—————————————————————————————————#
# GENERATED WITH PDL::PP from lib/PDL/Stats/GLM.pd! Don't modify!
#
package
PDL::Stats::GLM;
our
@EXPORT_OK
=
qw(ols_t ols ols_rptd anova anova_rptd anova_design_matrix dummy_code effect_code effect_code_w interaction_code r2_change logistic pca pca_sorti plot_means plot_residuals plot_screes fill_m fill_rand dev_m stddz sse mse rmse pred_logistic d0 dm dvrs )
;
our
%EXPORT_TAGS
= (
Func
=>\
@EXPORT_OK
);
use
PDL::Core;
use
PDL::Exporter;
use
DynaLoader;
our
@ISA
= (
'PDL::Exporter'
,
'DynaLoader'
);
push
@PDL::Core::PP
, __PACKAGE__;
bootstrap PDL::Stats::GLM ;
#line 14 "lib/PDL/Stats/GLM.pd"
use
strict;
use
warnings;
use
Carp;
use
PDL::LiteF;
use
PDL::MatrixOps;
use
PDL::Stats::Basic;
use
PDL::Stats::Kmeans;
my
$CDF
= 1
if
!$@;
=encoding utf8
=head1 NAME
PDL::Stats::GLM -- general and generalized linear modelling methods such as ANOVA, linear regression, PCA, and logistic regression.
=head1 SYNOPSIS
use PDL::LiteF;
use PDL::Stats::GLM;
# do a multiple linear regression and plot the residuals
my $y = pdl( 8, 7, 7, 0, 2, 5, 0 );
my $x = pdl( [ 0, 1, 2, 3, 4, 5, 6 ], # linear component
[ 0, 1, 4, 9, 16, 25, 36 ] ); # quadratic component
my %m = $y->ols( $x, {plot=>1} );
print "$_\t$m{$_}\n" for sort keys %m;
=head1 DESCRIPTION
For more about general linear modelling, see
L<Wikipedia|https://en.wikipedia.org/wiki/General_linear_model>.
For an unbelievably thorough text on experimental design
and analysis, including linear modelling, see L<A First
Course in Design and Analysis of Experiments, Gary
W. Oehlert|http://users.stat.umn.edu/~gary/book/fcdae.pdf>.
The terms FUNCTIONS and METHODS are arbitrarily used to refer to
methods that are broadcastable and methods that are NOT broadcastable,
respectively. FUNCTIONS support bad values.
P-values, where appropriate, are provided if PDL::GSL::CDF is installed.
=cut
#line 75 "lib/PDL/Stats/GLM.pm"
=head1 FUNCTIONS
=cut
=head2 fill_m
=for sig
Signature: (a(n); [o]b(n))
Types: (float double)
=for ref
Replaces bad values with sample mean. Mean is set to 0 if all obs are
bad.
=for usage
pdl> p $data
[
[ 5 BAD 2 BAD]
[ 7 3 7 BAD]
]
pdl> p $data->fill_m
[
[ 5 3.5 2 3.5]
[ 7 3 7 5.66667]
]
=pod
Broadcasts over its inputs.
=for bad
The output pdl badflag is cleared.
=cut
*fill_m
= \
&PDL::fill_m
;
=head2 fill_rand
=for sig
Signature: (a(n); [o]b(n))
Types: (sbyte byte short ushort long ulong indx ulonglong longlong
float double ldouble)
=for ref
Replaces bad values with random sample (with replacement) of good
observations from the same variable.
=for usage
pdl> p $data
[
[ 5 BAD 2 BAD]
[ 7 3 7 BAD]
]
pdl> p $data->fill_rand
[
[5 2 2 5]
[7 3 7 7]
]
=pod
Broadcasts over its inputs.
=for bad
The output pdl badflag is cleared.
=cut
*fill_rand
= \
&PDL::fill_rand
;
=head2 dev_m
=for sig
Signature: (a(n); [o]b(n))
Types: (float double)
=for usage
$b = dev_m($a);
dev_m($a, $b); # all arguments given
$b = $a->dev_m; # method call
$a->dev_m($b);
$a->inplace->dev_m; # can be used inplace
dev_m($a->inplace);
=for ref
Replaces values with deviations from the mean.
=pod
Broadcasts over its inputs.
=for bad
C<dev_m> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*dev_m
= \
&PDL::dev_m
;
=head2 stddz
=for sig
Signature: (a(n); [o]b(n))
Types: (float double)
=for usage
$b = stddz($a);
stddz($a, $b); # all arguments given
$b = $a->stddz; # method call
$a->stddz($b);
$a->inplace->stddz; # can be used inplace
stddz($a->inplace);
=for ref
Standardize ie replace values with z_scores based on sample standard deviation from the mean (replace with 0s if stdv==0).
=pod
Broadcasts over its inputs.
=for bad
C<stddz> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*stddz
= \
&PDL::stddz
;
=head2 sse
=for sig
Signature: (a(n); b(n); [o]c())
Types: (float double)
=for usage
$c = sse($a, $b);
sse($a, $b, $c); # all arguments given
$c = $a->sse($b); # method call
$a->sse($b, $c);
=for ref
Sum of squared errors between actual and predicted values.
=pod
Broadcasts over its inputs.
=for bad
C<sse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*sse
= \
&PDL::sse
;
=head2 mse
=for sig
Signature: (a(n); b(n); [o]c())
Types: (float double)
=for usage
$c = mse($a, $b);
mse($a, $b, $c); # all arguments given
$c = $a->mse($b); # method call
$a->mse($b, $c);
=for ref
Mean of squared errors between actual and predicted values, ie variance around predicted value.
=pod
Broadcasts over its inputs.
