw/PDL::Exporter/
;
@PDL::LinearAlgebra::EXPORT_OK
=
qw/diag issym minv mtriinv msyminv mposinv mdet mposdet mrcond positivise
mdsvd msvd mgsvd mpinv mlu mhessen mchol mqr mql mlq mrq meigen meigenx
mgeigen mgeigenx msymeigen msymeigenx msymgeigen msymgeigenx
msolve mtrisolve msymsolve mpossolve msolvex msymsolvex mpossolvex
mrank mlls mllsy mllss mglm mlse tritosym mnorm mgschur mgschurx
mcrossprod mcond morth mschur mschurx
NO WARN BARF setlaerror getlaerorr laerror/
;
%PDL::LinearAlgebra::EXPORT_TAGS
= (
Func
=>[
@PDL::LinearAlgebra::EXPORT_OK
]);
my
$_laerror
= BARF;
########################################################################
=encoding utf8
=head1 NAME
PDL::LinearAlgebra - Linear Algebra utils for PDL
=head1 SYNOPSIS
use PDL::LinearAlgebra;
$a = random (100,100);
($U, $s, $V) = mdsvd($a);
=head1 DESCRIPTION
This module provides a convenient interface to L<PDL::LinearAlgebra::Real>
and L<PDL::LinearAlgebra::Complex>. Since
Blas and Lapack use a column major ordering scheme some routines here need to transpose matrices before
calling fortran routines and transpose back (see the documentation of each routine). If you need
optimized code use directly L<PDL::LinearAlgebra::Real> and
L<PDL::LinearAlgebra::Complex>.
=cut
=head1 FUNCTIONS
=head2 setlaerror
=for ref
Sets action type when an error is encountered, returns previous type. Available values are NO, WARN and BARF (predefined constants).
If, for example, in computation of the inverse, singularity is detected,
the routine can silently return values from computation (see manuals),
warn about singularity or barf. BARF is the default value.
=for example
# h : x -> g(f(x))
$a = sequence(5,5);
$err = setlaerror(NO);
($b, $info)= f($a);
setlaerror($err);
$info ? barf "can't compute h" : return g($b);
=cut
sub
setlaerror($){
my
$err
=
$_laerror
;
$_laerror
=
shift
;
$err
;
}
=head2 getlaerror
=for ref
Gets action type when an error is encountered.
0 => NO,
1 => WARN,
2 => BARF
=cut
sub
getlaerror{
$_laerror
;
}
sub
laerror{
return
unless
$_laerror
;
if
(
$_laerror
< 2){
warn
"$_[0]\n"
;
}
else
{
barf
"$_[0]\n"
;
}
}
=head2 t
=for usage
PDL = t(PDL, SCALAR(conj))
conj : Conjugate Transpose = 1 | Transpose = 0, default = 0;
=for ref
Convenient function for transposing real or complex 2D array(s).
For complex data, if conj is true returns conjugate transposed array(s) and doesn't support dataflow.
Supports threading.
=cut
sub
PDL::dims_internal {0}
sub
PDL::dims_internal_values {()}
sub
PDL::_similar {
my
@di_vals
=
$_
[0]->dims_internal_values;
my
(
$m
,
@vdims
) =
@_
;
ref
(
$m
)->new_from_specification(
$m
->type,
@di_vals
,
@vdims
);
}
sub
PDL::_similar_null {
ref
(
$_
[0])->null }
sub
_complex_null {
PDL->null
}
sub
_ecplx {
my
(
$re
,
$im
) =
@_
;
$re
= PDL->topdl(
$re
);
return
$re
if
!
$re
->type->real;
Carp::confess(
"Usage: _ecplx(re,im) or (complex)"
)
if
!
defined
$im
;
$im
= PDL->topdl(
$im
);
$re
->czip(
$im
);
}
sub
PDL::_is_complex { !
$_
[0]->type->real }
sub
PDL::_norm {
my
(
$m
,
$real
,
$trans
) =
@_
;
# If trans == true => transpose output matrix
# If real == true => rotate (complex as a vector)
# such that max abs will be real
my
$ret
= PDL::LinearAlgebra::Complex::cnrm2(
$m
);
return
(
$trans
?
$m
->t/
$ret
->dummy(0)->t :
$m
/
$ret
->dummy(0))->reshape(-1)
if
!
$real
;
$m
= (
$m
/
$ret
->dummy(0))->reshape(-1);
my
$index
=
$m
->
abs
->maximum_ind;
my
$scale
=
$m
->mv(0,-1)->
index
(
$index
)->mv(-1,0);
$scale
=
$scale
->conj/
$scale
->
abs
;
return
$trans
?
$m
->t
*$scale
->dummy(2) :
$m
*$scale
->dummy(2)->t;
}
=head2 issym
=for usage
PDL = issym(PDL, SCALAR|PDL(tol),SCALAR(hermitian))
tol : tolerance value, default: 1e-8 for double else 1e-5
hermitian : Hermitian = 1 | Symmetric = 0, default = 0;
=for ref
Checks symmetricity/Hermitianicity of matrix.
Supports threading.
=cut
sub
_2d_array {
my
@dims
=
$_
[0]->dims;
my
$d
=
$_
[0]->dims_internal;
barf(
"Require 2D array(s)"
)
unless
@dims
>= 2+
$d
;
}
sub
_square {
&_2d_array
;
my
@dims
=
$_
[0]->dims;
my
$d
=
$_
[0]->dims_internal;
barf(
"Require square array(s)"
)
unless
$dims
[
$d
] ==
$dims
[
$d
+1];
}
sub
_square_same {
my
$d
=
$_
[0]->dims_internal;
my
@adims
=
$_
[0]->dims;
my
@bdims
=
$_
[1]->dims;
barf(
"Require square matrices of same order"
)
unless
(
$adims
[
$d
] ==
$adims
[
$d
+1] &&
$bdims
[
$d
] ==
$bdims
[
$d
+1] &&
$adims
[
$d
] ==
$bdims
[
$d
]);
}
sub
_matrices_match {
my
$d
=
$_
[0]->dims_internal;
my
@adims
=
$_
[0]->dims;
my
@bdims
=
$_
[1]->dims;
barf(
"Require right hand side array(s) B with number"
.
" of row equal to number of columns of A"
)
unless
@adims
>= 2+
$d
&&
@bdims
>= 2+
$d
&&
$bdims
[1+
$d
] ==
$adims
[
$d
];
}
sub
_matrices_matchcolumns {
my
$di
=
$_
[0]->dims_internal;
my
@adims
=
$_
[0]->dims;
my
@bdims
=
$_
[1]->dims;
barf(
"Require 2 matrices with equal number of columns"
)
unless
( ((
@adims
>= 2+
$di
&&
@bdims
>= 2+
$di
)) &&
$adims
[
$di
] ==
$bdims
[
$di
]);
}
sub
_matrices_matchrows {
my
$d
=
$_
[0]->dims_internal;
my
@adims
=
$_
[0]->dims;
my
@bdims
=
$_
[1]->dims;
barf(
"Require a 2D right hand side matrix B with number"
.
" of rows equal to number of rows of A"
)
unless
@adims
>= 2+
$d
&&
@bdims
>= 2+
$d
&&
$bdims
[1+
$d
] ==
$adims
[1+
$d
];
}
sub
_same_dims {
my
$d
=
$_
[0]->dims_internal;
my
@adims
=
$_
[0]->dims;
my
@bdims
=
$_
[1]->dims;
barf(
"Require arrays with equal number of dimensions"
)
if
@adims
!=
@bdims
;
}
sub
_error {
my
(
$info
,
$msg
) =
@_
;
return
unless
$info
->max > 0 &&
$_laerror
;
my
@list
= (which(
$info
> 0)+1)->list;
laerror(
sprintf
$msg
.
": \$info = $info"
,
"@list"
);
}
sub
_error_schur {
my
(
$info
,
$select_func
,
$N
,
$func
,
$algo
) =
@_
;
return
unless
$info
->max > 0 &&
$_laerror
;
my
$index
= which(((
$info
> 0)+(
$info
<=
$N
))==2);
if
(!
$index
->isempty) {
laerror(
"$func: The $algo algorithm failed to converge for matrix (PDL(s) @{[$index->list]}): \$info = $info"
);
"Returning converged eigenvalues\n"
;
}
return
if
!
$select_func
;
if
(!(
$index
= which(
$info
==
$N
+1))->isempty) {
if
(
$algo
eq
'QR'
) {
laerror(
"$func: The eigenvalues could not be reordered because some\n"
.
"eigenvalues were too close to separate (the problem"
.
" is very ill-conditioned) for PDL(s) @{[$index->list]}: \$info = $info"
);
}
else
{
laerror(
"$func: Error in hgeqz for matrix (PDL(s) @{[$index->list]}): \$info = $info"
);
}
}
if
(!(
$index
= which(
$info
==
$N
+2))->isempty) {
warn
(
"$func: The Schur form no longer satisfy select_func = 1\n because of roundoff"
.
" or underflow (PDL(s) @{[$index->list]})\n"
);
}
}
sub
PDL::_wrap_select_func {
my
(
$m
,
$select_func
) =
@_
;
return
$select_func
if
!
defined
$select_func
or
$m
->_is_complex;
sub
{
&$select_func
(_ecplx(
@_
[0,1]),
@_
>2 ? PDL->topdl(
$_
[2]) : ()) };
}
*issym
= \
&PDL::issym
;
sub
PDL::issym {
&_square
;
my
(
$m
,
$tol
,
$conj
) =
@_
;
$tol
//= (
$m
->type >= double) ? 1e-8 : 1e-5;
$m
=
$m
-
$m
->t(
$conj
);
my
(
$min
,
$max
) = PDL::Ufunc::minmaximum(
$m
);
$min
=
$min
->minimum;
$max
=
$max
->maximum;
return
(((
abs
(
$max
) >
$tol
) + (
abs
(
$min
) >
$tol
)) == 0);
}
=head2 diag
=for ref
Returns i-th diagonal if matrix in entry or matrix with i-th diagonal
with entry. I-th diagonal returned flows data back&forth.
Can be used as lvalue subs if your perl supports it.
Supports threading.
=for usage
PDL = diag(PDL, SCALAR(i), SCALAR(vector)))
i : i-th diagonal, default = 0
vector : create diagonal matrices by threading over row vectors, default = 0
=for example
my $a = random(5,5);
my $diag = diag($a,2);
# If your perl support lvaluable subroutines.
$a->diag(-2) .= pdl(1,2,3);
# Construct a (5,5,5) PDL (5 matrices) with
# diagonals from row vectors of $a
$a->diag(0,1)
=cut
*diag
= \
&PDL::diag
;
sub
PDL::diag {
my
$di
=
$_
[0]->dims_internal;
my
@diag_args
= (
$di
,
$di
+1);
my
$slice_prefix
=
','
x
$di
;
my
(
$a
,
$i
,
$vec
) =
@_
;
my
$z
;
my
@dims
=
$a
->dims;
my
$diag
= (
$i
< 0) ? -
$i
:
$i
;
if
(
@dims
==
$di
+1 ||
$vec
){
my
$dim
=
$dims
[0];
my
$zz
=
$dim
+
$diag
;
my
$v
=
$z
=
$a
->_similar(
$zz
,
$zz
,
@dims
[
$di
+1..
$#dims
]);
$v
= (
$i
< 0) ?
$v
->slice(
"$slice_prefix:@{[$dim-1]},$diag:"
) :
$v
->slice(
"$slice_prefix$diag:,:@{[$dim-1]}"
)
if
$i
;
$v
->diagonal(
@diag_args
) .=
$a
;
}
elsif
(
$i
< 0){
$z
=
$a
->slice(
"$slice_prefix:-@{[$diag+1]} , $diag:"
)->diagonal(
@diag_args
);
}
elsif
(
$i
){
$z
=
$a
->slice(
"$slice_prefix$diag:, :-@{[$diag+1]}"
)->diagonal(
@diag_args
);
}
else
{
$z
=
$a
->diagonal(
@diag_args
);}
$z
;
}
=head2 tritosym
=for ref
Returns symmetric or Hermitian matrix from lower or upper triangular matrix.
Supports inplace and threading.
=for usage
PDL = tritosym(PDL, SCALAR(uplo), SCALAR(conj))
uplo : UPPER = 0 | LOWER = 1, default = 0
conj : Hermitian = 1 | Symmetric = 0, default = 0;
=for example
# Assume $a is symmetric triangular
my $a = random(10,10);
my $b = tritosym($a);
=cut
*tritosym
= \
&PDL::tritosym
;
sub
PDL::tritosym {
&_square
;
my
(
$m
,
$upper
,
$conj
) =
@_
;
my
$b
=
$m
->is_inplace ?
$m
->t :
$m
->_similar_null;
(
$conj
?
$m
->conj :
$m
)->tricpy(
$upper
,
$b
);
$m
->tricpy(
$upper
,
$b
->t)
unless
(!
$conj
&&
$m
->is_inplace(0));
$b
->im->diagonal(0,1) .= 0
if
$conj
;
$b
;
}
=head2 positivise
=for ref
Returns entry pdl with changed sign by row so that average of positive sign > 0.
In other words threads among dimension 1 and row = -row if sum(sign(row)) < 0.
Only makes sense for real ndarrays.
Works inplace.
=for example
my $a = random(10,10);
$a -= 0.5;
$a->xchg(0,1)->inplace->positivise;
=cut
*positivise
= \
&PDL::positivise
;
sub
PDL::positivise{
my
$m
=
shift
->new_or_inplace;
my
$tmp
;
$tmp
=
$m
->dice(
'X'
, which((
$m
->lt(0,0)->sumover > (
$m
->dim(0)/2))>0));
$tmp
->inplace->mult(-1,0);
$m
;
}
=head2 mcrossprod
=for ref
Computes the cross-product of two matrix: A' x B.
If only one matrix is given, takes B to be the same as A.
Supports threading.
Uses L<crossprod|PDL::LinearAlgebra::Real/crossprod> or L<ccrossprod|PDL::LinearAlgebra::Complex/ccrossprod>.
=for usage
PDL = mcrossprod(PDL(A), (PDL(B))
=for example
my $a = random(10,10);
my $crossproduct = mcrossprod($a);
=cut
sub
PDL::_call_method {
my
(
$m
,
$method
,
@args
) =
@_
;
$method
= [
$method
,
"c$method"
]
if
!
ref
$method
;
$method
=
$method
->[!
$m
->type->real ? 1 : 0];
$m
->
$method
(
@args
);
}
*mcrossprod
= \
&PDL::mcrossprod
;
sub
PDL::mcrossprod {
&_2d_array
;
my
(
$a
,
$b
) =
@_
;
$b
=
$a
unless
defined
$b
;
$a
->_call_method(
'crossprod'
,
$b
);
}
=head2 mrank
=for ref
Computes the rank of a matrix, using a singular value decomposition,
returning a Perl scalar.
from Lapack.
=for usage
SCALAR = mrank(PDL, SCALAR(TOL))
TOL: tolerance value, default : mnorm(dims(PDL),'inf') * mnorm(PDL) * EPS
=for example
my $a = random(10,10);
my $b = mrank($a, 1e-5);
=cut
*mrank
= \
&PDL::mrank
;
sub
PDL::mrank {
&_2d_array
;
my
$di
=
$_
[0]->dims_internal;
my
(
$m
,
$tol
) =
@_
;
my
(
@dims
) =
$m
->dims;
my
$err
= setlaerror(NO);
# Sometimes mdsvd bugs for float (SGEBRD)
# ($sv, $info) = $m->msvd(0, 0);
my
(
$sv
,
$info
) =
$m
->mdsvd(0);
setlaerror(
$err
);
barf(
"mrank: SVD algorithm did not converge\n"
)
if
$info
;
unless
(
defined
$tol
){
$tol
= (
$dims
[
$di
+1] >
$dims
[
$di
] ?
$dims
[
$di
+1] :
$dims
[
$di
]) *
$sv
((0)) * lamch(3);
}
(which(
$sv
>
$tol
))->dim(0);
}
=head2 mnorm
=for ref
Computes norm of real or complex matrix
Supports threading.
=for usage
PDL(norm) = mnorm(PDL, SCALAR(ord));
ord :
0|'inf' : Infinity norm
1|'one' : One norm
2|'two' : norm 2 (default)
3|'fro' : frobenius norm
=for example
my $a = random(10,10);
my $norm = mnorm($a);
=cut
my
%norms
= (
inf
=>0,
one
=>1,
two
=>2,
fro
=>3);
my
%norm2arg
= (
0
=>1,
1
=>2,
3
=>3);
*mnorm
= \
&PDL::mnorm
;
sub
PDL::mnorm {
my
(
$m
,
$ord
) =
@_
;
$ord
//= 2;
$ord
=
$norms
{
$ord
}
if
exists
$norms
{
$ord
};
return
$m
->_call_method(
'lange'
,
$norm2arg
{
$ord
})
if
exists
$norm2arg
{
$ord
};
my
$err
= setlaerror(NO);
my
(
$sv
,
$info
) =
$m
->msvd(0, 0);
setlaerror(
$err
);
_error(
$info
,
"mnorm: SVD algorithm did not converge for matrix (PDL(s) %s"
);
$sv
->slice(
'(0)'
)->reshape(-1)->sever;
}
=head2 mdet
=for ref
Computes determinant of a general square matrix using LU factorization.
Supports threading.
Uses L<getrf|PDL::LinearAlgebra::Real/getrf> or L<cgetrf|PDL::LinearAlgebra::Complex/cgetrf>
from Lapack.