=for bad
C<mse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*mse
= \
&PDL::mse
;
=head2 rmse
=for sig
Signature: (a(n); b(n); [o]c())
Types: (float double)
=for usage
$c = rmse($a, $b);
rmse($a, $b, $c); # all arguments given
$c = $a->rmse($b); # method call
$a->rmse($b, $c);
=for ref
Root mean squared error, ie stdv around predicted value.
=pod
Broadcasts over its inputs.
=for bad
C<rmse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*rmse
= \
&PDL::rmse
;
=head2 pred_logistic
=for sig
Signature: (a(n,m); b(m); [o]c(n))
Types: (float double)
=for ref
Calculates predicted prob value for logistic regression.
=for usage
# glue constant then apply coeff returned by the logistic method
$pred = $x->glue(1,ones($x->dim(0)))->pred_logistic( $m{b} );
=pod
Broadcasts over its inputs.
=for bad
C<pred_logistic> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*pred_logistic
= \
&PDL::pred_logistic
;
=head2 d0
=for sig
Signature: (a(n); [o]c())
Types: (float double)
=for usage
$c = d0($a);
d0($a, $c); # all arguments given
$c = $a->d0; # method call
$a->d0($c);
=for ref
Null deviance for logistic regression.
=pod
Broadcasts over its inputs.
=for bad
C<d0> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*d0
= \
&PDL::d0
;
=head2 dm
=for sig
Signature: (a(n); b(n); [o]c())
Types: (float double)
=for ref
Model deviance for logistic regression.
=for usage
my $dm = $y->dm( $y_pred );
# null deviance
my $d0 = $y->dm( ones($y->nelem) * $y->avg );
=pod
Broadcasts over its inputs.
=for bad
C<dm> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*dm
= \
&PDL::dm
;
=head2 dvrs
=for sig
Signature: (a(); b(); [o]c())
Types: (float double)
=for usage
$c = dvrs($a, $b);
dvrs($a, $b, $c); # all arguments given
$c = $a->dvrs($b); # method call
$a->dvrs($b, $c);
=for ref
Deviance residual for logistic regression.
=pod
Broadcasts over its inputs.
=for bad
C<dvrs> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*dvrs
= \
&PDL::dvrs
;
#line 359 "lib/PDL/Stats/GLM.pd"
#line 360 "lib/PDL/Stats/GLM.pd"
=head2 ols_t
=for ref
Broadcasted version of ordinary least squares regression (B<ols>). The
price of broadcasting was losing significance tests for coefficients
(but see B<r2_change>). The fitting function was shamelessly copied then
modified from PDL::Fit::Linfit. Intercept is FIRST of coeff if CONST => 1.
ols_t does not handle bad values. consider B<fill_m> or B<fill_rand>
if there are bad values.
=for options
Default options (case insensitive):
CONST => 1,
=for usage
Usage:
# DV, 2 person's ratings for top-10 box office movies
# ascending sorted by box office numbers
pdl> p $y = pdl '1 1 2 4 4 4 4 5 5 5; 1 2 2 2 3 3 3 3 5 5'
# model with 2 IVs, a linear and a quadratic trend component
pdl> $x = cat sequence(10), sequence(10)**2
# suppose our novice modeler thinks this creates 3 different models
# for predicting movie ratings
pdl> p $x = cat $x, $x * 2, $x * 3
[
[
[ 0 1 2 3 4 5 6 7 8 9]
[ 0 1 4 9 16 25 36 49 64 81]
]
[
[ 0 2 4 6 8 10 12 14 16 18]
[ 0 2 8 18 32 50 72 98 128 162]
]
[
[ 0 3 6 9 12 15 18 21 24 27]
[ 0 3 12 27 48 75 108 147 192 243]
]
]
pdl> p $x->info
PDL: Double D [10,2,3]
# insert a dummy dim between IV and the dim (model) to be broadcasted
pdl> %m = $y->ols_t( $x->dummy(2) )
pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
# 2 persons' ratings, each fitted with 3 "different" models
F [
[ 38.314159 25.087209]
[ 38.314159 25.087209]
[ 38.314159 25.087209]
]
# df is the same across dv and iv models
F_df [2 7]
F_p [
[0.00016967051 0.00064215074]
[0.00016967051 0.00064215074]
[0.00016967051 0.00064215074]
]
R2 [
[ 0.9162963 0.87756762]
[ 0.9162963 0.87756762]
[ 0.9162963 0.87756762]
]
b [ # constant linear quadratic
[
[ 0.66363636 0.99015152 -0.056818182] # person 1
[ 1.4 0.18939394 0.022727273] # person 2
]
[
[ 0.66363636 0.49507576 -0.028409091]
[ 1.4 0.09469697 0.011363636]
]
[
[ 0.66363636 0.33005051 -0.018939394]
[ 1.4 0.063131313 0.0075757576]
]
]
# our novice modeler realizes at this point that
# the 3 models only differ in the scaling of the IV coefficients
ss_model [
[ 20.616667 13.075758]
[ 20.616667 13.075758]
[ 20.616667 13.075758]
]
ss_residual [
[ 1.8833333 1.8242424]
[ 1.8833333 1.8242424]
[ 1.8833333 1.8242424]
]
ss_total [22.5 14.9]
y_pred [
[
[0.66363636 1.5969697 2.4166667 3.1227273 ... 4.9727273]
...