=for usage
PDL(determinant) = mdet(PDL);
=for example
my $a = random(10,10);
my $det = mdet($a);
=cut
*mdet
= \
&PDL::mdet
;
sub
PDL::mdet {
&_square
;
my
$di
=
$_
[0]->dims_internal;
my
$m_orig
=
my
$m
=
shift
->copy;
$m
->_call_method(
'getrf'
,
my
$ipiv
= null,
my
$info
= null);
$m
=
$m
->diagonal(
$di
,
$di
+1);
$m
=
$m
->prodover;
$m
=
$m
* ((PDL::Ufunc::sumover(sequence(
$ipiv
->dim(0))->plus(1,0) !=
$ipiv
)%2)*(-2)+1);
$info
= which(
$info
!= 0);
$m
->flat->
index
(
$info
) .= 0
if
!
$info
->isempty;
$m
;
}
=head2 mposdet
=for ref
Compute determinant of a symmetric or Hermitian positive definite square matrix using Cholesky factorization.
Supports threading.
Uses L<potrf|PDL::LinearAlgebra::Real/potrf> or L<cpotrf|PDL::LinearAlgebra::Complex/cpotrf> from Lapack.
=for usage
(PDL, PDL) = mposdet(PDL, SCALAR)
SCALAR : UPPER = 0 | LOWER = 1, default = 0
=for example
my $a = random(10,10);
my $det = mposdet($a);
=cut
*mposdet
= \
&PDL::mposdet
;
sub
PDL::mposdet {
&_square
;
my
(
$m
,
$upper
) =
@_
;
$m
=
$m
->copy;
$m
->_call_method(
'potrf'
,
$upper
,
my
$info
= null);
_error(
$info
,
"mposdet: Matrix (PDL(s) %s) is/are not positive definite (after potrf factorization)"
);
$m
=
$m
->re
if
$m
->_is_complex;
$m
=
$m
->diagonal(0,1)->prodover->pow(2);
return
wantarray
? (
$m
,
$info
) :
$m
;
}
=head2 mcond
=for ref
Computes the condition number (two-norm) of a general matrix.
The condition number in two-n is defined:
norm (a) * norm (inv (a)).
Uses a singular value decomposition.
Supports threading.
=for usage
PDL = mcond(PDL)
=for example
my $a = random(10,10);
my $cond = mcond($a);
=cut
*mcond
= \
&PDL::mcond
;
sub
PDL::mcond {
&_2d_array
;
my
$m
=
shift
;
my
@dims
=
$m
->dims;
my
$err
= setlaerror(NO);
my
(
$sv
,
$info
) =
$m
->msvd(0, 0);
setlaerror(
$err
);
_error(
$info
,
"mcond: Algorithm did not converge for matrix (PDL(s) %s)"
);
my
$temp
=
$sv
->slice(
'(0)'
);
my
$ret
=
$temp
/
$sv
->((-1));
$info
=
$ret
->flat->
index
(which(
$temp
== 0));
$info
.= inf()
unless
$info
->isempty;
return
$ret
;
}
=head2 mrcond
=for ref
Estimates the reciprocal condition number of a
general square matrix using LU factorization
in either the 1-norm or the infinity-norm.
The reciprocal condition number is defined:
1/(norm (a) * norm (inv (a)))
Supports threading.
Works on transposed array(s)
=for usage
PDL = mrcond(PDL, SCALAR(ord))
ord :
0 : Infinity norm (default)
1 : One norm
=for example
my $a = random(10,10);
my $rcond = mrcond($a,1);
=cut
*mrcond
= \
&PDL::mrcond
;
sub
PDL::mrcond {
&_square
;
my
(
$m
,
$anorm
) =
@_
;
$anorm
= 0
unless
defined
$anorm
;
$_
= null
for
my
(
$ipiv
,
$info
,
$rcond
);
my
$norm
=
$m
->mnorm(
$anorm
);
$m
=
$m
->t->copy();
$m
->_call_method(
'getrf'
,
$ipiv
,
$info
);
_error(
$info
,
"mrcond: Factor(s) U (PDL(s) %s) is/are singular (after getrf factorization)"
);
$m
->_call_method(
'gecon'
,
$anorm
,
$norm
,
$rcond
,
$info
);
return
wantarray
? (
$rcond
,
$info
) :
$rcond
;
}
=head2 morth
=for ref
Returns an orthonormal basis of the range space of matrix A.
=for usage
PDL = morth(PDL(A), SCALAR(tol))
tol : tolerance for determining rank, default: 1e-8 for double else 1e-5
=for example
my $a = sequence(10,10);
my $ortho = morth($a, 1e-8);
=cut
*morth
= \
&PDL::morth
;
sub
PDL::morth {
&_2d_array
;
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
(
$m
,
$tol
) =
@_
;
$tol
= (
defined
$tol
) ?
$tol
: (
$m
->type == double) ? 1e-8 : 1e-5;
(
my
$u
,
my
$s
,
undef
,
my
$info
) =
$m
->mdsvd;
barf(
"morth: SVD algorithm did not converge\n"
)
if
$info
;
my
$rank
= (which(
$s
>
$tol
))->dim(0) - 1;
$rank
< 0 ?
$m
->_similar_null :
$u
->slice(
"$slice_prefix:$rank,"
)->sever;
}
=head2 mnull
=for ref
Returns an orthonormal basis of the null space of matrix A.
Works on transposed array.
=for usage
PDL = mnull(PDL(A), SCALAR(tol))
tol : tolerance for determining rank, default: 1e-8 for double else 1e-5
=for example
my $a = sequence(10,10);
my $null = mnull($a, 1e-8);
=cut
*mnull
= \
&PDL::mnull
;
sub
PDL::mnull {
&_2d_array
;
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
(
$m
,
$tol
) =
@_
;
my
@dims
=
$m
->dims;
$tol
//= (
$m
->type == double) ? 1e-8 : 1e-5;
(
undef
,
my
$s
,
my
$v
,
my
$info
) =
$m
->mdsvd;
barf(
"mnull: SVD algorithm did not converge\n"
)
if
$info
;
#TODO: USE TRANSPOSED A
my
$rank
= (which(
$s
>
$tol
))->dim(0);
$rank
<
$dims
[
$di
] ?
$v
->t->slice(
"$slice_prefix$rank:"
)->sever :
$m
->_similar_null;
}
=head2 minv
=for ref
Computes inverse of a general square matrix using LU factorization. Supports inplace and threading.
Uses L<getrf|PDL::LinearAlgebra::Real/getrf> and L<getri|PDL::LinearAlgebra::Real/getri>
or L<cgetrf|PDL::LinearAlgebra::Complex/cgetrf> and L<cgetri|PDL::LinearAlgebra::Complex/cgetri>
from Lapack and returns C<inverse, info> in array context.
=for usage
PDL(inv) = minv(PDL)
=for example
my $a = random(10,10);
my $inv = minv($a);
=cut
*minv
= \
&PDL::minv
;
sub
PDL::minv {
&_square
;
my
$m
=
shift
->new_or_inplace;
$_
= null
for
my
(
$ipiv
,
$info
);
$m
->_call_method(
'getrf'
,
$ipiv
,
$info
);
_error(
$info
,
"minv: Factor(s) U (PDL(s) %s) is/are singular (after getrf factorization)"
);
$m
->_call_method(
'getri'
,
$ipiv
,
$info
);
return
wantarray
? (
$m
,
$info
) :
$m
;
}
=head2 mtriinv
=for ref
Computes inverse of a triangular matrix. Supports inplace and threading.
Uses L<trtri|PDL::LinearAlgebra::Real/trtri> or L<ctrtri|PDL::LinearAlgebra::Complex/ctrtri> from Lapack.
Returns C<inverse, info> in array context.
=for usage
(PDL, PDL(info))) = mtriinv(PDL, SCALAR(uplo), SCALAR|PDL(diag))
uplo : UPPER = 0 | LOWER = 1, default = 0
diag : UNITARY DIAGONAL = 1, default = 0
=for example
# Assume $a is upper triangular
my $a = random(10,10);
my $inv = mtriinv($a);
=cut
*mtriinv
= \
&PDL::mtriinv
;
sub
PDL::mtriinv{
&_square
;
my
$m
=
shift
->new_or_inplace;
my
$upper
=
@_
? (1 -
shift
) : pdl (long,1);
my
$diag
=
shift
;
my
$info
= PDL->null;
$m
->_call_method(
'trtri'
,
$upper
,
$diag
,
$info
);
_error(
$info
,
"mtriinv: Matrix (PDL(s) %s) is/are singular"
);
return
wantarray
? (
$m
,
$info
) :
$m
;
}
=head2 msyminv
=for ref
Computes inverse of a symmetric square matrix using the Bunch-Kaufman diagonal pivoting method.
Supports inplace and threading.
Uses L<sytrf|PDL::LinearAlgebra::Real/sytrf> and L<sytri|PDL::LinearAlgebra::Real/sytri> or
L<csytrf|PDL::LinearAlgebra::Complex/csytrf> and L<csytri|PDL::LinearAlgebra::Complex/csytri>
from Lapack and returns C<inverse, info> in array context.
=for usage
(PDL, (PDL(info))) = msyminv(PDL, SCALAR|PDL(uplo))
uplo : UPPER = 0 | LOWER = 1, default = 0
=for example
# Assume $a is symmetric
my $a = random(10,10);
my $inv = msyminv($a);
=cut
*msyminv
= \
&PDL::msyminv
;
sub
PDL::msyminv {
&_square
;
my
$di
=
$_
[0]->dims_internal;
my
$m
=
shift
->new_or_inplace;
my
$upper
=
@_
? (1 -
shift
) : pdl (long,1);
$m
->_call_method(
'sytrf'
,
$upper
,
my
$ipiv
=null,
my
$info
=null);
_error(
$info
,
"msyminv: Block diagonal matrix D (PDL(s) %s) is/are singular (after sytrf factorization)"
);
$m
->_call_method(
'sytri'
,
$upper
,
$ipiv
,
$info
);
$m
=
$m
->t->tritosym(
$upper
, 0);
return
wantarray
? (
$m
,
$info
) :
$m
;
}
=head2 mposinv
=for ref
Computes inverse of a symmetric positive definite square matrix using Cholesky factorization.
Supports inplace and threading.
Uses L<potrf|PDL::LinearAlgebra::Real/potrf> and L<potri|PDL::LinearAlgebra::Real/potri> or
L<cpotrf|PDL::LinearAlgebra::Complex/cpotrf> and L<cpotri|PDL::LinearAlgebra::Complex/cpotri>
from Lapack and returns C<inverse, info> in array context.
=for usage
(PDL, (PDL(info))) = mposinv(PDL, SCALAR|PDL(uplo))
uplo : UPPER = 0 | LOWER = 1, default = 0
=for example
# Assume $a is symmetric positive definite
my $a = random(10,10);
$a = $a->crossprod($a);
my $inv = mposinv($a);
=cut
*mposinv
= \
&PDL::mposinv
;
sub
PDL::mposinv {
&_square
;
my
$di
=
$_
[0]->dims_internal;
my
$m
=
shift
->new_or_inplace;
my
$upper
=
@_
? (1 -
shift
) : pdl (long,1);
$m
->_call_method(
'potrf'
,
$upper
,
my
$info
=null);
_error(
$info
,
"mposinv: matrix (PDL(s) %s) is/are not positive definite (after potrf factorization)"
);
$m
->_call_method(
'potri'
,
$upper
,
$info
);
return
wantarray
? (
$m
,
$info
) :
$m
;
}
=head2 mpinv
=for ref
Computes pseudo-inverse (Moore-Penrose) of a general matrix.
Works on transposed array.
=for usage
PDL(pseudo-inv) = mpinv(PDL, SCALAR(tol))
TOL: tolerance value, default : mnorm(dims(PDL),'inf') * mnorm(PDL) * EPS
=for example
my $a = random(5,10);
my $inv = mpinv($a);
=cut
*mpinv
= \
&PDL::mpinv
;
sub
PDL::mpinv{
&_2d_array
;
my
$di
=
$_
[0]->dims_internal;
my
(
$m
,
$tol
) =
@_
;
my
@dims
=
$m
->dims;
my
$err
= setlaerror(NO);
#TODO: don't transpose
my
(
$u
,
$s
,
$v
,
$info
) =
$m
->mdsvd(2);
setlaerror(
$err
);
_error(
$info
,
"mpinv: SVD algorithm did not converge (PDL %s)"
);
unless
(
defined
$tol
){
$tol
= (
$dims
[
$di
+1] >
$dims
[
$di
] ?
$dims
[
$di
+1] :
$dims
[
$di
]) *
$s
((0)) * lamch(3);
}
my
(
$ind
,
$cind
) = which_both(
$s
>
$tol
);
$s
->
index
(
$cind
) .= 0
if
defined
$cind
;
$s
->
index
(
$ind
) .= 1/
$s
->
index
(
$ind
) ;
$ind
= (
$v
->t * (
$m
->_is_complex ?
$s
->r2C :
$s
)) x
$u
->t;
return
wantarray
? (
$ind
,
$info
) :
$ind
;
}
=head2 mlu
=for ref
Computes LU factorization.
Uses L<getrf|PDL::LinearAlgebra::Real/getrf> or L<cgetrf|PDL::LinearAlgebra::Complex/cgetrf>
from Lapack and returns L, U, pivot and info.
Works on transposed array.
=for usage
(PDL(l), PDL(u), PDL(pivot), PDL(info)) = mlu(PDL)
=for example
my $a = random(10,10);
($l, $u, $pivot, $info) = mlu($a);
=cut
*mlu
= \
&PDL::mlu
;
sub
PDL::mlu {
my
$di
=
$_
[0]->dims_internal;
&_2d_array
;
my
$m
=
shift
;
my
@dims
=
$m
->dims;
$m
=
$m
->copy;
$m
->t->_call_method(
'getrf'
,
my
$ipiv
=null,
my
$info
= null);
if
(
$info
> 0) {
$info
--;
laerror(
"mlu: Factor U is singular: U($info,$info) = 0 (after cgetrf factorization)"
);
return
$m
,
$m
,
$ipiv
,
$info
;
}
my
$u
=
$m
->mtri;
my
$l
=
$m
->mtri(1);
my
$slice_prefix
=
','
x
$di
;
my
$smallerm1
= (
$dims
[
$di
] <
$dims
[
$di
+1] ?
$dims
[
$di
] :
$dims
[
$di
+1]) - 1;
if
(
$dims
[
$di
+1] >
$dims
[
$di
]) {
$u
=
$u
->slice(
"$slice_prefix,:$smallerm1"
)->sever;
$l
->slice(
"$slice_prefix :$smallerm1, :$smallerm1"
)->diagonal(
$di
,
$di
+1) .= 1;
}
else
{
$l
=
$l
->slice(
"$slice_prefix:$smallerm1"
)->sever
if
$dims
[
$di
+1] <
$dims
[
$di
];
$l
->diagonal(
$di
,
$di
+1) .= 1;
}
$l
,
$u
,
$ipiv
,
$info
;
}
=head2 mchol
=for ref
Computes Cholesky decomposition of a symmetric matrix also known as symmetric square root.
If inplace flag is set, overwrite the leading upper or lower triangular part of A else returns
triangular matrix. Returns C<cholesky, info> in array context.
Supports threading.
Uses L<potrf|PDL::LinearAlgebra::Real/potrf> or L<cpotrf|PDL::LinearAlgebra::Complex/cpotrf> from Lapack.
=for usage
PDL(Cholesky) = mchol(PDL, SCALAR)
SCALAR : UPPER = 0 | LOWER = 1, default = 0
=for example
my $a = random(10,10);
$a = crossprod($a, $a);
my $u = mchol($a);
=cut
*mchol
= \
&PDL::mchol
;
sub
PDL::mchol {
&_square
;
my
$di
=
$_
[0]->dims_internal;
my
(
$m
,
$upper
) =
@_
;
my
(
@dims
) =
$m
->dims;
$m
=
$m
->mtri(
$upper
)
unless
$m
->is_inplace(0);
@dims
=
@dims
[2+
$di
..
$#dims
];
my
$uplo
= 1 -
$upper
;
$m
->_call_method(
'potrf'
,
$uplo
,
my
$info
=null);
_error(
$info
,
"mchol: matrix (PDL(s) %s) is/are not positive definite (after potrf factorization)"
);
return
wantarray
? (
$m
,
$info
) :
$m
;
}
=head2 mhessen
=for ref
Reduces a square matrix to Hessenberg form H and orthogonal matrix Q.
It reduces a general matrix A to upper Hessenberg form H by an orthogonal
similarity transformation:
Q' x A x Q = H
or
A = Q x H x Q'
Uses L<gehrd|PDL::LinearAlgebra::Real/gehrd> and L<orghr|PDL::LinearAlgebra::Real/orghr> or
L<cgehrd|PDL::LinearAlgebra::Complex/cgehrd> and L<cunghr|PDL::LinearAlgebra::Complex/cunghr>
from Lapack and returns C<H> in scalar context else C<H> and C<Q>.
Works on transposed array.
=for usage
(PDL(h), (PDL(q))) = mhessen(PDL)
=for example
my $a = random(10,10);
($h, $q) = mhessen($a);
=cut
*mhessen
= \
&PDL::mhessen
;
sub
PDL::mhessen {
&_square
;
my
$di
=
$_
[0]->dims_internal;
my
@diag_args
= (
$di
,
$di
+1);
my
$slice_arg
= (
','
x
$di
) .
":-2, 1:"
;
my
$m
=
shift
;
my
(
@dims
) =
$m
->dims;
$m
=
$m
->t->copy;
$m
->_call_method(
'gehrd'
,1,
$dims
[
$di
],
my
$tau
=
$m
->_similar(
$dims
[
$di
]-1),
my
$info
= null);
(
my
$q
=
$m
->copy)->_call_method([
'orghr'
,
'cunghr'
], 1,
$dims
[
$di
],
$tau
,
$info
)
if
wantarray
;
my
$h
= (
$m
=
$m
->t)->mtri;
$h
->slice(
$slice_arg
)->diagonal(
@diag_args
) .=
$m
->slice(
$slice_arg
)->diagonal(
@diag_args
);
wantarray
?
return
(
$h
,
$q
->t->sever) :
$h
;
}
=head2 mschur
=for ref
Computes Schur form, works inplace.
A = Z x T x Z'
Supports threading for unordered eigenvalues.
Uses L<gees|PDL::LinearAlgebra::Real/gees> or L<cgees|PDL::LinearAlgebra::Complex/cgees>
from Lapack and returns schur(T) in scalar context.
Works on transposed array(s).
=for usage
( PDL(schur), (PDL(eigenvalues), (PDL(left schur vectors), PDL(right schur vectors), $sdim), $info) ) = mschur(PDL(A), SCALAR(schur vector),SCALAR(left eigenvector), SCALAR(right eigenvector),SCALAR(select_func), SCALAR(backtransform), SCALAR(norm))
schur vector : Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
left eigenvector : Left eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
right eigenvector : Right eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
select_func : Select_func is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue is selected if PerlInt select_func(w) is true;
(the inputs are converted to complex ndarrays for you)
Note that a selected complex eigenvalue may no longer
satisfy select_func(w) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned).
All eigenvalues/vectors are selected if select_func is undefined.
backtransform : Whether or not backtransforms eigenvectors to those of A.
Only supported if schur vectors are computed, default = 1.
norm : Whether or not computed eigenvectors are normalized to have Euclidean norm equal to
1 and largest component real, default = 1
Returned values :
Schur form T (SCALAR CONTEXT),
eigenvalues,
Schur vectors (Z) if requested,
left eigenvectors if requested
right eigenvectors if requested
sdim: Number of eigenvalues selected if select_func is defined.
info: Info output from gees/cgees.
=for example
my $a = random(10,10);
my $schur = mschur($a);
sub select{
my $w = shift;
# select "discrete time" eigenspace
return $w->Cabs < 1 ? 1 : 0;
}
my ($schur,$eigen,$svectors,$evectors) = mschur($a,1,1,0,\&select);
=cut
sub
_eigen_extract {
my
(
$jobvl
,
$jobvr
,
$vl
,
$vr
,
@w
) =
@_
;
return
(
$w
[0],
$vl
,
$vr
)
if
@w
== 1;
my
$w
;
(
$w
,
$vl
) = cplx_eigen(
@w
,
$vl
, 1)
if
$jobvl
;
(
$w
,
$vr
) = cplx_eigen(
@w
,
$vr
, 1)
if
$jobvr
;
$w
= _ecplx(
@w
)
if
!
defined
$w
;
(
$w
,
$vl
,
$vr
);
}
sub
_eigen_one {
my
(
$mm
,
$select_func
,
$jobv
,
$jobvl
,
$jobvr
,
$mult
,
$norm
,
$mdim
,
$sdim
,
@w
) =
@_
;
my
$job
=
$jobvr
&&
$jobvl
?
undef
:
$jobvl
? 2 : 1;
my
$is_mult
=
$jobvl
== 1 ||
$jobvr
== 1 ||
$mult
;
$_
=
$mm
->_similar_null
for
my
(
$vl
,
$vr
);
$mult
= (
$select_func
&& !
$is_mult
) ? 2 : !
$jobv
? 0 :
$mult
;
my
$sel
= (
$select_func
&& !
$is_mult
) ? zeroes(
$mdim
) :
undef
;
$sel
(:(
$sdim
-1)) .= 1
if
defined
$sel
;
$mm
->_call_method(
'trevc'
,
$job
,
$mult
,
$sel
,
$vl
,
$vr
,
$sdim
,
my
$infos
=null);
@w
=
map
$is_mult
|| !
$select_func
?
$_
:
$_
(:(
$sdim
-1)),
@w
if
@w
== 2;
my
@ret
;
for
([
$jobvr
,
$vr
], [
$jobvl
,
$vl
]) {
unshift
(
@ret
,
undef
),
next
if
!
$_
->[0];
my
$val
;
if
(
@w
== 2) {
(
undef
,
$val
) = cplx_eigen(
@w
,
$norm
?(
$_
->[1],1):(
$_
->[1]->t,0));
}
else
{
$val
=
$_
->[1];
}
unshift
(
@ret
,
$norm
?
$val
->_norm(1,1) :
$val
),
next
if
!
$is_mult
or !
$select_func
;
my
$di
=
$val
->dims_internal;
my
$slice_prefix
=
','
x
$di
;
$val
=
$val
->slice(
"$slice_prefix,:@{[$sdim-1]}"
)->sever
if
$_
->[0] == 2;
$val
=
$val
->_norm(1,1)
if
$norm
;
unshift
@ret
,
$val
;
}
@ret
;
}
*mschur
= \
&PDL::mschur
;
sub
PDL::mschur {
&_square
;
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
(
$m
,
$jobv
,
$jobvl
,
$jobvr
,
$select_func
,
$mult
,
$norm
) =
@_
;
my
@dims
=
$m
->dims;
barf(
"mschur: threading not supported for selected vectors"
)
if
$select_func
&&
@dims
> 2+
$di
&& (
grep
$_
== 2,
$jobv
,
$jobvl
,
$jobvr
);
$mult
//= 1;
$norm
//= 1;
$jobv
=
$jobvl
=
$jobvr
= 0
unless
wantarray
;
my
$mm
=
$m
->new_or_inplace->t;
my
$v
=
$m
->_similar_null;
my
@w
=
map
$m
->_similar_null,
$m
->_is_complex ? 1 : 1..2;
my
$select_f
=
$m
->_wrap_select_func(
$select_func
);
$mm
->_call_method(
'gees'
,
$jobv
,
$select_func
? 1 : 0,
@w
,
$v
,
my
$sdim
= null,
my
$info
= null,
$select_f
);
_error_schur(
$info
,
$select_func
,
$dims
[
$di
],
'mschur'
,
'QR'
);
my
@ret
= !
$select_func
||
$sdim
? () :
map
_complex_null(),
grep
$_
== 2,
$jobvl
,
$jobvr
;
push
@ret
,
$sdim
if
$select_func
;
$_
= 0
for
grep
$select_func
&&
$_
== 2 && !
$sdim
,
$jobvl
,
$jobvr
;
my
$w
=
@w
== 2 ? _ecplx(
@w
) :
@w
[0];
if
(
$jobvl
||
$jobvr
){
unshift
@ret
,
grep
defined
, _eigen_one(
$mm
,
$select_func
,
$jobv
,
$jobvl
,
$jobvr
,
$mult
,
$norm
,
$dims
[
$di
+1],
$sdim
,
@w
);
}
if
(
$jobv
== 2 &&
$select_func
) {
unshift
@ret
,
$sdim
> 0 ?
$v
->t->slice(
"$slice_prefix:@{[$sdim-1]}"
)->sever :
$m
->_similar_null;
}
elsif
(
$jobv
){
unshift
@ret
,
$v
->t->sever;
}
$m
=
$mm
->t->sever
unless
$m
->is_inplace(0);
return
wantarray
? (
$m
,
$w
,
@ret
,
$info
) :
$m
;
}
=head2 mschurx
=for ref
Computes Schur form, works inplace.
Uses L<geesx|PDL::LinearAlgebra::Real/geesx> or L<cgeesx|PDL::LinearAlgebra::Complex/cgeesx>
from Lapack and returns schur(T) in scalar context.
Works on transposed array.
=for usage
( PDL(schur) (,PDL(eigenvalues)) (, PDL(schur vectors), HASH(result)) ) = mschurx(PDL, SCALAR(schur vector), SCALAR(left eigenvector), SCALAR(right eigenvector),SCALAR(select_func), SCALAR(sense), SCALAR(backtransform), SCALAR(norm))
schur vector : Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
left eigenvector : Left eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
right eigenvector : Right eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
select_func : Select_func is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue is selected if PerlInt select_func(w) is true;
(the inputs are converted to complex ndarrays for you)
Note that a selected complex eigenvalue may no longer
satisfy select_func(w) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned).
All eigenvalues/vectors are selected if select_func is undefined.
sense : Determines which reciprocal condition numbers will be computed.
0: None are computed
1: Computed for average of selected eigenvalues only
2: Computed for selected right invariant subspace only
3: Computed for both
If select_func is undefined, sense is not used.
backtransform : Whether or not backtransforms eigenvectors to those of A.
Only supported if schur vector are computed, default = 1
norm : Whether or not computed eigenvectors are normalized to have Euclidean norm equal to
1 and largest component real, default = 1
Returned values :
Schur form T (SCALAR CONTEXT),
eigenvalues,
Schur vectors if requested,
HASH{VL}: left eigenvectors if requested
HASH{VR}: right eigenvectors if requested
HASH{info}: info output from gees/cgees.
if select_func is defined:
HASH{n}: number of eigenvalues selected,
HASH{rconde}: reciprocal condition numbers for the average of
the selected eigenvalues if requested,
HASH{rcondv}: reciprocal condition numbers for the selected
right invariant subspace if requested.
=for example
my $a = random(10,10);
my $schur = mschurx($a);
sub select{
my $m = shift;
# select "discrete time" eigenspace
return $m->Cabs < 1 ? 1 : 0;
}
my ($schur,$eigen, $vectors,%ret) = mschurx($a,1,0,0,\&select);
=cut
*mschurx
= \
&PDL::mschurx
;
sub
PDL::mschurx {
&_square
;
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
(
$m
,
$jobv
,
$jobvl
,
$jobvr
,
$select_func
,
$sense
,
$mult
,
$norm
) =
@_
;
my
(
@dims
) =
$m
->dims;
$mult
//= 1;
$norm
//= 1;
$jobv
=
$jobvl
=
$jobvr
= 0
unless
wantarray
;
my
$select
= long(
$select_func
? 1 : 0);
$sense
= pdl(long,0)
if
!
$select_func
;
$_
= null
for
my
(
$info
,
$sdim
,
$rconde
,
$rcondv
);
my
$mm
=
$m
->new_or_inplace->t;
my
$v
=
$m
->_similar_null;
my
@w
=
map
$m
->_similar_null,
$m
->_is_complex ? 1 : 1..2;
my
$select_f
=
$m
->_wrap_select_func(
$select_func
);
$mm
->_call_method(
'geesx'
,
$jobv
,
$select
,
$sense
,
@w
,
$v
,
$sdim
,
$rconde
,
$rcondv
,
$info
,
$select_f
);
_error_schur(
$info
,
$select_func
,
$dims
[
$di
],
'mschurx'
,
'QR'
);
my
@vl
= (
'VL'
,
$jobvl
);
my
@vr
= (
'VR'
,
$jobvr
);
my
%ret
;
$ret
{
$_
->[0]} = _complex_null(),
$_
->[1]=0
for
grep
$select_func
&& !
$sdim
&&
$_
->[1] == 2, \
@vl
, \
@vr
;
$ret
{n} =
$sdim
if
$select_func
;
if
(
$vl
[1] ||
$vr
[1]) {
my
(
$vl
,
$vr
) = _eigen_one(
$mm
,
$select_func
,
$jobv
,
$vl
[1],
$vr
[1],
$mult
,
$norm
,
$dims
[
$di
+1],
$sdim
,
@w
);
$ret
{
$_
->[0]} =
$_
->[1]
for
grep
defined
$_
->[1], [
'VL'
,
$vl
], [
'VR'
,
$vr
];
}
my
$w
= _ecplx(
@w
);
if
(
$jobv
== 2 &&
$select_func
) {
$v
=
$sdim
> 0 ?
$v
->t->slice(
"$slice_prefix:@{[$sdim-1]},"
)->sever :
$m
->_similar_null;
}
elsif
(
$jobv
){
$v
=
$v
->t->sever;
}
$ret
{info} =
$info
;
$ret
{rconde} =
$rconde
if
$sense
& 1;
$ret
{rcondv} =
$rcondv
if
$sense
& 2;
$m
=
$mm
->t->sever
unless
$m
->is_inplace(0);
!
wantarray
?
$m
: (
$m
,
$w
, (
$jobv
?
$v
: ()),
%ret
);
}
# scale by max(abs(real)+abs(imag))
sub
magn_norm {
my
(
$m
,
$trans
) =
@_
;
# If trans == true => transpose output matrix
my
$ret
= PDL::cat(
map
$m
->
$_
,
qw(re im)
)->mv(-1,0)->
abs
->sumover->maxover->dummy(0);
$m
=
$m
->t,
$ret
=
$ret
->t
if
$trans
;
(
$m
/
$ret
)->reshape(-1);
}
#TODO: inplace ?
=head2 mgschur
=for ref
Computes generalized Schur decomposition of the pair (A,B).
A = Q x S x Z'
B = Q x T x Z'
Uses L<gges|PDL::LinearAlgebra::Real/gges> or L<cgges|PDL::LinearAlgebra::Complex/cgges>
from Lapack.
Works on transposed array.
=for usage
( PDL(schur S), PDL(schur T), PDL(alpha), PDL(beta), HASH{result}) = mgschur(PDL(A), PDL(B), SCALAR(left schur vector),SCALAR(right schur vector),SCALAR(left eigenvector), SCALAR(right eigenvector), SCALAR(select_func), SCALAR(backtransform), SCALAR(scale))
left schur vector : Left Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
right schur vector : Right Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
left eigenvector : Left eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
right eigenvector : Right eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
select_func : Select_func is used to select eigenvalues to sort.
to the top left of the Schur form.
An eigenvalue w = wr(j)+sqrt(-1)*wi(j) is selected if
PerlInt select_func(alpha,beta) is true;
(the inputs are converted to complex ndarrays for you)
Note that a selected complex eigenvalue may no longer
satisfy select_func = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned).
All eigenvalues/vectors are selected if select_func is undefined.
backtransform : Whether or not backtransforms eigenvectors to those of (A,B).
Only supported if right and/or left schur vector are computed,
scale : Whether or not computed eigenvectors are scaled so the largest component
will have abs(real part) + abs(imag. part) = 1, default = 1
Returned values :
Schur form S,
Schur form T,
alpha,
beta (eigenvalues = alpha/beta),
HASH{info}: info output from gges/cgges.
HASH{SL}: left Schur vectors if requested
HASH{SR}: right Schur vectors if requested
HASH{VL}: left eigenvectors if requested
HASH{VR}: right eigenvectors if requested
HASH{n} : Number of eigenvalues selected if select_func is defined.
=for example
my $a = random(10,10);
my $b = random(10,10);
my ($S,$T) = mgschur($a,$b);
sub select{
my ($alpha,$beta) = @_;
return $alpha->Cabs < abs($beta) ? 1 : 0;
}
my ($S, $T, $alpha, $beta, %res) = mgschur( $a, $b, 1, 1, 1, 1,\&select);
=cut
sub
_eigen_pair {
my
(
$mm
,
$pp
,
$select_func
,
$jobvl
,
$jobvr
,
$jobvsl
,
$jobvsr
,
$vsl
,
$vsr
,
$mult
,
$norm
,
$mdim
,
$sdim
,
@w
) =
@_
;
my
$job
= !(
$jobvr
&&
$jobvl
) ?
$jobvl
? 2 : 1 :
undef
;
$_
=
$mm
->_similar_null
for
my
(
$vl
,
$vr
);
$mult
= 0
if
(
$jobvl
&& !
$jobvsl
) || (
$jobvr
&& !
$jobvsr
);
if
(!