=cut
*ols_t
= \
&PDL::ols_t
;
sub
PDL::ols_t {
_ols_common(1,
@_
);
}
sub
_ols_common {
my
(
$broadcasted
,
$y
,
$ivs
,
$opt
) =
@_
;
(
$y
,
$ivs
) = _ols_prep_inputs(
@_
);
_ols_main(
$broadcasted
,
$y
,
$ivs
,
$opt
);
}
sub
_ols_prep_inputs {
# y [n], ivs [n x attr] pdl
my
(
$broadcasted
,
$y
,
$ivs
,
$opt
) =
@_
;
my
%opt
= (
CONST
=> 1,
PLOT
=> 0,
WIN
=>
undef
,
# for plotting
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
if
(!
$broadcasted
) {
$y
=
$y
->squeeze;
$y
->getndims > 1 and
croak
"use ols_t for broadcasted version"
;
}
$ivs
=
$ivs
->dummy(1)
if
$ivs
->getndims == 1;
(
$y
,
$ivs
) = _rm_bad_value(
$y
,
$ivs
)
if
!
$broadcasted
;
# set up ivs and const as ivs
$opt
{CONST} and
$ivs
= ones(
$ivs
->dim(0))->glue( 1,
$ivs
);
(
$y
,
$ivs
);
}
sub
_ols_main {
my
(
$broadcasted
,
$y
,
$ivs
,
$opt
) =
@_
;
my
%opt
= (
CONST
=> 1,
PLOT
=> 0,
WIN
=>
undef
,
# for plotting
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
my
$C
= inv(
$ivs
x
$ivs
->t );
# Internally normalise data
# (double) it or ushort y and sequence iv won't work right
my
$ymean
=
$y
->
abs
->avgover->double;
$ymean
->where(
$ymean
==0 ) .= 1;
my
$divisor
=
$broadcasted
?
$ymean
->dummy(0) :
$ymean
;
my
$y2
=
$y
/
$divisor
;
my
$Y
=
$ivs
x
$y2
->dummy(0);
# Do the fit
# Fitted coefficients vector
my
$coeff
= PDL::squeeze(
$C
x
$Y
);
$coeff
=
$coeff
->dummy(0)
if
$broadcasted
and
$coeff
->getndims == 1 and
$y
->getndims > 1;
$coeff
*=
$divisor
;
# Un-normalise
# ***$coeff x $ivs looks nice but produces nan on successive tries***
my
$y_pred
= sumover( (
$broadcasted
?
$coeff
->dummy(1) :
$coeff
) *
$ivs
->transpose );
$opt
{PLOT} and
$y
->plot_residuals(
$y_pred
, \
%opt
);
return
$coeff
unless
wantarray
;
my
%ret
= (
y_pred
=>
$y_pred
);
$ret
{ss_total} =
$opt
{CONST} ?
$y
->ss : sumover(
$y
** 2 );
$ret
{ss_residual} =
$y
->sse(
$ret
{y_pred} );
$ret
{ss_model} =
$ret
{ss_total} -
$ret
{ss_residual};
$ret
{R2} =
$ret
{ss_model} /
$ret
{ss_total};
my
$n_var
=
$opt
{CONST} ?
$ivs
->dim(1) - 1 :
$ivs
->dim(1);
$ret
{F_df} = pdl(
$n_var
,
my
$df1
=
$y
->dim(0) -
$ivs
->dim(1) );
$ret
{F} =
$ret
{ss_model} /
$n_var
/ (
$ret
{ss_residual} /
$df1
);
$ret
{F_p} = 1 -
$ret
{F}->gsl_cdf_fdist_P(
$n_var
,
$df1
)
if
$CDF
;
if
(!
$broadcasted
) {
my
$se_b
= ones(
$coeff
->dims?
$coeff
->dims : 1 );
$opt
{CONST} and
$se_b
->slice(0) .=
sqrt
(
$ret
{ss_residual} /
$df1
*
$C
->slice(0,0) );
# get the se for bs by successively regressing each iv by the rest ivs
if
(
$ivs
->dim(1) > 1) {
my
@coords
=
$opt
{CONST} ? 1..
$n_var
: 0..
$n_var
-1;
my
$ones
= !
$opt
{CONST} ?
undef
: ones(
$ivs
->dim(0));
for
my
$k
(
@coords
) {
my
$G
=
$ivs
->dice_axis(1, [
grep
$_
!=
$k
,
@coords
]);
$G
=
$ones
->glue( 1,
$G
)
if
$opt
{CONST};
my
$b_G
=
$ivs
->slice(
':'
,
$k
)->ols(
$G
, {
CONST
=>0,
PLOT
=>0} );
my
$ss_res_k
=
$ivs
->slice(
':'
,
$k
)->squeeze->sse( sumover(
$b_G
*
$G
->transpose) );
$se_b
->slice(
$k
) .=
sqrt
(
$ret
{ss_residual} /
$df1
/
$ss_res_k
);
}
}
else
{
$se_b
->slice(0)
.=
sqrt
(
$ret
{ss_residual} /
$df1
/ sum(
$ivs
->slice(
':'
,0)**2 ) );
}
$ret
{b_se} =
$se_b
;
$ret
{b_t} =
$coeff
/
$ret
{b_se};
$ret
{b_p} = 2 * ( 1 -
$ret
{b_t}->
abs
->gsl_cdf_tdist_P(
$df1
) )
if
$CDF
;
}
for
(
keys
%ret
) {
ref
$ret
{
$_
} eq
'PDL'
and
$ret
{
$_
} =
$ret
{
$_
}->squeeze };
$ret
{b} =
$coeff
;
return
%ret
;
}
=head2 r2_change
=for ref
Significance test for the incremental change in R2 when new variable(s)
are added to an ols regression model.
Returns the change stats as well as stats for both models. Based on
L</ols_t>. (One way to make up for the lack of significance tests for
coeffs in ols_t).