$select_func
|| (
$jobvl
== 1 ||
$jobvr
== 1 ||
$mult
)) {
$vl
.=
$vsl
if
$jobvl
&&
$jobvsl
;
$vr
.=
$vsr
if
$jobvr
&&
$jobvsr
;
}
my
(
$sdim_in
,
$sel
) =
$sdim
;
if
(
$select_func
) {
if
(
$jobvl
== 1 ||
$jobvr
== 1 ||
$mult
) {
$sdim_in
= null;
}
else
{
$sel
= zeroes(
$mdim
);
$sel
(:(
$sdim
-1)) .= 1;
$mult
= 2;
@w
=
map
$_
(:(
$sdim
-1)),
@w
;
}
}
$mm
->_call_method(
'tgevc'
,
$job
,
$mult
,
$pp
,
$sel
,
$vl
,
$vr
,
$sdim_in
,
my
$infos
=null);
if
(
@w
== 2) {
(
undef
,
$vl
) = cplx_eigen(
@w
,
$vl
->t,0)
if
$jobvl
;
(
undef
,
$vr
) = cplx_eigen(
@w
,
$vr
->t,0)
if
$jobvr
;
}
if
(
$select_func
&& (
$jobvl
== 1 ||
$jobvr
== 1 ||
$mult
)) {
$vr
=
$vr
(,:(
$sdim
-1))->sever
if
$jobvr
== 2;
$vl
=
$vl
(,:(
$sdim
-1))->sever
if
$jobvl
== 2;
}
$vl
= magn_norm(
$vl
,1)
if
$jobvl
and
$norm
;
$vr
= magn_norm(
$vr
,1)
if
$jobvr
and
$norm
;
(
$vl
,
$vr
);
}
*mgschur
= \
&PDL::mgschur
;
sub
PDL::mgschur {
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
&_square_same
;
my
(
$m
,
$p
,
$jobvsl
,
$jobvsr
,
$jobvl
,
$jobvr
,
$select_func
,
$mult
,
$norm
) =
@_
;
my
@mdims
=
$m
->dims;
$_
=
$_
->new_or_inplace->t
for
$m
,
$p
;
barf(
"mgschur: threading isn't supported for selected vectors"
)
if
(
$select_func
&& ((
@mdims
> 2+
$di
) || (
$p
->ndims > 2+
$di
)) &&
(
$jobvsl
== 2 ||
$jobvsr
== 2 ||
$jobvl
== 2 ||
$jobvr
== 2));
$mult
//= 1;
$norm
//= 1;
my
$select
=
$select_func
? pdl(long,1) : pdl(long,0);
$_
= null
for
my
(
$info
,
$sdim
);
my
$select_f
=
$m
->_wrap_select_func(
$select_func
);
my
@w
=
map
$m
->_similar_null,
$m
->_is_complex ? 1 : 1..2;
$_
=
$m
->_similar_null
for
my
(
$beta
,
$vsl
,
$vsr
);
$m
->_call_method(
'gges'
,
$jobvsl
,
$jobvsr
,
$select
,
$p
,
@w
,
$beta
,
$vsl
,
$vsr
,
$sdim
,
$info
,
$select_f
);
_error_schur(
$info
,
$select_func
,
$mdims
[
$di
],
'mgschur'
,
'QZ'
);
my
@vl
= (
'VL'
,
$jobvl
);
my
@vr
= (
'VR'
,
$jobvr
);
my
%ret
;
$ret
{
$_
->[0]} = _complex_null(),
$_
->[1]=0
for
grep
$select_func
&& !
$sdim
&&
$_
->[1] == 2, \
@vl
, \
@vr
;
$ret
{n} =
$sdim
if
$select_func
;
if
(
$vl
[1] ||
$vr
[1]) {
my
(
$vl
,
$vr
) = _eigen_pair(
$m
,
$p
,
$select_func
,
$vl
[1],
$vr
[1],
$jobvsl
,
$jobvsr
,
$vsl
,
$vsr
,
$mult
,
$norm
,
$mdims
[
$di
+1],
$sdim
,
@w
);
$ret
{
$_
->[0]} =
$_
->[1]
for
grep
defined
$_
->[1], [
'VL'
,
$vl
], [
'VR'
,
$vr
];
}
my
$w
=
@w
== 2 ? _ecplx(
@w
) :
@w
[0];
if
(
$jobvsl
== 2 &&
$select_func
) {
$ret
{SL} =
$sdim
?
$vsl
->t->slice(
"$slice_prefix:@{[$sdim-1]},"
)->sever :
$m
->_similar_null;
}
elsif
(
$jobvsl
){
$ret
{SL} =
$vsl
->t->sever;
}
if
(
$jobvsr
== 2 &&
$select_func
) {
$ret
{SR} =
$sdim
?
$vsr
->t->slice(
"$slice_prefix:@{[$sdim-1]},"
)->sever :
$m
->_similar_null;
}
elsif
(
$jobvsr
){
$ret
{SR} =
$vsr
->t->sever;
}
$ret
{info} =
$info
;
return
(
$m
->t,
$p
->t,
$w
,
$beta
,
%ret
);
}
=head2 mgschurx
=for ref
Computes generalized Schur decomposition of the pair (A,B).
A = Q x S x Z'
B = Q x T x Z'
Uses L<ggesx|PDL::LinearAlgebra::Real/ggesx> or L<cggesx|PDL::LinearAlgebra::Complex/cggesx>
from Lapack. Works on transposed array.
=for usage
( PDL(schur S), PDL(schur T), PDL(alpha), PDL(beta), HASH{result}) = mgschurx(PDL(A), PDL(B), SCALAR(left schur vector),SCALAR(right schur vector),SCALAR(left eigenvector), SCALAR(right eigenvector), SCALAR(select_func), SCALAR(sense), SCALAR(backtransform), SCALAR(scale))
left schur vector : Left Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
right schur vector : Right Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
left eigenvector : Left eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
right eigenvector : Right eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
select_func : Select_func is used to select eigenvalues to sort.
to the top left of the Schur form.
An eigenvalue w = wr(j)+sqrt(-1)*wi(j) is selected if
PerlInt select_func(alpha,beta) is true;
(the inputs are converted to complex ndarrays for you)
Note that a selected complex eigenvalue may no longer
satisfy select_func = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned).
All eigenvalues/vectors are selected if select_func is undefined.
sense : Determines which reciprocal condition numbers will be computed.
0: None are computed
1: Computed for average of selected eigenvalues only
2: Computed for selected deflating subspaces only
3: Computed for both
If select_func is undefined, sense is not used.
backtransform : Whether or not backtransforms eigenvectors to those of (A,B).
Only supported if right and/or left schur vector are computed, default = 1
scale : Whether or not computed eigenvectors are scaled so the largest component
will have abs(real part) + abs(imag. part) = 1, default = 1
Returned values :
Schur form S,
Schur form T,
alpha,
beta (eigenvalues = alpha/beta),
HASH{info}: info output from gges/cgges.
HASH{SL}: left Schur vectors if requested
HASH{SR}: right Schur vectors if requested
HASH{VL}: left eigenvectors if requested
HASH{VR}: right eigenvectors if requested
HASH{rconde}: reciprocal condition numbers for average of selected eigenvalues if requested
HASH{rcondv}: reciprocal condition numbers for selected deflating subspaces if requested
HASH{n} : Number of eigenvalues selected if select_func is defined.
=for example
my $a = random(10,10);
my $b = random(10,10);
my ($S,$T) = mgschurx($a,$b);
sub select{
my ($alpha,$beta) = @_;
return $alpha->Cabs < abs($beta) ? 1 : 0;
}
my ($S, $T, $alpha, $beta, %res) = mgschurx( $a, $b, 1, 1, 1, 1,\&select,3);
=cut
*mgschurx
= \
&PDL::mgschurx
;
sub
PDL::mgschurx {
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
&_square_same
;
my
(
$m
,
$p
,
$jobvsl
,
$jobvsr
,
$jobvl
,
$jobvr
,
$select_func
,
$sense
,
$mult
,
$norm
) =
@_
;
my
(
@mdims
) =
$m
->dims;
$_
=
$_
->new_or_inplace->t
for
$m
,
$p
;
$mult
//= 1;
$norm
//= 1;
my
$select
=
$select_func
? 1 : 0;
$sense
= 0
if
!
$select_func
;
$_
= null
for
my
(
$info
,
$rconde
,
$rcondv
,
$sdim
);
$_
=
$m
->_similar_null
for
my
(
$beta
,
$vsl
,
$vsr
);
my
@w
=
map
$m
->_similar_null,
$m
->_is_complex ? 1 : 1..2;
my
$select_f
=
$m
->_wrap_select_func(
$select_func
);
$m
->_call_method(
'ggesx'
,
$jobvsl
,
$jobvsr
,
$select
,
$sense
,
$p
,
@w
,
$beta
,
$vsl
,
$vsr
,
$sdim
,
$rconde
,
$rcondv
,
$info
,
$select_f
);
_error_schur(
$info
,
$select_func
,
$mdims
[
$di
],
'mgschurx'
,
'QZ'
);
my
@vl
= (
'VL'
,
$jobvl
);
my
@vr
= (
'VR'
,
$jobvr
);
my
%ret
;
$ret
{
$_
->[0]} = _complex_null(),
$_
->[1]=0
for
grep
$select_func
&& !
$sdim
&&
$_
->[1] == 2, \
@vl
, \
@vr
;
$ret
{n} =
$sdim
if
$select_func
;
if
(
$vl
[1] ||
$vr
[1]) {
my
(
$vl
,
$vr
) = _eigen_pair(
$m
,
$p
,
$select_func
,
$vl
[1],
$vr
[1],
$jobvsl
,
$jobvsr
,
$vsl
,
$vsr
,
$mult
,
$norm
,
$mdims
[
$di
+1],
$sdim
,
@w
);
$ret
{
$_
->[0]} =
$_
->[1]
for
grep
defined
$_
->[1], [
'VL'
,
$vl
], [
'VR'
,
$vr
];
}
if
(
$jobvsl
== 2 &&
$select_func
) {
$ret
{SL} =
$sdim
?
$vsl
->t->slice(
"$slice_prefix:@{[$sdim-1]},"
)->sever :
$m
->_similar_null;
}
elsif
(
$jobvsl
){
$ret
{SL} =
$vsl
->t->sever;
}
if
(
$jobvsr
== 2 &&
$select_func
) {
$ret
{SR} =
$sdim
?
$vsr
->t->slice(
"$slice_prefix:@{[$sdim-1]},"
)->sever :
$m
->_similar_null;
}
elsif
(
$jobvsr
){
$ret
{SR} =
$vsr
->t->sever;
}
my
$w
=
@w
== 2 ? _ecplx(
@w
) :
@w
[0];
$ret
{info} =
$info
;
$ret
{rconde} =
$rconde
if
$sense
& 1;
$ret
{rcondv} =
$rcondv
if
$sense
& 2;
return
(
$m
->t,
$p
->t,
$w
,
$beta
,
%ret
);
}
=head2 mqr
=for ref
Computes QR decomposition.
Handles complex data.
Uses L<geqrf|PDL::LinearAlgebra::Real/geqrf> and L<orgqr|PDL::LinearAlgebra::Real/orgqr>
or L<cgeqrf|PDL::LinearAlgebra::Complex/cgeqrf> and L<cungqr|PDL::LinearAlgebra::Complex/cungqr>
from Lapack and returns C<Q> in scalar context. Works on transposed array.
=for usage
(PDL(Q), PDL(R), PDL(info)) = mqr(PDL, SCALAR)
SCALAR : ECONOMIC = 0 | FULL = 1, default = 0
=for example
my $a = random(10,10);
my ( $q, $r ) = mqr($a);
# Can compute full decomposition if nrow > ncol
$a = random(5,7);
( $q, $r ) = $a->mqr(1);
=cut
*mqr
= \
&PDL::mqr
;
sub
PDL::mqr {
&_2d_array
;
my
$di
=
$_
[0]->dims_internal;
my
@di_vals
=
$_
[0]->dims_internal_values;
my
(
$m
,
$full
) =
@_
;
my
(
@dims
) =
$m
->dims;
$m
=
$m
->t->copy;
my
$min
=
$dims
[
$di
] <
$dims
[
$di
+1] ?
$dims
[
$di
] :
$dims
[
$di
+1];
my
$slice_arg
= (
','
x
$di
) .
",:@{[$min-1]}"
;
my
$tau
=
$m
->_similar(
$min
);
$m
->_call_method(
'geqrf'
,
$tau
,
my
$info
= null);
if
(
$info
){
laerror (
"mqr: Error $info in geqrf\n"
);
return
(
$m
->t->sever,
$m
,
$info
);
}
my
$q
= (
$dims
[
$di
] >
$dims
[
$di
+1] ?
$m
->slice(
$slice_arg
) :
$m
)->copy;
$q
->reshape(
@di_vals
,
@dims
[
$di
+1,
$di
+1])
if
$full
&&
$dims
[
$di
] <
$dims
[
$di
+1];
$q
->_call_method([
'orgqr'
,
'cungqr'
],
$tau
,
$info
);
return
$q
->t->sever
unless
wantarray
;
my
$r
= ((
$dims
[
$di
] <
$dims
[
$di
+1] && !
$full
) ?
$m
->t->slice(
$slice_arg
) :
$m
->t)->tricpy(0);
return
(
$q
->t->sever,
$r
,
$info
);
}
=head2 mrq
=for ref
Computes RQ decomposition.
Handles complex data.
Uses L<gerqf|PDL::LinearAlgebra::Real/gerqf> and L<orgrq|PDL::LinearAlgebra::Real/orgrq>
or L<cgerqf|PDL::LinearAlgebra::Complex/cgerqf> and L<cungrq|PDL::LinearAlgebra::Complex/cungrq>
from Lapack and returns C<Q> in scalar context. Works on transposed array.
=for usage
(PDL(R), PDL(Q), PDL(info)) = mrq(PDL, SCALAR)
SCALAR : ECONOMIC = 0 | FULL = 1, default = 0
=for example
my $a = random(10,10);
my ( $r, $q ) = mrq($a);
# Can compute full decomposition if nrow < ncol
$a = random(5,7);
( $r, $q ) = $a->mrq(1);
=cut
*mrq
= \
&PDL::mrq
;
sub
PDL::mrq {
&_2d_array
;
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
@diag_args
= (
$di
,
$di
+1);
my
(
$m
,
$full
) =
@_
;
my
(
@dims
) =
$m
->dims;
my
(
$q
,
$r
);
$m
=
$m
->t->copy;
my
$min
=
$dims
[
$di
] <
$dims
[
$di
+1] ?
$dims
[
$di
] :
$dims
[
$di
+1];
my
$tau
=
$m
->_similar(
$min
);
$m
->_call_method(
'gerqf'
,
$tau
,
my
$info
= null);
if
(
$info
){
laerror (
"mrq: Error $info in gerqf\n"
);
return
(
$m
,
$m
->t->sever,
$info
);
}
if
(
$dims
[
$di
] >
$dims
[
$di
+1] &&
$full
){
$q
=
$m
->_similar(
@dims
[
$di
,
$di
]);
$q
->slice(
"$slice_prefix@{[$dims[$di] - $dims[$di+1]]}:"
) .=
$m
;
}
elsif
(
$dims
[
$di
] <
$dims
[
$di
+1]){
$q
=
$m
->slice(
"$slice_prefix@{[$dims[$di+1] - $dims[$di]]}:"
)->copy;
}
else
{
$q
=
$m
->copy;
}
$q
->_call_method([
'orgrq'
,
'cungrq'
],
$tau
,
$info
);
return
$q
->t->sever
unless
wantarray
;
if
(
$dims
[
$di
] >
$dims
[
$di
+1] &&
$full
){
$r
=
$m
->t->tricpy(0);
$r
->slice(
"$slice_prefix:@{[$min-1]},:@{[$min-1]}"
)->diagonal(
@diag_args
) .= 0;
}
elsif
(
$dims
[
$di
] <
$dims
[
$di
+1]){
my
$temp
=
$m
->_similar(
@dims
[
$di
+1,
$di
+1]);
$temp
->slice(
"$slice_prefix-$min:"
) .=
$m
->t;
$r
=
$temp
->tricpy(0);
$r
=
$r
->slice(
"$slice_prefix-$min:"
)->sever;
}
else
{
$r
=
$m
->t->slice(
"$slice_prefix@{[$dims[$di] - $dims[$di+1]]}:"
)->tricpy(0);
}
return
(
$r
,
$q
->t->sever,
$info
);
}
=head2 mql
=for ref
Computes QL decomposition.
Handles complex data.
Uses L<geqlf|PDL::LinearAlgebra::Real/geqlf> and L<orgql|PDL::LinearAlgebra::Real/orgql>
or L<cgeqlf|PDL::LinearAlgebra::Complex/cgeqlf> and L<cungql|PDL::LinearAlgebra::Complex/cungql>
from Lapack and returns C<Q> in scalar context. Works on transposed array.
=for usage
(PDL(Q), PDL(L), PDL(info)) = mql(PDL, SCALAR)
SCALAR : ECONOMIC = 0 | FULL = 1, default = 0
=for example
my $a = random(10,10);
my ( $q, $l ) = mql($a);
# Can compute full decomposition if nrow > ncol
$a = random(5,7);
( $q, $l ) = $a->mql(1);
=cut
*mql
= \
&PDL::mql
;
sub
PDL::mql {
&_2d_array
;
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
@diag_args
= (
$di
,
$di
+1);
my
(
$m
,
$full
) =
@_
;
my
(
@dims
) =
$m
->dims;
my
(
$q
,
$l
);
$m
=
$m
->t->copy;
my
$min
=
$dims
[
$di
] <
$dims
[
$di
+1] ?
$dims
[
$di
] :
$dims
[
$di
+1];
my
$tau
=
$m
->_similar(
$min
);
$m
->_call_method(
'geqlf'
,
$tau
,
my
$info
= null);
if
(
$info
){
laerror(
"mql: Error $info in geqlf\n"
);
return
(
$m
->t->sever,
$m
,
$info
);
}
if
(
$dims
[
$di
] <
$dims
[
$di
+1] &&
$full
){
$q
=
$m
->_similar(
@dims
[
$di
+1,
$di
+1]);
$q
->slice(
"$slice_prefix:,-$dims[$di]:"
) .=
$m
;
}
elsif
(
$dims
[
$di
] >
$dims
[
$di
+1]){
$q
=
$m
->slice(
"$slice_prefix:,-$min:"
)->copy;
}
else
{
$q
=
$m
->copy;
}
$q
->_call_method([
'orgql'
,
'cungql'
],
$tau
,
$info
);
return
$q
->t->sever
unless
wantarray
;
if
(
$dims
[
$di
] <
$dims
[
$di
+1] &&
$full
){
$l
=
$m
->t->tricpy(1);
$l
->slice(
"$slice_prefix:@{[$min-1]},:@{[$min-1]}"
)->diagonal(
@diag_args
) .= 0;
}
elsif
(
$dims
[
$di
] >
$dims
[
$di
+1]){
my
$temp
=
$m
->_similar(
@dims
[
$di
,
$di
]);
$temp
->slice(
"$slice_prefix:,-$dims[$di+1]:"
) .=
$m
->t;
$l
=
$temp
->tricpy(0);
$l
=
$l
->slice(
"$slice_prefix:,-$dims[$di+1]:"
);
}
else
{
$l
=
$m
->t->slice(
"$slice_prefix:,@{[$dims[$di+1] - $min]}:"
)->tricpy(1);
}
return
(
$q
->t->sever,
$l
,
$info
);
}
=head2 mlq
=for ref
Computes LQ decomposition.