=for options
Default options (case insensitive):
CONST => 1,
=for usage
Usage:
# suppose these are two persons' ratings for top 10 box office movies
# ascending sorted by box office
pdl> p $y = qsort ceil(random(10, 2) * 5)
[
[1 1 2 2 2 3 4 4 4 4]
[1 2 2 3 3 3 4 4 5 5]
]
# first IV is a simple linear trend
pdl> p $x1 = sequence 10
[0 1 2 3 4 5 6 7 8 9]
# the modeler wonders if adding a quadratic trend improves the fit
pdl> p $x2 = sequence(10) ** 2
[0 1 4 9 16 25 36 49 64 81]
# two difference models are given in two pdls
# each as would be pass on to ols_t
# the 1st model includes only linear trend
# the 2nd model includes linear and quadratic trends
# when necessary use dummy dim so both models have the same ndims
pdl> %c = $y->r2_change( $x1->dummy(1), cat($x1, $x2) )
pdl> p "$_\t$c{$_}\n" for sort keys %c
# person 1 person 2
F_change [0.72164948 0.071283096]
# df same for both persons
F_df [1 7]
F_p [0.42370145 0.79717232]
R2_change [0.0085966043 0.00048562549]
model0 HASH(0x8c10828)
model1 HASH(0x8c135c8)
# the answer here is no.
=cut
*r2_change
= \
&PDL::r2_change
;
sub
PDL::r2_change {
my
(
$self
,
$ivs0
,
$ivs1
,
$opt
) =
@_
;
$ivs0
->getndims == 1 and
$ivs0
=
$ivs0
->dummy(1);
my
%ret
;
$ret
{model0} = {
$self
->ols_t(
$ivs0
,
$opt
) };
$ret
{model1} = {
$self
->ols_t(
$ivs1
,
$opt
) };
$ret
{R2_change} =
$ret
{model1}->{R2} -
$ret
{model0}->{R2};
$ret
{F_df}
= pdl(
my
$df0
=
$ivs1
->dim(1) -
$ivs0
->dim(1),
my
$df1
=
$ret
{model1}->{F_df}->slice(
'(1)'
) );
$ret
{F_change}
=
$ret
{R2_change} *
$df1
/ ( (1-
$ret
{model1}->{R2}) *
$df0
);
$ret
{F_p} = 1 -
$ret
{F_change}->gsl_cdf_fdist_P(
$df0
,
$df1
)
if
$CDF
;
for
(
keys
%ret
) {
ref
$ret
{
$_
} eq
'PDL'
and
$ret
{
$_
} =
$ret
{
$_
}->squeeze };
%ret
;
}
=head1 METHODS
=head2 anova
=for ref
Analysis of variance. Uses type III sum of squares for unbalanced data.
Dependent variable should be a 1D pdl. Independent variables can be
passed as 1D perl array ref or 1D pdl.
Will only calculate p-value (C<F_p>) if there are more samples than the
product of categories of all the IVs.
Supports bad value (by ignoring missing or BAD values in dependent and
independent variables list-wise).
For more on ANOVA, see L<https://en.wikipedia.org/wiki/Analysis_of_variance>.
=for options
Default options (case insensitive):
V => 1, # carps if bad value in variables
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
PLOT => 0, # plots highest order effect
# can set plot_means options here
WIN => undef, # for plotting
=for usage
Usage:
# suppose this is ratings for 12 apples
pdl> p $y = qsort ceil( random(12)*5 )
[1 1 2 2 2 3 3 4 4 4 5 5]
# IV for types of apple
pdl> p $a = sequence(12) % 3 + 1
[1 2 3 1 2 3 1 2 3 1 2 3]
# IV for whether we baked the apple
pdl> @b = qw( y y y y y y n n n n n n )
pdl> %m = $y->anova( $a, \@b, { IVNM=>['apple', 'bake'] } )
pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
F 2.46666666666667
F_df [5 6]
F_p 0.151168719948632
ms_model 3.08333333333333
ms_residual 1.25
ss_model 15.4166666666667
ss_residual 7.5
ss_total 22.9166666666667
| apple | F 0.466666666666667
| apple | F_p 0.648078345471096
| apple | df 2
| apple | m [2.75 3 3.5]
| apple | ms 0.583333333333334
| apple | se [0.85391256 0.81649658 0.64549722]
| apple | ss 1.16666666666667
| apple || err df 6
| apple ~ bake | F 0.0666666666666671
| apple ~ bake | F_p 0.936190104380701
| apple ~ bake | df 2
| apple ~ bake | m [
[1.5 2 2.5]
[ 4 4 4.5]
]
| apple ~ bake | ms 0.0833333333333339
| apple ~ bake | se [
[0.5 1 0.5]
[ 1 1 0.5]
]
| apple ~ bake | ss 0.166666666666668
| apple ~ bake || err df 6
| bake | F 11.2666666666667
| bake | F_p 0.015294126084452
| bake | df 1
| bake | m [2 4.1666667]
| bake | ms 14.0833333333333
| bake | se [0.36514837 0.40138649]
| bake | ss 14.0833333333333
| bake || err df 6
This is implemented as a call to L</anova_rptd>, with an C<undef>
subjects vector.
=cut
*anova
= \
&PDL::anova
;
sub
PDL::anova {
my
(
$y
,
@args
) =
@_
;
anova_rptd(
$y
,
undef
,
@args
);
}
sub
_interactions {
my
(
$ivs_ref
,
$idv
) =
@_
;
my
(
@inter
,
@idv_inter
);
for
my
$nway
( 2 ..
@$ivs_ref
) {
my
$iter_idv
= _combinations(
$nway
, [0..