Handles complex data.
Uses L<gelqf|PDL::LinearAlgebra::Real/gelqf> and L<orglq|PDL::LinearAlgebra::Real/orglq>
or L<cgelqf|PDL::LinearAlgebra::Complex/cgelqf> and L<cunglq|PDL::LinearAlgebra::Complex/cunglq>
from Lapack and returns C<Q> in scalar context. Works on transposed array.
=for usage
( PDL(L), PDL(Q), PDL(info) ) = mlq(PDL, SCALAR)
SCALAR : ECONOMIC = 0 | FULL = 1, default = 0
=for example
my $a = random(10,10);
my ( $l, $q ) = mlq($a);
# Can compute full decomposition if nrow < ncol
$a = random(5,7);
( $l, $q ) = $a->mlq(1);
=cut
*mlq
= \
&PDL::mlq
;
sub
PDL::mlq {
&_2d_array
;
my
$di
=
$_
[0]->dims_internal;
my
(
$m
,
$full
) =
@_
;
my
(
@dims
) =
$m
->dims;
my
(
$q
);
$m
=
$m
->t->copy;
my
$min
=
$dims
[
$di
] <
$dims
[
$di
+1] ?
$dims
[
$di
] :
$dims
[
$di
+1];
my
$slice_arg
= (
','
x
$di
) .
":@{[$min-1]}"
;
my
$tau
=
$m
->_similar(
$min
);
$m
->_call_method(
'gelqf'
,
$tau
,
my
$info
= null);
if
(
$info
){
laerror(
"mlq: Error $info in gelqf\n"
);
return
(
$m
,
$m
->t->sever,
$info
);
}
if
(
$dims
[
$di
] >
$dims
[
$di
+1] &&
$full
){
$q
=
$m
->_similar(
@dims
[
$di
,
$di
]);
$q
->slice(
$slice_arg
) .=
$m
;
}
elsif
(
$dims
[
$di
] <
$dims
[
$di
+1]){
$q
=
$m
->slice(
$slice_arg
)->copy;
}
else
{
$q
=
$m
->copy;
}
$q
->_call_method([
'orglq'
,
'cunglq'
],
$tau
,
$info
);
return
$q
->t->sever
unless
wantarray
;
my
$l
= ((
$dims
[
$di
] >
$dims
[
$di
+1] && !
$full
) ?
$m
->t->slice(
$slice_arg
) :
$m
->t)->tricpy(1);
return
(
$l
,
$q
->t->sever,
$info
);
}
=head2 msolve
=for ref
Solves linear system of equations using LU decomposition.
A * X = B
Returns X in scalar context else X, LU, pivot vector and info.
B is overwritten by X if its inplace flag is set.
Supports threading.
Uses L<gesv|PDL::LinearAlgebra::Real/gesv> or L<cgesv|PDL::LinearAlgebra::Complex/cgesv> from Lapack.
Works on transposed arrays.
=for usage
(PDL(X), (PDL(LU), PDL(pivot), PDL(info))) = msolve(PDL(A), PDL(B) )
=for example
my $a = random(5,5);
my $b = random(10,5);
my $X = msolve($a, $b);
=cut
*msolve
= \
&PDL::msolve
;
sub
PDL::msolve {
&_square
;
&_matrices_match
;
&_same_dims
;
my
(
$a
,
$b
) =
@_
;
$a
=
$a
->t->copy;
my
$c
=
$b
->new_or_inplace->t;
$a
->_call_method(
'gesv'
,
$c
,
my
$ipiv
= null,
my
$info
= null);
_error(
$info
,
"msolve: Can't solve system of linear equations (after getrf factorization): matrix (PDL(s) %s) is/are singular"
);
$b
=
$c
->t->sever
if
!
$b
->is_inplace(0);
wantarray
? (
$b
,
$a
->t->sever,
$ipiv
,
$info
) :
$b
;
}
=head2 msolvex
=for ref
Solves linear system of equations using LU decomposition.
A * X = B
Can optionally equilibrate the matrix.
Uses L<gesvx|PDL::LinearAlgebra::Real/gesvx> or L<cgesvx|PDL::LinearAlgebra::Complex/cgesvx> from Lapack.
Works on transposed arrays.
=for usage
(PDL, (HASH(result))) = msolvex(PDL(A), PDL(B), HASH(options))
where options are:
transpose: solves A' * X = B
0: false
1: true
equilibrate: equilibrates A if necessary.
form equilibration is returned in HASH{'equilibration'}:
0: no equilibration
1: row equilibration
2: column equilibration
row scale factors are returned in HASH{'row'}
column scale factors are returned in HASH{'column'}
0: false
1: true
LU: returns lu decomposition in HASH{LU}
0: false
1: true
A: returns scaled A if equilibration was done in HASH{A}
0: false
1: true
B: returns scaled B if equilibration was done in HASH{B}
0: false
1: true
Returned values:
X (SCALAR CONTEXT),
HASH{'pivot'}:
Pivot indice from LU factorization
HASH{'rcondition'}:
Reciprocal condition of the matrix
HASH{'ferror'}:
Forward error bound
HASH{'berror'}:
Componentwise relative backward error
HASH{'rpvgrw'}:
Reciprocal pivot growth factor
HASH{'info'}:
Info: output from gesvx
=for example
my $a = random(10,10);
my $b = random(5,10);
my %options = (
LU=>1,
equilibrate => 1,
);
my( $X, %result) = msolvex($a,$b,%options);
=cut
*msolvex
= \
&PDL::msolvex
;
sub
PDL::msolvex {
&_square
;
&_matrices_match
;
my
$di
=
$_
[0]->dims_internal;
my
(
$a
,
$b
,
%opt
) =
@_
;
my
(
@adims
) =
$a
->dims;
$a
=
$a
->t->copy;
$b
=
$b
->t->copy;
my
$x
=
$a
->_similar_null;
my
$af
= PDL::zeroes
$a
;
$_
= null
for
my
(
$info
,
$rcond
,
$rpvgrw
,
$ferr
,
$berr
);
my
$equed
= pdl(long, 0);
my
$ipiv
= zeroes(long,
$adims
[
$di
]);
$a
->_call_method(
'gesvx'
,
$opt
{transpose},
$opt
{equilibrate} ? 2 : 1,
$b
,
$af
,
$ipiv
,
$equed
,
my
$r
= null,
my
$c
= null,
$x
,
$rcond
,
$ferr
,
$berr
,
$rpvgrw
,
$info
);
if
(
$info
<
$adims
[
$di
] &&
$info
> 0){
$info
--;
laerror(
"msolvex: Can't solve system of linear equations:\nfactor U($info,$info)"
.
" of coefficient matrix is exactly 0"
);
}
elsif
(
$info
!= 0 and
$_laerror
){
warn
(
"msolvex: The matrix is singular to working precision"
);
}
return
$x
->t->sever
unless
wantarray
;
my
%result
= (
rcondition
=>
$rcond
,
ferror
=>
$ferr
,
berror
=>
$berr
);
if
(
$opt
{equilibrate}){
$result
{equilibration} =
$equed
;
$result
{row} =
$r
if
$equed
& 1;
$result
{column} =
$c
if
$equed
& 2;
if
(
$equed
){
$result
{A} =
$a
->t->sever
if
$opt
{A};
$result
{B} =
$b
->t->sever
if
$opt
{B};
}
}
@result
{
qw(pivot rpvgrw info)
} = (
$ipiv
,
$rpvgrw
,
$info
);
$result
{LU} =
$af
->t->sever
if
$opt
{LU};
return
(
$x
->t->sever,
%result
);
}
=head2 mtrisolve
=for ref
Solves linear system of equations with triangular matrix A.
A * X = B or A' * X = B
B is overwritten by X if its inplace flag is set.
Supports threading.
Uses L<trtrs|PDL::LinearAlgebra::Real/trtrs> or L<ctrtrs|PDL::LinearAlgebra::Complex/ctrtrs> from Lapack.
Work on transposed array(s).
=for usage
(PDL(X), (PDL(info)) = mtrisolve(PDL(A), SCALAR(uplo), PDL(B), SCALAR(trans), SCALAR(diag))
uplo : UPPER = 0 | LOWER = 1
trans : NOTRANSPOSE = 0 | TRANSPOSE = 1, default = 0
uplo : UNITARY DIAGONAL = 1, default = 0
=for example
# Assume $a is upper triagonal
my $a = random(5,5);
my $b = random(5,10);
my $X = mtrisolve($a, 0, $b);
=cut
*mtrisolve
= \
&PDL::mtrisolve
;
sub
PDL::mtrisolve{
&_square
;
my
$uplo
=
splice
@_
, 1, 1;
&_matrices_match
;
&_same_dims
;
my
(
$a
,
$b
,
$trans
,
$diag
) =
@_
;
$uplo
= 1 -
$uplo
;
$trans
= 1 -
$trans
;
my
$c
=
$b
->new_or_inplace->t;
$a
->_call_method(
'trtrs'
,
$uplo
,
$trans
,
$diag
,
$c
,
my
$info
= null);
_error(
$info
,
"mtrisolve: Can't solve system of linear equations: matrix (PDL(s) %s) is/are singular"
);
$b
=
$c
->t->sever
if
!
$b
->is_inplace(0);
wantarray
? (
$b
,
$info
) :
$b
;
}
=head2 msymsolve
=for ref
Solves linear system of equations using diagonal pivoting method with symmetric matrix A.
A * X = B
Returns X in scalar context else X, block diagonal matrix D (and the
multipliers), pivot vector an info. B is overwritten by X if its inplace flag is set.
Supports threading.
Uses L<sysv|PDL::LinearAlgebra::Real/sysv> or L<csysv|PDL::LinearAlgebra::Complex/csysv> from Lapack.
Works on transposed array(s).
=for usage
(PDL(X), ( PDL(D), PDL(pivot), PDL(info) ) ) = msymsolve(PDL(A), SCALAR(uplo), PDL(B) )
uplo : UPPER = 0 | LOWER = 1, default = 0
=for example
# Assume $a is symmetric
my $a = random(5,5);
my $b = random(5,10);
my $X = msymsolve($a, 0, $b);
=cut
*msymsolve
= \
&PDL::msymsolve
;
sub
PDL::msymsolve {
&_square
;
my
$uplo
=
splice
@_
, 1, 1;
&_matrices_match
;
&_same_dims
;
my
(
$a
,
$b
) =
@_
;
$uplo
= 1 -
$uplo
;
$a
=
$a
->copy;
my
$c
=
$b
->new_or_inplace->t;
$a
->_call_method(
'sysv'
,
$uplo
,
$c
,
my
$ipiv
= null,
my
$info
= null);
_error(
$info
,
"msymsolve: Can't solve system of linear equations (after sytrf factorization): matrix (PDL(s) %s) is/are singular"
);
$b
=
$c
->t->sever
if
!
$b
->is_inplace(0);
wantarray
? (
$b
,
$a
,
$ipiv
,
$info
) :
$b
;
}
=head2 msymsolvex
=for ref
Solves linear system of equations using diagonal pivoting method with symmetric matrix A.
A * X = B
Uses L<sysvx|PDL::LinearAlgebra::Real/sysvx> or L<csysvx|PDL::LinearAlgebra::Complex/csysvx>
from Lapack. Works on transposed array.
=for usage
(PDL, (HASH(result))) = msymsolvex(PDL(A), SCALAR (uplo), PDL(B), SCALAR(d))
uplo : UPPER = 0 | LOWER = 1, default = 0
d : whether return diagonal matrix d and pivot vector
FALSE = 0 | TRUE = 1, default = 0
Returned values:
X (SCALAR CONTEXT),
HASH{'D'}:
Block diagonal matrix D (and the multipliers) (if requested)
HASH{'pivot'}:
Pivot indice from LU factorization (if requested)
HASH{'rcondition'}:
Reciprocal condition of the matrix
HASH{'ferror'}:
Forward error bound
HASH{'berror'}:
Componentwise relative backward error
HASH{'info'}:
Info: output from sysvx
=for example
# Assume $a is symmetric
my $a = random(10,10);
my $b = random(5,10);
my ($X, %result) = msolvex($a, 0, $b);
=cut
*msymsolvex
= \
&PDL::msymsolvex
;
sub
PDL::msymsolvex {
&_square
;
my
$uplo
=
splice
@_
, 1, 1;
&_matrices_match
;
my
$di
=
$_
[0]->dims_internal;
my
(
$a
,
$b
,
$d
) =
@_
;
my
(
@adims
) =
$a
->dims;
$uplo
= 1 -
$uplo
;
$b
=
$b
->t;
my
$x
=
$a
->_similar_null;
my
$af
= PDL::zeroes
$a
;
$_
= null
for
my
(
$info
,
$rcond
,
$ferr
,
$berr
);
my
$ipiv
= zeroes(long,
$adims
[
$di
]);
$a
->_call_method(
'sysvx'
,
$uplo
, 0,
$b
,
$af
,
$ipiv
,
$x
,
$rcond
,
$ferr
,
$berr
,
$info
);
if
(
$info
<
$adims
[
$di
] &&
$info
> 0){
$info
--;
laerror(
"msymsolvex: Can't solve system of linear equations:\nfactor D($info,$info)"
.
" of coefficient matrix is exactly 0"
);
}
elsif
(
$info
!= 0 and
$_laerror
){
warn
(
"msymsolvex: The matrix is singular to working precision"
);
}
my
%result
= (
rcondition
=>
$rcond
,
ferror
=>
$ferr
,
berror
=>
$berr
,
info
=>
$info
);
@result
{
qw(pivot D)
} = (
$ipiv
,
$af
)
if
$d
;
wantarray
? (
$x
->t->sever,
%result
):
$x
->t->sever;
}
=head2 mpossolve
=for ref
Solves linear system of equations using Cholesky decomposition with
symmetric positive definite matrix A.
A * X = B
Returns X in scalar context else X, U or L and info.
B is overwritten by X if its inplace flag is set.
Supports threading.
Uses L<posv|PDL::LinearAlgebra::Real/posv> or L<cposv|PDL::LinearAlgebra::Complex/cposv> from Lapack.
Works on transposed array(s).
=for usage
(PDL, (PDL, PDL, PDL)) = mpossolve(PDL(A), SCALAR(uplo), PDL(B) )
uplo : UPPER = 0 | LOWER = 1, default = 0
=for example
# asume $a is symmetric positive definite
my $a = random(5,5);
my $b = random(5,10);
my $X = mpossolve($a, 0, $b);
=cut
*mpossolve
= \
&PDL::mpossolve
;
sub
PDL::mpossolve {
&_square
;
my
$uplo
=
splice
@_
, 1, 1;
&_matrices_match
;
&_same_dims
;
my
(
$a
,
$b
) =
@_
;
$uplo
= 1 -
$uplo
;
$a
=
$a
->copy;
my
$c
=
$b
->new_or_inplace->t;
$a
->_call_method(
'posv'
,
$uplo
,
$c
,
my
$info
=null);
_error(
$info
,
"mpossolve: Can't solve system of linear equations: matrix (PDL(s) %s) is/are not positive definite"
);
wantarray
?
$b
->is_inplace(0) ? (
$b
,
$a
,
$info
) : (
$c
->t->sever ,
$a
,
$info
) :
$b
->is_inplace(0) ?
$b
:
$c
->t->sever;
}
=head2 mpossolvex
=for ref
Solves linear system of equations using Cholesky decomposition with
symmetric positive definite matrix A
A * X = B
Can optionally equilibrate the matrix.
Uses L<posvx|PDL::LinearAlgebra::Real/posvx> or
L<cposvx|PDL::LinearAlgebra::Complex/cposvx> from Lapack.
Works on transposed array(s).
=for usage
(PDL, (HASH(result))) = mpossolvex(PDL(A), SCARA(uplo), PDL(B), HASH(options))
uplo : UPPER = 0 | LOWER = 1, default = 0
where options are:
equilibrate: equilibrates A if necessary.
form equilibration is returned in HASH{'equilibration'}:
0: no equilibration
1: equilibration
scale factors are returned in HASH{'scale'}
0: false
1: true
U|L: returns Cholesky factorization in HASH{U} or HASH{L}
0: false
1: true
A: returns scaled A if equilibration was done in HASH{A}
0: false
1: true
B: returns scaled B if equilibration was done in HASH{B}
0: false
1: true
Returned values:
X (SCALAR CONTEXT),
HASH{'rcondition'}:
Reciprocal condition of the matrix
HASH{'ferror'}:
Forward error bound
HASH{'berror'}:
Componentwise relative backward error
HASH{'info'}:
Info: output from gesvx
=for example
# Assume $a is symmetric positive definite
my $a = random(10,10);
my $b = random(5,10);
my %options = (U=>1,
equilibrate => 1,
);
my ($X, %result) = msolvex($a, 0, $b,%opt);
=cut
*mpossolvex
= \
&PDL::mpossolvex
;
sub
PDL::mpossolvex {
&_square
;
my
$uplo
=
splice
(
@_
, 1, 1) ? 0 : 1;
&_matrices_match
;
my
$di
=
$_
[0]->dims_internal;
my
(
$a
,
$b
,
%opt
) =
@_
;
my
(
@adims
) =
$a
->dims;
my
(
@bdims
) =
$b
->dims;
my
$equilibrate
=
$opt
{
'equilibrate'
} ? 2: 1;
$a
=
$a
->copy;
$b
=
$b
->t->copy;
my
$x
=
$a
->_similar_null;
my
$af
= PDL::zeroes
$a
;
my
$equed
= pdl(long, 0);
$a
->_call_method(
'posvx'
,
$uplo
,
$equilibrate
,
$b
,
$af
,
$equed
,
my
$s
= null,
$x
,
my
$rcond
=null,
my
$ferr
=null,
my
$berr
=null,
my
$info
=null);
if
(
$info
<
$adims
[
$di
] &&
$info
> 0){
$info
--;
barf(
"mpossolvex: Can't solve system of linear equations:\n"
.