$#$ivs_ref
] );
while
(
my
@v
=
&$iter_idv
() ) {
push
@inter
, interaction_code(
@$ivs_ref
[
@v
]);
push
@idv_inter
,
join
' ~ '
,
@$idv
[
@v
];
}
}
(\
@inter
, \
@idv_inter
);
}
# now prepare for cell mean
sub
_interactions_cm {
my
(
$ivs_ref
,
$pdl_ivs_raw
) =
@_
;
my
(
$dim0
,
@inter_cm
,
@inter_cmo
) =
$ivs_ref
->[0]->dim(0);
for
my
$nway
( 2 ..
@$ivs_ref
) {
my
$iter_idv
= _combinations(
$nway
, [0..
$#$ivs_ref
] );
while
(
my
@v
=
&$iter_idv
() ) {
my
@i_cm
;
for
my
$o
( 0 ..
$dim0
- 1 ) {
push
@i_cm
,
join
''
,
map
$_
->slice(
"($o)"
),
@$pdl_ivs_raw
[
@v
];
}
my
(
$inter
,
$map
) = effect_code( \
@i_cm
);
push
@inter_cm
,
$inter
;
# get the order to put means in correct multi dim pdl pos
# this is order in var_e dim(1)
my
@levels
=
sort
{
$map
->{
$a
} <=>
$map
->{
$b
} }
keys
%$map
;
# this is order needed for cell mean
my
@i_cmo
=
sort
{
reverse
(
$levels
[
$a
]) cmp
reverse
(
$levels
[
$b
]) }
0 ..
$#levels
;
push
@inter_cmo
, pdl
@i_cmo
;
}
}
(\
@inter_cmo
, \
@inter_cm
);
}
sub
_cell_means {
my
(
$data
,
$ivs_cm_ref
,
$i_cmo_ref
,
$idv
,
$pdl_ivs_raw
) =
@_
;
my
%ind_id
;
@ind_id
{
@$idv
} = 0..
$#$idv
;
my
%cm
;
my
$i
= 0;
for
(
@$ivs_cm_ref
) {
confess
"_cell_means passed empty ivs_cm_ref ndarray at pos $i"
if
$_
->isempty;
my
$last
= zeroes
$_
->dim(0);
my
$i_neg
= which
$_
->slice(
':'
,0) == -1;
$last
->slice(
$i_neg
) .= 1;
$_
->where(
$_
== -1) .= 0;
$_
=
$_
->glue(1,
$last
);
my
@v
=
split
' ~ '
,
$idv
->[
$i
];
my
@shape
=
map
$pdl_ivs_raw
->[
$_
]->uniq->nelem,
@ind_id
{
@v
};
my
(
$m
,
$ss
) =
$data
->centroid(
$_
);
$m
=
$m
->slice(
$i_cmo_ref
->[
$i
])->sever;
$ss
=
$ss
->slice(
$i_cmo_ref
->[
$i
])->sever;
$m
=
$m
->reshape(
@shape
);
my
$se
=
sqrt
( (
$ss
/(
$_
->sumover - 1)) /
$_
->sumover )->reshape(
@shape
);
$cm
{
"| $idv->[$i] | m"
} =
$m
;
$cm
{
"| $idv->[$i] | se"
} =
$se
;
$i
++;
}
\
%cm
;
}
sub
_combinations {
my
(
$num
,
$arr
) =
@_
;
return
sub
{
return
}
if
$num
== 0 or
$num
>
@$arr
;
my
@pick
;
return
sub
{
return
@$arr
[
@pick
= ( 0 ..
$num
- 1 ) ]
unless
@pick
;
my
$i
=
$#pick
;
$i
--
until
$i
< 0 or
$pick
[
$i
]++ <
@$arr
-
$num
+
$i
;
return
if
$i
< 0;
@pick
[
$i
..
$#pick
] =
$pick
[
$i
] ..
$#$arr
;
return
@$arr
[
@pick
];
};
}
=head2 anova_rptd
=for ref
Repeated measures and mixed model anova. Uses type III sum of squares.
The standard error (se) for the means are based on the relevant mean
squared error from the anova, ie it is pooled across levels of the effect.
Will only calculate p-value (C<F_p>) if there are more samples than the
product of categories of all the IVs.
Uses L</anova_design_matrix>, so supports bad values.
For more on repeated measures ANOVA, see
and for mixed models, see
=for options
Default options (case insensitive):
V => 1, # carps if bad value in dv
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
BTWN => [], # indices of between-subject IVs (matches IVNM indices)
PLOT => 0, # plots highest order effect
# see plot_means() for more options
WIN => undef, # for plotting
=for usage
Usage:
Some fictional data: recall_w_beer_and_wings.txt
Subject Beer Wings Recall
Alex 1 1 8
Alex 1 2 9
Alex 1 3 12
Alex 2 1 7
Alex 2 2 9
Alex 2 3 12
Brian 1 1 12
Brian 1 2 13
Brian 1 3 14
Brian 2 1 9
Brian 2 2 8
Brian 2 3 14
...
# rtable allows text only in 1st row and col
my ($data, $idv, $subj) = rtable 'recall_w_beer_and_wings.txt';
my ($b, $w, $dv) = $data->dog;
# subj and IVs can be 1d pdl or @ ref
# subj must be the first argument
my %m = $dv->anova_rptd( $subj, $b, $w, {ivnm=>['Beer', 'Wings']} );
print "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
ss_residual 19.0833333333333
ss_subject 24.8333333333333
ss_total 133.833333333333
| Beer | F 9.39130434782609
| Beer | F_p 0.0547977008378944
| Beer | df 1
| Beer | m [10.916667 8.9166667]
| Beer | ms 24
| Beer | se [0.4614791 0.4614791]
| Beer | ss 24
| Beer || err df 3
| Beer || err ms 2.55555555555556
| Beer || err ss 7.66666666666667
| Beer ~ Wings | F 0.510917030567687
| Beer ~ Wings | F_p 0.623881438624431
| Beer ~ Wings | df 2
| Beer ~ Wings | m [
[ 10 7]
[ 10.5 9.25]
[12.25 10.5]
]
| Beer ~ Wings | ms 1.625
| Beer ~ Wings | se [
[0.89170561 0.89170561]
[0.89170561 0.89170561]
[0.89170561 0.89170561]
]
| Beer ~ Wings | ss 3.25000000000001
| Beer ~ Wings || err df 6
| Beer ~ Wings || err ms 3.18055555555555
| Beer ~ Wings || err ss 19.0833333333333
| Wings | F 4.52851711026616
| Wings | F_p 0.0632754786153548
| Wings | df 2
| Wings | m [8.5 9.875 11.375]
| Wings | ms 16.5416666666667
| Wings | se [0.67571978 0.67571978 0.67571978]
| Wings | ss 33.0833333333333
| Wings || err df 6
| Wings || err ms 3.65277777777778
| Wings || err ss 21.9166666666667
For mixed model anova, ie when there are between-subject IVs
involved, feed the IVs as above, but specify in BTWN which IVs are
between-subject. For example, if we had added age as a between-subject
IV in the above example, we would do
my %m = $dv->anova_rptd( $subj, $age, $b, $w,
{ ivnm=>['Age', 'Beer', 'Wings'], btwn=>[0] });
=cut
*anova_rptd
= \
&PDL::anova_rptd
;
sub
PDL::anova_rptd {
my
$opt
=
ref
(
$_
[-1]) eq
'HASH'
?
pop
@_
:
undef
;
my
(
$y
,
$subj
,
@ivs_raw
) =
@_
;
confess
"Expected 1-D data, instead: "
,
$y
->info
if
$y
->ndims != 1;
croak
"Mismatched number of elements in DV and IV. Are you passing IVs the old-and-abandoned way?"
if
(
ref
$ivs_raw
[0] eq
'ARRAY'
) and (@{
$ivs_raw
[0] } !=
$y
->nelem);
for
(
@ivs_raw
) {
croak
"too many dims in IV!"
if
ref
$_
eq
'PDL'
and
$_
->squeeze->ndims > 1
}
my
%opt
= (
V
=> 1,
# carps if bad value in dv
IVNM
=> [],
# auto filled as ['IV_0', 'IV_1', ... ]
( !
defined
(
$subj
) ? () : (
BTWN
=> [],
# indices of between-subject IVs (matches IVNM indices)
)),
PLOT
=> 0,
# plots highest order effect
WIN
=>
undef
,
# for plotting
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
$opt
{IVNM} = [
map
{
"IV_$_"
} 0 ..
$#ivs_raw
]
if
!
$opt
{IVNM} or !@{
$opt
{IVNM} };
(
my
(
$dsgn
,
$idv
),
$y
,
my
(
$sj
,
$ivs_ref_filtrd
,
$pdl_ivs_raw
,
$ivs_ref
,
$err_ref
)) =
$y
->anova_design_matrix(
$subj
,
@ivs_raw
, \
%opt
);
confess
"anova_rptd: got singular matrix for X' x X"
if
any +(
$dsgn
->t x
$dsgn
)->det == 0;
my
$b_full
= _ols_main(1,
$y
,
$dsgn
->t, {
CONST
=>0});
my
%ret
= (
ss_total
=>
$y
->ss,
ss_residual
=>
$y
->sse( sumover(
$b_full
*
$dsgn
) ));
if
(
defined
$subj
) {
my
@full
= (
@$ivs_ref
,
@$err_ref
);
my
$has_btwn
= @{
$opt
{BTWN} };
my
@is_btwn
;
$is_btwn
[
$_
] = 1
for
@{
$opt
{BTWN} };
my
@within_inds
= 0 ..
$#ivs_raw
;
@within_inds
=
grep
!
$is_btwn
[
$_
],
@within_inds
if
$has_btwn
;
my
$within_df
= pdl(
map
$_
->dim(1),
@full
[
@within_inds
])->prodover->sclr;
EFFECT:
for
my
$k
(0 ..
$#full
) {
my
$e
= (
$k
>
$#$ivs_ref
)?
'| err'
:
''
;
my
$i
= (
$k
>
$#$ivs_ref
)?
$k
-
@$ivs_ref
:
$k
;
my
$i_pref
=
$k
==
$#full
?
undef
:
"| $idv->[$i] |"
;
if
(!
defined
$full
[
$k
]) {
# ss_residual as error
$ret
{
"$i_pref$e ss"
} =
$ret
{ss_residual};
# highest ord inter for purely within design, (p-1)*(q-1)*(n-1)
my
$factor
= (
ref
$full
[-1] ?
$full
[-1] :
$err_ref
->[
$full
[-1]])->dim(1);
my
$df
=
$ret
{
"$i_pref$e df"
} =
$factor
*
$within_df
;
die
"${i_pref}residual df = 0"
if
$df
<= 0;
$ret
{
"$i_pref$e ms"
} =
$ret
{
"$i_pref$e ss"
} /
$df
;
}
elsif
(
ref
$full
[
$k
]) {
# unique error term
next
EFFECT
unless
my
@G
=
grep
$_
!=
$k
&&
defined
$full
[
$_
], 0 ..
$#full
;
my
$G
= ones(
$y
->dim(0))->glue(1,
grep
ref
$_
,
@full
[
@G
]);
my
$b_G
=
$y
->ols_t(
$G
, {
CONST
=>0} );
my
$ss
=
$ret
{
$k
==
$#full
?