"the leading minor of order $info of A is"
.
" not positive definite"
);
return
;
}
elsif
(
$info
and
$_laerror
){
warn
(
"mpossolvex: The matrix is singular to working precision"
);
}
my
%result
= (
rcondition
=>
$rcond
,
ferror
=>
$ferr
,
berror
=>
$berr
);
if
(
$opt
{equilibrate}){
$result
{equilibration} =
$equed
;
if
(
$equed
){
$result
{scale} =
$s
if
$equed
;
$result
{A} =
$a
if
$opt
{A};
$result
{B} =
$b
->t->sever
if
$opt
{B};
}
}
$result
{info} =
$info
;
$result
{L} =
$af
if
$opt
{L};
$result
{U} =
$af
if
$opt
{U};
wantarray
? (
$x
->t->sever,
%result
):
$x
->t->sever;
}
=head2 mlls
=for ref
Solves overdetermined or underdetermined real linear systems using QR or LQ factorization.
If M > N in the M-by-N matrix A, returns the residual sum of squares too.
Uses L<gels|PDL::LinearAlgebra::Real/gels> or L<cgels|PDL::LinearAlgebra::Complex/cgels> from Lapack.
Works on transposed arrays.
=for usage
PDL(X) = mlls(PDL(A), PDL(B), SCALAR(trans))
trans : NOTRANSPOSE = 0 | TRANSPOSE/CONJUGATE = 1, default = 0
=for example
$a = random(4,5);
$b = random(3,5);
($x, $res) = mlls($a, $b);
=cut
*mlls
= \
&PDL::mlls
;
sub
PDL::mlls {
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
&_matrices_matchrows
;
my
(
$a
,
$b
,
$trans
) =
@_
;
my
(
@adims
) =
$a
->dims;
my
(
@bdims
) =
$b
->dims;
my
$x
;
$a
=
$a
->copy;
if
(
$adims
[
$di
+1] <
$adims
[
$di
]) {
$x
=
$a
->_similar(
$adims
[
$di
],
$bdims
[
$di
]);
$x
->slice(
"$slice_prefix:@{[$bdims[$di+1]-1]}, :@{[$bdims[$di]-1]}"
) .=
$b
->t;
}
else
{
$x
=
$b
->t->copy;
}
$a
->_call_method(
'gels'
,
$trans
? 0 : 1,
$x
,
my
$info
= null);
$x
=
$x
->t;
return
$x
->sever
if
$adims
[
$di
+1] <=
$adims
[
$di
];
my
$sliced
=
$x
->slice(
"$slice_prefix, :@{[$adims[$di]-1]}"
)->sever;
return
$sliced
if
!
wantarray
;
my
$power
=
$a
->_similar(1);
$power
.= 2;
(
$sliced
, (
$x
->slice(
"$slice_prefix, $adims[$di]:"
)->t **
$power
)->sumover);
}
=head2 mllsy
=for ref
Computes the minimum-norm solution to a real linear least squares problem
using a complete orthogonal factorization.
Uses L<gelsy|PDL::LinearAlgebra::Real/gelsy> or L<cgelsy|PDL::LinearAlgebra::Complex/cgelsy>
from Lapack. Works on transposed arrays.
=for usage
( PDL(X), ( HASH(result) ) ) = mllsy(PDL(A), PDL(B))
Returned values:
X (SCALAR CONTEXT),
HASH{'A'}:
complete orthogonal factorization of A
HASH{'jpvt'}:
details of columns interchanges
HASH{'rank'}:
effective rank of A
=for example
my $a = random(10,10);
my $b = random(10,10);
$X = mllsy($a, $b);
=cut
*mllsy
= \
&PDL::mllsy
;
sub
PDL::mllsy {
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
&_matrices_matchrows
;
my
(
$a
,
$b
) =
@_
;
my
(
@adims
) =
$a
->dims;
my
(
@bdims
) =
$b
->dims;
my
$rcond
= lamch(0);
$rcond
=
$rcond
->
sqrt
- (
$rcond
->
sqrt
-
$rcond
) / 2;
$a
=
$a
->t->copy;
my
(
$x
);
if
(
$adims
[1+
$di
] <
$adims
[0+
$di
]){
$x
=
$a
->_similar(
$adims
[
$di
],
$bdims
[
$di
]);
$x
->slice(
"$slice_prefix:@{[$bdims[$di+1]-1]}, :@{[$bdims[$di]-1]}"
) .=
$b
->t;
}
else
{
$x
=
$b
->t->copy;
}
my
$info
= null;
my
$rank
= null;
my
$jpvt
= zeroes(long,
$adims
[
$di
]);
$a
->_call_method(
'gelsy'
,
$x
,
$rcond
,
$jpvt
,
$rank
,
$info
);
my
%ret
= !
wantarray
? () : (
'A'
=>
$a
->t->sever,
'rank'
=>
$rank
,
'jpvt'
=>
$jpvt
);
return
wantarray
? (
$x
->t->sever,
%ret
) :
$x
->t->sever
if
$adims
[
$di
+1] <=
$adims
[
$di
];
$x
=
$x
->t->slice(
"$slice_prefix, :@{[$adims[$di]-1]}"
)->sever;
wantarray
? (
$x
,
%ret
) :
$x
;
}
=head2 mllss
=for ref
Computes the minimum-norm solution to a real linear least squares problem
using a singular value decomposition.
Uses L<gelss|PDL::LinearAlgebra::Real/gelss> or L<gelsd|PDL::LinearAlgebra::Real/gelsd> from Lapack.
Works on transposed arrays.
=for usage
( PDL(X), ( HASH(result) ) )= mllss(PDL(A), PDL(B), SCALAR(method))
method: specifies which method to use (see Lapack for further details)
'(c)gelss' or '(c)gelsd', default = '(c)gelsd'
Returned values:
X (SCALAR CONTEXT),
HASH{'V'}:
if method = (c)gelss, the right singular vectors, stored columnwise
HASH{'s'}:
singular values from SVD
HASH{'res'}:
if A has full rank the residual sum-of-squares for the solution
HASH{'rank'}:
effective rank of A
HASH{'info'}:
info output from method
=for example
my $a = random(10,10);
my $b = random(10,10);
$X = mllss($a, $b);
=cut
*mllss
= \
&PDL::mllss
;
sub
PDL::mllss {
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
&_matrices_matchrows
;
my
(
$a
,
$b
,
$method
) =
@_
;
my
@adims
=
$a
->dims;
my
@bdims
=
$b
->dims;
#TODO: Add this in option
my
$rcond
= lamch(0);
$rcond
=
$rcond
->
sqrt
- (
$rcond
->
sqrt
-
$rcond
) / 2;
$a
=
$a
->t->copy;
my
$x
;
if
(
$adims
[1+
$di
] <
$adims
[0+
$di
]){
$x
=
$a
->_similar(
$adims
[
$di
],
$bdims
[
$di
]);
$x
->slice(
"$slice_prefix:@{[$bdims[$di+1]-1]}, :@{[$bdims[$di]-1]}"
) .=
$b
->t;
}
else
{
$x
=
$b
->t->copy;
}
$_
= null
for
my
(
$info
,
$rank
,
$s
);
my
$min
= (
$adims
[
$di
] >
$adims
[
$di
+1]) ?
$adims
[
$di
+1] :
$adims
[
$di
];
$method
||=
'gelsd'
;
$a
->_call_method(
$method
,
$x
,
$rcond
,
$s
,
$rank
,
$info
);
laerror(
"mllss: The algorithm for computing the SVD failed to converge\n"
)
if
$info
;
$x
=
$x
->t;
my
%ret
= !
wantarray
? () : (
rank
=>
$rank
,
s
=>
$s
,
info
=>
$info
);
$ret
{V} =
$a
if
wantarray
and
$method
=~ /gelss/;
return
wantarray
? (
$x
->sever,
%ret
) :
$x
->sever
if
$adims
[1+
$di
] <=
$adims
[0+
$di
];
if
(
wantarray
and
$rank
==
$min
) {
my
$power
=
$a
->_similar(1);
$power
.= 2;
$ret
{res} = (
$x
->slice(
"$slice_prefix, $adims[$di]:"
)->t **
$power
)->sumover;
}
$x
=
$x
->slice(
"$slice_prefix, :@{[$adims[$di]-1]}"
)->sever;
wantarray
? (
$x
->sever,
%ret
) :
$x
->sever;
}
=head2 mglm
=for ref
Solves a general Gauss-Markov Linear Model (GLM) problem.
Supports threading.
Uses L<ggglm|PDL::LinearAlgebra::Real/ggglm> or L<cggglm|PDL::LinearAlgebra::Complex/cggglm>
from Lapack. Works on transposed arrays.
=for usage
(PDL(x), PDL(y)) = mglm(PDL(a), PDL(b), PDL(d))
where d is the left hand side of the GLM equation
=for example
my $a = random(8,10);
my $b = random(7,10);
my $d = random(10);
my ($x, $y) = mglm($a, $b, $d);
=cut
*mglm
= \
&PDL::mglm
;
sub
PDL::mglm{
my
(
$a
,
$b
,
$d
) =
@_
;
my
$di
=
$_
[0]->dims_internal;
my
(
@adims
) =
$a
->dims;
my
(
@bdims
) =
$b
->dims;
my
(
@ddims
) =
$d
->dims;
barf(
"mglm: Require arrays with equal number of rows"
)
unless
(
@adims
>= 2+
$di
&&
@bdims
>= 2+
$di
&&
$adims
[1+
$di
] ==
$bdims
[1+
$di
]);
barf
"mglm: Require that column(A) <= row(A) <= column(A) + column(B)"
unless
( (
$adims
[0+
$di
] <=
$adims
[1+
$di
] ) && (
$adims
[1+
$di
] <= (
$adims
[0+
$di
] +
$bdims
[0+
$di
])) );
barf(
"mglm: Require vector(s) with size equal to number of rows of A"
)
unless
(
@ddims
>= 1+
$di
&&
$adims
[1+
$di
] ==
$ddims
[0+
$di
]);
$a
=
$a
->t->copy;
$b
=
$b
->t->copy;
$d
=
$d
->copy;
my
(
$x
,
$y
,
$info
) =
$a
->_call_method(
'ggglm'
,
$b
,
$d
);
$x
,
$y
;
}
=head2 mlse
=for ref
Solves a linear equality-constrained least squares (LSE) problem.
Uses L<gglse|PDL::LinearAlgebra::Real/gglse> or L<cgglse|PDL::LinearAlgebra::Complex/cgglse>
from Lapack. Works on transposed arrays.
=for usage
(PDL(x), PDL(res2)) = mlse(PDL(a), PDL(b), PDL(c), PDL(d))
where
c : The right hand side vector for the
least squares part of the LSE problem.
d : The right hand side vector for the
constrained equation.
x : The solution of the LSE problem.
res2 : The residual sum of squares for the solution
(returned only in array context)
=for example
my $a = random(5,4);
my $b = random(5,3);
my $c = random(4);
my $d = random(3);
my ($x, $res2) = mlse($a, $b, $c, $d);
=cut
*mlse
= \
&PDL::mlse
;
sub
PDL::mlse {
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
(
$a
,
$b
,
$c
,
$d
) =
@_
;
my
(
@adims
) =
$a
->dims;
my
(
@bdims
) =
$b
->dims;
my
(
@cdims
) =
$c
->dims;
my
(
@ddims
) =
$d
->dims;
&_matrices_matchcolumns
;
barf(
"mlse: Require 1D vector C with size equal to number of A rows"
)
unless
( (
@cdims
==
$di
+1)&&
$adims
[
$di
+2] ==
$cdims
[
$di
+2]);
barf(
"mlse: Require 1D vector D with size equal to number of B rows"
)
unless
( (
@ddims
==
$di
+1)&&
$bdims
[
$di
+2] ==
$ddims
[
$di
+2]);
barf
"mlse: Require that row(B) <= column(A) <= row(A) + row(B)"
unless
( (
$bdims
[
$di
+1] <=
$adims
[
$di
] ) && (
$adims
[
$di
] <= (
$adims
[
$di
+1]+
$bdims
[
$di
+1])) );
$a
=
$a
->t->copy;
$b
=
$b
->t->copy;
$c
=
$c
->copy;
$d
=
$d
->copy;
my
(
$x
,
$info
) =
$a
->_call_method(
'gglse'
,
$b
,
$c
,
$d
);
my
$power
=
$a
->_similar(1);
$power
.= 2;
my
$sumsq
= (
$c
->slice(
"$slice_prefix @{[$adims[$di]-$bdims[$di+1]]}:@{[$adims[$di+1]-1]}"
) **
$power
)->sumover;
wantarray
? (
$x
,
$sumsq
) :
$x
;
}
=head2 meigen
=for ref
Computes eigenvalues and, optionally, the left and/or right eigenvectors of a general square matrix
(spectral decomposition).
Eigenvectors are normalized (Euclidean norm = 1) and largest component real.
The eigenvalues and eigenvectors returned are complex ndarrays.
If only eigenvalues are requested, info is returned in array context.
Supports threading.
Uses L<geev|PDL::LinearAlgebra::Real/geev> or L<cgeev|PDL::LinearAlgebra::Complex/cgeev> from Lapack.
Works on transposed arrays.
=for usage
(PDL(values), (PDL(LV), (PDL(RV)), (PDL(info)))) = meigen(PDL, SCALAR(left vector), SCALAR(right vector))
left vector : FALSE = 0 | TRUE = 1, default = 0
right vector : FALSE = 0 | TRUE = 1, default = 0
=for example
my $a = random(10,10);
my ( $eigenvalues, $left_eigenvectors, $right_eigenvectors ) = meigen($a,1,1);
=cut
*meigen
= \
&PDL::meigen
;
sub
PDL::meigen {
&_square
;
my
(
$m
,
$jobvl
,
$jobvr
) =
@_
;
$_
= null
for
my
(
$info
,
$sdim
);
my
@w
=
map
$m
->_similar_null,
$m
->_is_complex ? 1 : 1..2;
$_
=
$m
->_similar_null
for
my
(
$vl
,
$vr
);
$m
->t->_call_method(
'geev'
,
$jobvl
,
$jobvr
,
@w
,
$vl
,
$vr
,
$info
);
_error(
$info
,
"meigen: The QR algorithm failed to converge for PDL(s) %s"
);
(
my
$w
,
$vl
,
$vr
) = _eigen_extract(
$jobvl
,
$jobvr
,
$vl
,
$vr
,
@w
);
return
$w
if
!
wantarray
;
(
$w
, (
$jobvl
?
$vl
->t->sever:()), (
$jobvr
?
$vr
->t->sever:()),
$info
);
}
=head2 meigenx
=for ref
Computes eigenvalues, one-norm and, optionally, the left and/or right eigenvectors of a general square matrix
(spectral decomposition).
Eigenvectors are normalized (Euclidean norm = 1) and largest component real.
The eigenvalues and eigenvectors returned are complex ndarrays.
Uses L<geevx|PDL::LinearAlgebra::Real/geevx> or
L<cgeevx|PDL::LinearAlgebra::Complex/cgeevx> from Lapack.
Works on transposed arrays.
=for usage
(PDL(value), (PDL(lv), (PDL(rv)), HASH(result)), HASH(result)) = meigenx(PDL, HASH(options))
where options are:
vector: eigenvectors to compute
'left': computes left eigenvectors
'right': computes right eigenvectors
'all': computes left and right eigenvectors
0: doesn't compute (default)
rcondition: reciprocal condition numbers to compute (returned in HASH{'rconde'} for eigenvalues and HASH{'rcondv'} for eigenvectors)
'value': computes reciprocal condition numbers for eigenvalues
'vector': computes reciprocal condition numbers for eigenvectors
'all': computes reciprocal condition numbers for eigenvalues and eigenvectors
0: doesn't compute (default)
error: specifies whether or not it computes the error bounds (returned in HASH{'eerror'} and HASH{'verror'})
error bound = EPS * One-norm / rcond(e|v)
(reciprocal condition numbers for eigenvalues or eigenvectors must be computed).