'ss_subject'
:
"$i_pref$e ss"
}
=
$y
->sse(sumover(
$b_G
*
$G
->transpose)) -
$ret
{ss_residual};
if
(
$k
!=
$#full
) {
my
$df
=
$ret
{
"$i_pref$e df"
} =
$full
[
$k
]->dim(1);
die
"residual df = 0"
if
$df
<= 0;
$ret
{
"$i_pref$e ms"
} =
$ss
/
$df
;
}
}
else
{
# repeating error term
my
$ss
=
$ret
{
$k
==
$#full
?
'ss_subject'
:
"$i_pref$e ss"
}
=
$ret
{
"| $idv->[$full[$k]] |$e ss"
};
if
(
$k
!=
$#full
) {
my
$df
=
$ret
{
"$i_pref$e df"
} =
$ret
{
"| $idv->[$full[$k]] |$e df"
};
die
"residual df = 0"
if
$df
<= 0;
$ret
{
"$i_pref$e ms"
} =
$ss
/
$df
;
}
}
}
}
else
{
$ret
{ss_model} =
$ret
{ss_total} -
$ret
{ss_residual};
$ret
{F_df} = pdl(
my
$F_df0
=
$dsgn
->dim(0) - 1,
my
$df1
=
$y
->nelem -
$dsgn
->dim(0));
$ret
{ms_model} =
$ret
{ss_model} /
$F_df0
;
$ret
{ms_residual} =
$ret
{ss_residual} /
$df1
;
$ret
{F} =
$ret
{ms_model} /
$ret
{ms_residual};
$ret
{F_p} = 1 -
$ret
{F}->gsl_cdf_fdist_P(
$F_df0
,
$df1
)
if
$CDF
and
$df1
> 0;
# get IV ss from $ivs_ref instead of $dsgn pdl
my
$ones
= ones(
$y
->dim(0));
for
my
$k
(0 ..
$#$ivs_ref
) {
my
$G
=
$ones
->glue(1,
@$ivs_ref
[
grep
$_
!=
$k
, 0 ..
$#$ivs_ref
]);
my
$b_G
=
$y
->ols_t(
$G
, {
CONST
=>0} );
$ret
{
"| $idv->[$k] | ss"
}
=
$y
->sse( sumover(
$b_G
*
$G
->transpose) ) -
$ret
{ss_residual};
my
$df0
=
$ret
{
"| $idv->[$k] | df"
} =
$ivs_ref
->[
$k
]->dim(1);
$ret
{
"| $idv->[$k] || err df"
} =
$df1
;
die
"residual df = 0"
if
$df1
<= 0;
$ret
{
"| $idv->[$k] | ms"
} =
$ret
{
"| $idv->[$k] | ss"
} /
$df0
;
}
}
# have all iv, inter, and error effects. get F and F_p
for
(0 ..
$#$ivs_ref
) {
my
$ms_residual
=
defined
$subj
?
$ret
{
"| $idv->[$_] || err ms"
} :
$ret
{ms_residual};
my
(
$df0
,
$df1
) =
@ret
{
"| $idv->[$_] | df"
,
"| $idv->[$_] || err df"
};
my
$F
=
$ret
{
"| $idv->[$_] | F"
} =
$ret
{
"| $idv->[$_] | ms"
} /
$ms_residual
;
$ret
{
"| $idv->[$_] | F_p"
} = 1 -
$F
->gsl_cdf_fdist_P(
$df0
,
$df1
)
if
$CDF
and
$df1
> 0;
}
for
(
keys
%ret
) {
ref
$ret
{
$_
} eq
'PDL'
and
$ret
{
$_
} =
$ret
{
$_
}->squeeze};
my
(
$inter_cmo_ref
,
$inter_cm_ref
)
= _interactions_cm(
$ivs_ref_filtrd
,
$pdl_ivs_raw
);
# append inter info to cell means effects
my
$ivs_cm_ref
= [
@$ivs_ref_filtrd
,
@$inter_cm_ref
];
my
@i_cmo_ref
=
map
pdl(
values
%{ (effect_code(
$_
))[1] })->qsort,
@$pdl_ivs_raw
;
#line 1068 "lib/PDL/Stats/GLM.pd"
push
@i_cmo_ref
,
@$inter_cmo_ref
;
my
$cm_ref
= _cell_means(
$y
,
$ivs_cm_ref
, \
@i_cmo_ref
,
$idv
,
$pdl_ivs_raw
);
if
(
defined
$subj
) {
my
@ls
=
map
{
$_
->uniq->nelem }
@$pdl_ivs_raw
;
$cm_ref
= _fix_rptd_se(
$cm_ref
, \
%ret
,
$opt
{IVNM}, \
@ls
,
$sj
->uniq->nelem );
}
# integrate mean and se into %ret
@ret
{
keys
%$cm_ref
} =
values
%$cm_ref
;
my
$highest
=
join
(
' ~ '
, @{
$opt
{IVNM} });
$cm_ref
->{
"| $highest | m"
}->plot_means(
$cm_ref
->{
"| $highest | se"
},
{
%opt
,
IVNM
=>
$idv
} )
if
$opt
{PLOT};
%ret
;
}
=head2 anova_design_matrix
=for ref
Effect-coded design matrix for anova, including repeated-measures and
mixed-model. The C<X> for use in linear regression i.e. C<Y = X β + ε>.
Added in 0.854. See L<https://en.wikipedia.org/wiki/Design_matrix> for more.
Supports bad value in the dependent and independent variables. It
automatically removes bad data listwise, i.e. remove a subject's data if
there is any cell missing for the subject.