1: returns error bounds
0: not computed
scale: specifies whether or not it diagonaly scales the entry matrix
(scale details returned in HASH : 'scale')
1: scales
0: Doesn't scale (default)
permute: specifies whether or not it permutes row and columns
(permute details returned in HASH{'balance'})
1: permutes
0: Doesn't permute (default)
schur: specifies whether or not it returns the Schur form (returned in HASH{'schur'})
1: returns Schur form
0: not returned
Returned values:
eigenvalues (SCALAR CONTEXT),
left eigenvectors if requested,
right eigenvectors if requested,
HASH{'norm'}:
One-norm of the matrix
HASH{'info'}:
Info: if > 0, the QR algorithm failed to compute all the eigenvalues
(see syevx for further details)
=for example
my $a = random(10,10);
my %options = ( rcondition => 'all',
vector => 'all',
error => 1,
scale => 1,
permute=>1,
schur => 1
);
my ( $eigenvalues, $left_eigenvectors, $right_eigenvectors, %result) = meigenx($a,%options);
print "Error bounds for eigenvalues:\n $eigenvalues\n are:\n". transpose($result{'eerror'}) unless $info;
=cut
my
%rcondition2sense
= (
value
=> 1,
vector
=> 2,
all
=> 3);
my
%vector2jobvl
= (
left
=> 1,
all
=> 1);
my
%vector2jobvr
= (
right
=> 1,
all
=> 1);
*meigenx
= \
&PDL::meigenx
;
sub
PDL::meigenx {
&_square
;
my
(
$m
,
%opt
) =
@_
;
my
(
%result
);
$m
=
$m
->copy;
$_
= null
for
my
(
$info
,
$ilo
,
$ihi
,
$abnrm
,
$scale
,
$rconde
,
$rcondv
);
$_
=
$m
->_similar_null
for
my
(
$vl
,
$vr
);
my
@w
=
map
$m
->_similar_null,
$m
->_is_complex ? 1 : 1..2;
my
$balanc
= (
$opt
{
'scale'
}?2:0) | (
$opt
{permute}?1:0);
my
$jobvl
=
$vector2jobvl
{
$opt
{vector}} ||
$opt
{rcondition} ? 1 : 0;
my
$jobvr
=
$vector2jobvr
{
$opt
{vector}} ||
$opt
{rcondition} ? 1 : 0;
my
$sense
=
$rcondition2sense
{
$opt
{rcondition}} || 0;
$m
->t->_call_method(
'geevx'
,
$jobvl
,
$jobvr
,
$balanc
,
$sense
,
@w
,
$vl
,
$vr
,
$ilo
,
$ihi
,
$scale
,
$abnrm
,
$rconde
,
$rcondv
,
$info
);
(
my
$w
,
$vl
,
$vr
) = _eigen_extract(
$jobvl
,
$jobvr
,
$vl
,
$vr
,
@w
);
if
(
$info
){
laerror(
"meigenx: The QR algorithm failed to converge"
);
"Returning converged eigenvalues\n"
if
$_laerror
;
}
$result
{
'schur'
} =
$m
if
$opt
{
'schur'
};
$result
{
'balance'
} = cat
$ilo
,
$ihi
if
$opt
{
'permute'
};
@result
{
qw(info norm)
} = (
$info
,
$abnrm
);
$result
{
'scale'
} =
$scale
if
$opt
{
'scale'
};
if
(
$sense
& 2) {
$result
{
'rcondv'
} =
$rcondv
;
$result
{
'verror'
} = (lamch(0)*
$abnrm
/
$rcondv
)
if
$opt
{
'error'
};
}
if
(
$sense
& 1) {
$result
{
'rconde'
} =
$rconde
;
$result
{
'eerror'
} = (lamch(0)*
$abnrm
/
$rconde
)
if
$opt
{
'error'
};
}
(
$w
, (
$vector2jobvl
{
$opt
{vector}}?
$vl
->t->sever:()), (
$vector2jobvr
{
$opt
{vector}}?
$vr
->t->sever:()),
%result
);
}
=head2 mgeigen
=for ref
Computes generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors
for a pair of N-by-N real nonsymmetric matrices (A,B) .
The alpha from ratio alpha/beta is a complex ndarray.
Supports threading. Uses L<ggev|PDL::LinearAlgebra::Real/ggev> or
L<cggev|PDL::LinearAlgebra::Complex/cggev> from Lapack.
Works on transposed arrays.
=for usage
( PDL(alpha), PDL(beta), ( PDL(LV), (PDL(RV) ), PDL(info)) = mgeigen(PDL(A),PDL(B) SCALAR(left vector), SCALAR(right vector))
left vector : FALSE = 0 | TRUE = 1, default = 0
right vector : FALSE = 0 | TRUE = 1, default = 0
=for example
my $a = random(10,10);
my $b = random(10,10);
my ( $alpha, $beta, $left_eigenvectors, $right_eigenvectors ) = mgeigen($a, $b,1, 1);
=cut
*mgeigen
= \
&PDL::mgeigen
;
sub
PDL::mgeigen {
&_square_same
;
&_same_dims
;
my
(
$a
,
$b
,
$jobvl
,
$jobvr
) =
@_
;
$_
=
$_
->new_or_inplace->t
for
$a
,
$b
;
$_
= null
for
my
(
$info
,
$sdim
);
my
@w
=
map
$a
->_similar_null,
$a
->_is_complex ? 1 : 1..2;
$_
=
$a
->_similar_null
for
my
(
$vl
,
$vr
,
$beta
);
$a
->_call_method(
'ggev'
,
$jobvl
,
$jobvr
,
$b
,
@w
,
$beta
,
$vl
,
$vr
,
$info
);
_error(
$info
,
"mgeigen: Can't compute eigenvalues/vectors for PDL(s) %s"
);
(
my
$w
,
$vl
,
$vr
) = _eigen_extract(
$jobvl
,
$jobvr
,
$vl
,
$vr
,
@w
);
(
$w
,
$beta
, (
$jobvl
?
$vl
->t->sever:()), (
$jobvr
?
$vr
->t->sever:()),
$info
);
}
=head2 mgeigenx
=for ref
Computes generalized eigenvalues, one-norms and, optionally, the left and/or right generalized
eigenvectors for a pair of N-by-N real nonsymmetric matrices (A,B).
The alpha from ratio alpha/beta is a complex ndarray.
Uses L<ggevx|PDL::LinearAlgebra::Real/ggevx> or
L<cggevx|PDL::LinearAlgebra::Complex/cggevx> from Lapack.
Works on transposed arrays.
=for usage
(PDL(alpha), PDL(beta), PDL(lv), PDL(rv), HASH(result) ) = mgeigenx(PDL(a), PDL(b), HASH(options))
where options are:
vector: eigenvectors to compute
'left': computes left eigenvectors
'right': computes right eigenvectors
'all': computes left and right eigenvectors
0: doesn't compute (default)
rcondition: reciprocal condition numbers to compute (returned in HASH{'rconde'} for eigenvalues and HASH{'rcondv'} for eigenvectors)
'value': computes reciprocal condition numbers for eigenvalues
'vector': computes reciprocal condition numbers for eigenvectors
'all': computes reciprocal condition numbers for eigenvalues and eigenvectors
0: doesn't compute (default)
error: specifies whether or not it computes the error bounds (returned in HASH{'eerror'} and HASH{'verror'})
error bound = EPS * sqrt(one-norm(a)**2 + one-norm(b)**2) / rcond(e|v)
(reciprocal condition numbers for eigenvalues or eigenvectors must be computed).
1: returns error bounds
0: not computed
scale: specifies whether or not it diagonaly scales the entry matrix
(scale details returned in HASH : 'lscale' and 'rscale')
1: scales
0: doesn't scale (default)
permute: specifies whether or not it permutes row and columns
(permute details returned in HASH{'balance'})
1: permutes
0: Doesn't permute (default)
schur: specifies whether or not it returns the Schur forms (returned in HASH{'aschur'} and HASH{'bschur'})
(right or left eigenvectors must be computed).
1: returns Schur forms
0: not returned
Returned values:
alpha,
beta,
left eigenvectors if requested,
right eigenvectors if requested,
HASH{'anorm'}, HASH{'bnorm'}:
One-norm of the matrix A and B
HASH{'info'}:
Info: if > 0, the QR algorithm failed to compute all the eigenvalues
(see syevx for further details)
=for example
$a = random(10,10);
$b = random(10,10);
%options = (rcondition => 'all',
vector => 'all',
error => 1,
scale => 1,
permute=>1,
schur => 1
);
($alpha, $beta, $left_eigenvectors, $right_eigenvectors, %result) = mgeigenx($a, $b,%options);
print "Error bounds for eigenvalues:\n $eigenvalues\n are:\n". transpose($result{'eerror'}) unless $info;
=cut
*mgeigenx
= \
&PDL::mgeigenx
;
sub
PDL::mgeigenx {
&_square_same
;
my
$di
=
$_
[0]->dims_internal;
my
(
$a
,
$b
,
%opt
) =
@_
;
my
@adims
=
$a
->dims;
$_
=
$_
->new_or_inplace->t
for
$a
,
$b
;
my
(
%result
);
$_
=
$a
->_similar_null
for
my
(
$vl
,
$vr
,
$beta
);
my
@w
=
map
$a
->_similar_null,
$a
->_is_complex ? 1 : 1..2;
$_
= null
for
my
(
$rconde
,
$rcondv
,
$info
,
$ilo
,
$ihi
,
$rscale
,
$lscale
,
$abnrm
,
$bbnrm
);
my
$jobvl
=
$vector2jobvl
{
$opt
{vector}} ||
$opt
{rcondition} ? 1 : 0;
my
$jobvr
=
$vector2jobvr
{
$opt
{vector}} ||
$opt
{rcondition} ? 1 : 0;
my
$sense
=
$rcondition2sense
{
$opt
{rcondition}} || 0;
my
$balanc
= (
$opt
{scale}?2:0) | (
$opt
{permute}?1:0);
$a
->_call_method(
'ggevx'
,
$balanc
,
$jobvl
,
$jobvr
,
$sense
,
$b
,
@w
,
$beta
,
$vl
,
$vr
,
$ilo
,
$ihi
,
$lscale
,
$rscale
,
$abnrm
,
$bbnrm
,
$rconde
,
$rcondv
,
$info
);
(
my
$w
,
$vl
,
$vr
) = _eigen_extract(
$jobvl
,
$jobvr
,
$vl
,
$vr
,
@w
);
if
(
$info
> 0 &&
$info
<
$adims
[
$di
+1]) {
laerror(
"mgeigenx: The QZ algorithm failed to converge"
);
"Returning converged eigenvalues\n"
if
$_laerror
;
}
elsif
(
$info
) {
laerror(
"mgeigenx: Error from hgeqz or tgevc"
);
}
$result
{
qw(aschur bschur)
} =
map
$_
->t,
$a
,
$b
if
$opt
{schur};
$result
{balance} = cat
$ilo
,
$ihi
if
$opt
{permute};
@result
{
qw(info anorm bnorm)
} = (
$info
,
$abnrm
,
$bbnrm
);
@result
{
qw(lscale rscale)
} = (
$lscale
,
$rscale
)
if
$opt
{scale};
# Doesn't use lacpy2 =(sqrt **2 , **2) without unnecessary overflow
if
(
$sense
& 2) {
$result
{rcondv} =
$rcondv
;
$result
{verror} = lamch(0) *
sqrt
(
$abnrm
->pow(2) +
$bbnrm
->pow(2)) /
$rcondv
if
$opt
{error};
}
if
(
$sense
& 1) {
$result
{rconde} =
$rconde
;
$result
{eerror} = lamch(0) *
sqrt
(
$abnrm
->pow(2) +
$bbnrm
->pow(2)) /
$rconde
if
$opt
{error};
}
(
$w
,
$beta
, (
$vector2jobvl
{
$opt
{vector}}?
$vl
->t:()), (
$vector2jobvr
{
$opt
{vector}}?
$vr
->t:()),
%result
);
}
=head2 msymeigen
=for ref
Computes eigenvalues and, optionally eigenvectors of a real symmetric square or
complex Hermitian matrix (spectral decomposition).
The eigenvalues are computed from lower or upper triangular matrix.
If only eigenvalues are requested, info is returned in array context.
Supports threading and works inplace if eigenvectors are requested.
From Lapack, uses L<syev|PDL::LinearAlgebra::Real/syev> or L<syevd|PDL::LinearAlgebra::Real/syevd> for real
and L<cheev|PDL::LinearAlgebra::Complex/cheev> or L<cheevd|PDL::LinearAlgebra::Complex/cheevd> for complex.
Works on transposed array(s).
=for usage
(PDL(values), (PDL(VECTORS)), PDL(info)) = msymeigen(PDL, SCALAR(uplo), SCALAR(vector), SCALAR(method))
uplo : UPPER = 0 | LOWER = 1, default = 0
vector : FALSE = 0 | TRUE = 1, default = 0
method : 'syev' | 'syevd' | 'cheev' | 'cheevd', default = 'syevd'|'cheevd'
=for example
# Assume $a is symmetric
my $a = random(10,10);
my ( $eigenvalues, $eigenvectors ) = msymeigen($a,0,1, 'syev');
=cut
*msymeigen
= \
&PDL::msymeigen
;
sub
PDL::msymeigen {
&_square
;
my
(
$m
,
$upper
,
$jobv
,
$method
) =
@_
;
my
(
$w
,
$info
) = (null, null);
$method
//= [
'syevd'
,
'cheevd'
];
$m
=
$m
->copy
unless
(
$m
->is_inplace(0) and
$jobv
);
$m
->t->_call_method(
$method
,
$jobv
,
$upper
,
$w
,
$info
);
_error(
$info
,
"msymeigen: The algorithm failed to converge for PDL(s) %s"
);
!
wantarray
?
$w
: (
$w
, (
$jobv
?
$m
:()),
$info
);
}
=head2 msymeigenx
=for ref
Computes eigenvalues and, optionally eigenvectors of a symmetric square matrix (spectral decomposition).
The eigenvalues are computed from lower or upper triangular matrix and can be selected by specifying a
range. From Lapack, uses L<syevx|PDL::LinearAlgebra::Real/syevx> or
L<syevr|PDL::LinearAlgebra::Real/syevr> for real and L<cheevx|PDL::LinearAlgebra::Complex/cheevx>
or L<cheevr|PDL::LinearAlgebra::Complex/cheevr> for complex. Works on transposed arrays.
=for usage
(PDL(value), (PDL(vector)), PDL(n), PDL(info), (PDL(support)) ) = msymeigenx(PDL, SCALAR(uplo), SCALAR(vector), HASH(options))
uplo : UPPER = 0 | LOWER = 1, default = 0
vector : FALSE = 0 | TRUE = 1, default = 0
where options are:
range_type: method for selecting eigenvalues
indice: range of indices
interval: range of values
0: find all eigenvalues and optionally all vectors
range: PDL(2), lower and upper bounds interval or smallest and largest indices
1<=range<=N for indice
abstol: specifies error tolerance for eigenvalues
method: specifies which method to use (see Lapack for further details)
'syevx' (default)
'syevr'
'cheevx' (default)
'cheevr'
Returned values:
eigenvalues (SCALAR CONTEXT),
eigenvectors if requested,
total number of eigenvalues found (n),
info
issupz or ifail (support) according to method used and returned info,
for (sy|che)evx returns support only if info != 0
=for example
# Assume $a is symmetric
my $a = random(10,10);
my $overflow = lamch(9);
my $range = cat pdl(0),$overflow;
my $abstol = pdl(1.e-5);
my %options = (range_type=>'interval',
range => $range,
abstol => $abstol,
method=>'syevd');
my ( $eigenvalues, $eigenvectors, $n, $isuppz ) = msymeigenx($a,0,1, %options);
=cut
*msymeigenx
= \
&PDL::msymeigenx
;
my
%range_type2range
= (
interval
=> 1,
indice
=> 2);
sub
PDL::msymeigenx {
&_square
;
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
(
$m
,
$upper
,
$jobz
,
%opt
) =
@_
;
my
(
@dims
) =
$m
->dims;
my
$range
=
$range_type2range
{
$opt
{range_type}} || 0;
if
((
ref
$opt
{range}) ne
'PDL'
){
$opt
{range} = pdl([0,0]);
$range
= 0;
}
elsif
(
$range
== 2){
barf
"msymeigenx: Indices must be > 0"
unless
$opt
{range}->(0) > 0;
barf
"msymeigenx: Indices must be <= $dims[$di+1]"
unless
$opt
{range}->(1) <=
$dims
[
$di
+1];
}
elsif
(
$range
== 1){
barf
"msymeigenx: Interval limits must be different"
unless
(
$opt
{range}->(0) !=
$opt
{range}->(1));
}
$_
= null
for
my
(
$w
,
$n
,
$support
,
$info
);
my
$z
=
$m
->_similar_null;
if
(!
defined
$opt
{
'abstol'
})
{
my
$unfl
= lamch(1);
$unfl
->labad(lamch(9));
$opt
{
'abstol'
} =
$unfl
+
$unfl
;
}
my
$method
=
$opt
{
'method'
} || [
'syevx'
,
'cheevx'
];
$upper
=
$upper
? 0 : 1;
$m
=
$m
->copy;
$m
->_call_method(
$method
,
$jobz
,
$range
,
$upper
,
$opt
{range}->(0),
$opt
{range}->(1),
$opt
{range}->(0),
$opt
{range}->(1),
$opt
{
'abstol'
},
$n
,
$w
,
$z
,
$support
,
$info
);
if
(
$info
){
laerror(
"msymeigenx: The algorithm failed to converge."
);
(
"See support for details.\n"
)
if
$_laerror
;
}
if
(
$jobz
){
return
(
$w
,
$z
->t->sever,
$n
,
$info
,
$support
)
if
$info
;
return
(
undef
,
undef
,
$n
,
$info
,
$method
=~
qr/evr/
?
$support
:())
if
$n
== 0;
return
(
$w
(:
$n
-1)->sever,
$z
->t->slice(
"$slice_prefix:@{[$n->sclr-1]}"
)->sever,
$n
,
$info
,
$method
=~
qr/evr/
?
$support
:());
}
else
{
return
$w
if
!
wantarray
;
if
(
$info
){
(
$w
,
$n
,
$info
,
$support
);
}
else
{
(
$w
(:
$n
-1)->sever,
$n
,
$info
,
$method
=~
qr/evr/
?
$support
:());
}
}
}
=head2 msymgeigen
=for ref
Computes eigenvalues and, optionally eigenvectors of a real generalized
symmetric-definite or Hermitian-definite eigenproblem.
The eigenvalues are computed from lower or upper triangular matrix
If only eigenvalues are requested, info is returned in array context.
Supports threading. From Lapack, uses L<sygv|PDL::LinearAlgebra::Real/sygv> or L<sygvd|PDL::LinearAlgebra::Real/sygvd> for real
or L<chegv|PDL::LinearAlgebra::Complex/chegv> or L<chegvd|PDL::LinearAlgebra::Complex/chegvd> for complex.
Works on transposed array(s).
=for usage
(PDL(values), (PDL(vectors)), PDL(info)) = msymgeigen(PDL(a), PDL(b),SCALAR(uplo), SCALAR(vector), SCALAR(type), SCALAR(method))
uplo : UPPER = 0 | LOWER = 1, default = 0
vector : FALSE = 0 | TRUE = 1, default = 0
type :
1: A * x = (lambda) * B * x
2: A * B * x = (lambda) * x
3: B * A * x = (lambda) * x
default = 1
method : 'sygv' | 'sygvd' for real or ,'chegv' | 'chegvd' for complex, default = 'sygvd' | 'chegvd'
=for example
# Assume $a is symmetric
my $a = random(10,10);
my $b = random(10,10);
$b = $b->crossprod($b);
my ( $eigenvalues, $eigenvectors ) = msymgeigen($a, $b, 0, 1, 1, 'sygv');
=cut
*msymgeigen
= \
&PDL::msymgeigen
;
sub
PDL::msymgeigen {
&_square_same
;
&_same_dims
;
my
(
$a
,
$b
,
$upper
,
$jobv
,
$type
,
$method
) =
@_
;
$type
||= 1;
$method
//= [
'sygvd'
,
'chegvd'
];
$upper
= 1-
$upper
;
$a
=
$a
->copy;
$b
=
$b
->copy;
$a
->_call_method(
$method
,
$type
,
$jobv
,
$upper
,
$b
,
my
$w
= null,
my
$info
= null);
_error(
$info
,
"msymgeigen: Can't compute eigenvalues/vectors: matrix (PDL(s) %s) is/are not positive definite or the algorithm failed to converge"
);
!
wantarray
?
$w
: (
$w
,
$jobv
?
$a
->t->sever:(),
$info
);
}
=head2 msymgeigenx
=for ref
Computes eigenvalues and, optionally eigenvectors of a real generalized
symmetric-definite or Hermitian eigenproblem.
The eigenvalues are computed from lower or upper triangular matrix and can be selected by specifying a
range. Uses L<sygvx|PDL::LinearAlgebra::Real/syevx> or L<cheevx|PDL::LinearAlgebra::Complex/cheevx>
from Lapack. Works on transposed arrays.
=for usage
(PDL(value), (PDL(vector)), PDL(info), PDL(n), (PDL(support)) ) = msymeigenx(PDL(a), PDL(b), SCALAR(uplo), SCALAR(vector), HASH(options))
uplo : UPPER = 0 | LOWER = 1, default = 0
vector : FALSE = 0 | TRUE = 1, default = 0
where options are:
type : Specifies the problem type to be solved
1: A * x = (lambda) * B * x
2: A * B * x = (lambda) * x
3: B * A * x = (lambda) * x
default = 1
range_type: method for selecting eigenvalues
indice: range of indices
interval: range of values
0: find all eigenvalues and optionally all vectors
range: PDL(2), lower and upper bounds interval or smallest and largest indices
1<=range<=N for indice
abstol: specifies error tolerance for eigenvalues
Returned values:
eigenvalues (SCALAR CONTEXT),
eigenvectors if requested,
total number of eigenvalues found (n),
info
ifail according to returned info (support).
=for example
# Assume $a is symmetric
my $a = random(10,10);
my $b = random(10,10);
$b = $b->crossprod($b);
my $overflow = lamch(9);
my $range = cat pdl(0),$overflow;
my $abstol = pdl(1.e-5);
my %options = (range_type=>'interval',
range => $range,
abstol => $abstol,
type => 1);
my ( $eigenvalues, $eigenvectors, $n, $isuppz ) = msymgeigenx($a, $b, 0,1, %options);
=cut
*msymgeigenx
= \
&PDL::msymgeigenx
;
sub
PDL::msymgeigenx {
&_square_same
;
my
$di
=
$_
[0]->dims_internal;
my
(
$a
,
$b
,
$upper
,
$jobv
,
%opt
) =
@_
;
my
(
@adims
) =
$a
->dims;
my
$range
=
$range_type2range
{
$opt
{range_type}} || 0;
if
(!UNIVERSAL::isa(
$opt
{range},
'PDL'
)){
$opt
{range} = pdl([0,0]);
$range
= 0;
}
$opt
{type} //= 1;
$_
= null
for
my
(
$w
,
$n
,
$support
,
$info
);
if
(!
defined
$opt
{
'abstol'
}){
my
$unfl
= lamch(1);
my
$ovfl
= lamch(9);
$unfl
->labad(
$ovfl
);
$opt
{
'abstol'
} =
$unfl
+
$unfl
;
}
my
$z
=
$a
->_similar_null;
$upper
=
$upper
? 0 : 1;
$a
=
$a
->copy;
$b
=
$b
->copy;
$a
->_call_method([
'sygvx'
,
'chegvx'
],
$opt
{type},
$jobv
,
$range
,
$upper
,
$b
,
$opt
{range}->(0),
$opt
{range}->(1),
$opt
{range}->(0),
$opt
{range}->(1),
$opt
{
'abstol'
},
$n
,
$w
,
$z
,
$support
,
$info
);
if
( (
$info
> 0) && (
$info
<
$adims
[
$di
+1])){
laerror(
"msymgeigenx: The algorithm failed to converge"
);
(
"see support for details\n"
)
if
$_laerror
;
}
elsif
(
$info
){
$info
=
$info
-
$adims
[
$di
+1] - 1;
barf(
"msymgeigenx: The leading minor of order $info of B is not positive definite\n"
);
}
return
$w
if
!
wantarray
;
(
$w
,
$jobv
?
$z
->t->sever:(),
$n
,
$info
,
$info
?
$support
:());
}
=head2 mdsvd
=for ref
Computes SVD using Coppen's divide and conquer algorithm.
Return singular values in scalar context else left (U),
singular values, right (V' (hermitian for complex)) singular vectors and info.
Supports threading.
If only singulars values are requested, info is only returned in array context.
Uses L<gesdd|PDL::LinearAlgebra::Real/gesdd> or L<cgesdd|PDL::LinearAlgebra::Complex/cgesdd> from Lapack.
=for usage
(PDL(U), (PDL(s), PDL(V)), PDL(info)) = mdsvd(PDL, SCALAR(job))
job : 0 = computes only singular values
1 = computes full SVD (square U and V)
2 = computes SVD (singular values, right and left singular vectors)
default = 1
=for example
my $a = random(5,10);
my ($u, $s, $v) = mdsvd($a);
=cut
*mdsvd
= \
&PDL::mdsvd
;
sub
PDL::mdsvd {
my
$di
=
$_
[0]->dims_internal;
my
(
$m
,
$jobz
) =
@_
;
my
(
@dims
) =
$m
->dims;
$jobz
= !
wantarray
? 0 :
$jobz
// 1;
my
$min
=
$dims
[
$di
] >
$dims
[1+
$di
] ?
$dims
[1+
$di
]:
$dims
[
$di
];
$m
=
$m
->copy;
$_
=
$m
->_similar_null
for
my
(
$u
,
$v
);
$m
->_call_method(
'gesdd'
,
$jobz
,
my
$s
= null,
$u
,
$v
,
my
$info
= null);
_error(
$info
,
"mdsvd: Matrix (PDL(s) %s) is/are singular"
);
return
(
$u
,
$s
,
$v
,
$info
)
if
$jobz
;
wantarray
? (
$s
,
$info
) :
$s
;
}
=head2 msvd
=for ref
Computes SVD.
Can compute singular values, either U or V or neither.
Return singular values in scalar context else left (U),
singular values, right (V' (hermitian for complex) singular vector and info.
Supports threading.
If only singular values are requested, info is returned in array context.
Uses L<gesvd|PDL::LinearAlgebra::Real/gesvd> or L<cgesvd|PDL::LinearAlgebra::Complex/cgesvd> from Lapack.
=for usage
( (PDL(U)), PDL(s), (PDL(V), PDL(info)) = msvd(PDL, SCALAR(jobu), SCALAR(jobv))
jobu : 0 = Doesn't compute U
1 = computes full SVD (square U)
2 = computes right singular vectors
default = 1
jobv : 0 = Doesn't compute V
1 = computes full SVD (square V)
2 = computes left singular vectors
default = 1
=for example
my $a = random(10,10);
my ($u, $s, $v) = msvd($a);
=cut
*msvd
= \
&PDL::msvd
;
sub
PDL::msvd {
my
(
$m
,
$jobu
,
$jobv
) =
@_
;
$jobu
= !
wantarray
? 0 :
$jobu
// 1;
$jobv
= !
wantarray
? 0 :
$jobv
// 1;
$m
=
$m
->copy;
$_
=
$m
->_similar_null
for
my
(
$u
,
$v
);
$m
->_call_method(
'gesvd'
,
$jobv
,
$jobu
,
my
$s
= null,
$u
,
$v
,
my
$info
= null);
_error(
$info
,
"msvd: Matrix (PDL(s) %s) is/are singular"
);
wantarray
? (
$jobu
?
$u
:(),
$s
,
$jobv
?
$v
:(),
$info
) :
$s
;
}
=head2 mgsvd
=for ref
Computes generalized (or quotient) singular value decomposition.
If the effective rank of (A',B')' is 0 return only unitary V, U, Q.
Handles complex data.
Uses L<ggsvd|PDL::LinearAlgebra::Real/ggsvd> or
L<cggsvd|PDL::LinearAlgebra::Complex/cggsvd> from Lapack. Works on transposed arrays.
=for usage
(PDL(sa), PDL(sb), %ret) = mgsvd(PDL(a), PDL(b), %HASH(options))
where options are:
V: whether or not computes V (boolean, returned in HASH{'V'})
U: whether or not computes U (boolean, returned in HASH{'U'})
Q: whether or not computes Q (boolean, returned in HASH{'Q'})
D1: whether or not computes D1 (boolean, returned in HASH{'D1'})
D2: whether or not computes D2 (boolean, returned in HASH{'D2'})
0R: whether or not computes 0R (boolean, returned in HASH{'0R'})
R: whether or not computes R (boolean, returned in HASH{'R'})
X: whether or not computes X (boolean, returned in HASH{'X'})
all: whether or not computes all the above.
Returned value:
sa,sb : singular value pairs of A and B (generalized singular values = sa/sb)
$ret{'rank'} : effective numerical rank of (A',B')'
$ret{'info'} : info from (c)ggsvd
=for example
my $a = random(5,5);
my $b = random(5,7);
my ($c, $s, %ret) = mgsvd($a, $b, X => 1);
=cut
my
@gsvd_opts
=
qw(V U Q D1 D2 0R R X)
;
*mgsvd
= \
&PDL::mgsvd
;
sub
PDL::mgsvd {
&_matrices_matchcolumns
;
my
$di
=
$_
[0]->dims_internal;
my
$slice_prefix
=
','
x
$di
;
my
@diag_args
= (
$di
,
$di
+1);
my
(
$a
,
$b
,
%opt
) =
@_
;
my
(
@adims
) =
$a
->dims;
my
(
@bdims
) =
$b
->dims;
@opt
{
@gsvd_opts
} = (1) x
@gsvd_opts
if
$opt
{all};
my
$type
=
$a
->type;
my
$jobqx
= (
$opt
{Q} ||
$opt
{X}) ? 1 : 0;
$a
=
$a
->copy;
$b
=
$b
->t->copy;
$_
= null
for
my
(
$k
,
$l
,
$alpha
,
$beta
,
$iwork
,
$info
);
$_
=
$a
->_similar_null
for
my
(
$U
,
$V
,
$Q
);
$a
->t->_call_method(
'ggsvd'
,
$opt
{U},
$opt
{V},
$jobqx
,
$b
,
$k
,
$l
,
$alpha
,
$beta
,
$U
,
$V
,
$Q
,
$iwork
,
$info
);
laerror(
"mgsvd: The Jacobi procedure fails to converge"
)
if
$info
;
my
%ret
= (
rank
=>
$k
+
$l
,
info
=>
$info
);
warn
"mgsvd: Effective rank of 0 in mgsvd"
if
(!
$ret
{rank} and
$_laerror
);
if
(
%opt
) {
$Q
=
$Q
->t->sever
if
$jobqx
;
if
((
$adims
[
$di
+1] -
$k
-
$l
) < 0 &&
$ret
{rank}){
if
(
$opt
{
'0R'
} ||
$opt
{R} ||
$opt
{X}){
$a
->reshape((
map
$a
->dim(
$_
-1), 1..
$di
),
$adims
[
$di
], (
$k
+
$l
));
# Slice $a ??? => always square ??
$a
->slice(
"$slice_prefix@{[$adims[$di] - ($k+$l-$adims[$di+1])]} : , $adims[$di+1]:"
) .=
$b
->slice(
"$slice_prefix@{[$adims[$di+1]-$k]}:@{[$l-1]},@[[$adims[$di]+$adims[$di+1]-$k - $l]}:@{[$adims[$di]-1]}"
)->t;
$ret
{
'0R'
} =
$a
if
$opt
{
'0R'
};
}
if
(
$opt
{
'D1'
}){
my
$D1
= zeroes(
$type
,
$adims
[
$di
+1],
$adims
[
$di
+1]);
$D1
->diagonal(0,1) .=
$alpha
(:(
$adims
[
$di
+1]-1));
$D1
=
$D1
->t->reshape(
$adims
[
$di
+1] , (
$k
+
$l
))->t->sever;
$ret
{
'D1'
} =
$D1
;
}
}
elsif
(
$ret
{rank}){
if
(
$opt
{
'0R'
} ||
$opt
{R} ||
$opt
{X}){
$a
->reshape((
map
$a
->dim(
$_
-1), 1..
$di
),
$adims
[
$di
], (
$k
+
$l
));
$ret
{
'0R'
} =
$a
if
$opt
{
'0R'
};
}
if
(
$opt
{
'D1'
}){
my
$D1
= zeroes(
$type
, (
$k
+
$l
), (
$k
+
$l
));
$D1
->diagonal(0,1) .=
$alpha
(:(
$k
+
$l
-1));
$D1
->reshape((
$k
+
$l
),
$adims
[
$di
+1]);
$ret
{
'D1'
} =
$D1
;
}
}
if
(
$opt
{
'D2'
} &&
$ret
{rank}){
my
$work
= zeroes(
$b
->type,
$l
,
$l
);
$work
->diagonal(0,1) .=
$beta
(
$k
:(
$k
+
$l
-1));
my
$D2
= zeroes(
$b
->type, (
$k
+
$l
),
$bdims
[
$di
+1]);
$D2
(
$k
:, :(
$l
-1) ) .=
$work
;
$ret
{
'D2'
} =
$D2
;
}
if
(
$ret
{rank} && (
$opt
{X} ||
$opt
{R}) ){
my
$work
=
$a
->slice(
"$slice_prefix@{[-($k + $l)]}:"
);
$ret
{R} =
$work
if
$opt
{R};
if
(
$opt
{X}){
my
$X
=
$a
->_similar(
@adims
[
$di
,
$di
]);
$X
->diagonal(
@diag_args
) .= 1
if
(
$adims
[
$di
] > (
$k
+
$l
));
$X
->slice(
"$slice_prefix@{[-($k + $l)]}:, @{[-($k + $l)]}:"
) .= mtriinv(
$work
);
$ret
{X} =
$Q
x
$X
;
}
}
$ret
{U} =
$U
->t->sever
if
$opt
{U};
$ret
{V} =
$V
->t->sever
if
$opt
{V};
$ret
{Q} =
$Q
if
$opt
{Q};
}
$ret
{rank} ?
return
(
$alpha
(
$k
:(
$k
+
$l
-1))->sever,
$beta
(
$k
:(
$k
+
$l
-1))->sever,
%ret
) : (
undef
,
undef
,
%ret
);
}
#TODO
# Others things
# rectangular diag
# usage
# is_inplace and function which modify entry matrix
# threading support
# automatically create PDL
# inplace operation and memory
# PDL type, verify float/double
# eig_det qr_det
# (g)schur(x):
# if conjugate pair
# non generalized pb: $seldim ?? (cf: generalized)
# return conjugate pair if only selected?
# port to PDL::Matrix
=head1 AUTHOR
Copyright (C) Grégory Vanuxem 2005-2018.
This library is free software; you can redistribute it and/or modify
it under the terms of the Perl Artistic License as in the file Artistic_2
in this distribution.
=cut
1;