=for options
Default options (case insensitive):
V => 1, # carps if bad value in dv
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
BTWN => [], # indices of between-subject IVs (matches IVNM indices)
=for usage
$matrix = $dv->anova_design_matrix(undef, $b, $w, {ivnm=>[qw(b w)]});
$matrix = $dv->anova_design_matrix(
$subj, $b, $w, {ivnm=>[qw(b w)]}); # repeated-measures
$matrix = $dv->anova_design_matrix(
$subj, $b, $w, {ivnm=>[qw(b w)], btwn=>['b']}); # mixed-model
($matrix, $ivnm_ref) = $dv->anova_design_matrix(
$subj, $b, $w, {ivnm=>[qw(b w)], btwn=>['b']}); # list context also names
=cut
*anova_design_matrix
= \
&PDL::anova_design_matrix
;
sub
PDL::anova_design_matrix {
my
$opt
=
ref
(
$_
[-1]) eq
'HASH'
?
pop
@_
:
undef
;
my
(
$y
,
$subj
,
@ivs_raw
) =
@_
;
confess
"No IVs: did you omit 'undef' for anova?"
if
!
@ivs_raw
;
confess
"Expected 1-D data, instead: "
,
$y
->info
if
$y
->ndims != 1;
for
(
@ivs_raw
) {
croak
"too many dims in IV!"
if
ref
$_
eq
'PDL'
and
$_
->squeeze->ndims > 1;
}
my
%opt
= (
V
=> 1,
# carps if bad value in dv
IVNM
=> [],
# auto filled as ['IV_0', 'IV_1', ... ]
( !
defined
(
$subj
) ? () : (
BTWN
=> [],
# indices of between-subject IVs (matches IVNM indices)
)),
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
$opt
{IVNM} = [
map
{
"IV_$_"
} 0 ..
$#ivs_raw
]
if
!
$opt
{IVNM} or !@{
$opt
{IVNM} };
my
@idv_orig
= @{
$opt
{IVNM} };
my
@pdl_ivs_raw
=
map
scalar
PDL::Stats::Basic::code_ivs(
$_
),
@ivs_raw
;
my
$pdl_ivs
= pdl(\
@pdl_ivs_raw
);
# explicit set badflag because pdl() removes badflag
$pdl_ivs
->badflag(
scalar
grep
$_
->badflag,
@pdl_ivs_raw
);
my
$sj
;
if
(
defined
(
$subj
)) {
# delete bad data listwise ie remove subj if any cell missing
$sj
= PDL::Stats::Basic::code_ivs(
$subj
);
my
$ibad
= which(
$y
->isbad | nbadover(
$pdl_ivs
->transpose) );
my
$sj_bad
=
$sj
->slice(
$ibad
)->uniq;
if
(
$sj_bad
->nelem) {
warn
$sj_bad
->nelem .
" subjects with missing data removed\n"
if
$opt
{V};
$sj
=
$sj
->setvaltobad(
$_
)
for
(list
$sj_bad
);
my
$igood
= which
$sj
->isgood;
for
(
$y
,
$sj
,
@pdl_ivs_raw
) {
$_
=
$_
->slice(
$igood
)->sever;
$_
->badflag(0);
}
}
}
else
{
(
$y
,
$pdl_ivs
) = _rm_bad_value(
$y
,
$pdl_ivs
);
if
(
$opt
{V} and
$y
->nelem <
$pdl_ivs_raw
[0]->nelem) {
warn
sprintf
"%d subjects with missing data removed\n"
,
$pdl_ivs_raw
[0]->nelem -
$y
->nelem;
}
@pdl_ivs_raw
=
$pdl_ivs
->dog;
}
my
@ivs_ref_fltrd
=
map
scalar
effect_code(
$_
),
@pdl_ivs_raw
;
my
(
$ivs_inter_ref
,
$idv_inter
) = _interactions(\
@ivs_ref_fltrd
, \
@idv_orig
);
# append inter info to main effects
my
$ivs_ref
= [
@ivs_ref_fltrd
,
@$ivs_inter_ref
];
my
@idv
= (
@idv_orig
,
@$idv_inter
);
# matches $ivs_ref, with an extra last pdl for subj effect
my
$err_ref
= !
defined
(
$subj
) ? [] :
_add_errors(
$sj
,
$ivs_ref
, \
@idv
, \
@pdl_ivs_raw
,
$opt
{BTWN} );
for
(
grep
ref
$err_ref
->[
$_
], 0..
$#$err_ref
) {
my
(
$null_row_ids
,
$non_null_row_ids
) =
$err_ref
->[
$_
]->zcover->which_both;
confess
"got null columns $null_row_ids in error entry #$_ ($idv[$_])"
if
!
$null_row_ids
->isempty;
}
my
$dsgn
= PDL::glue(1, ones(
$y
->dim(0)),
@$ivs_ref
, (
grep
ref
(
$_
),
@$err_ref
))->t;
!
wantarray
?
$dsgn
: (
$dsgn
, \
@idv
,
$y
,
$sj
, \
@ivs_ref_fltrd
, \
@pdl_ivs_raw
,
$ivs_ref
,
$err_ref
);
}
# code (btwn group) subjects. Rutherford (2011) pp 208-209
sub
_code_btwn {
my
(
$subj
,
$btwn
) =
@_
;
my
(
@grp
,
%grp_s
);
for
my
$n
(0 ..
$subj
->nelem - 1) {
# construct string to code group membership
# something not treated as BAD by code_ivs to start off marking group membership
# if no $btwn, everyone ends up in the same grp
my
$s
=
'_'
.
join
''
,
map
$_
->slice(
$n
),
@$btwn
;
push
@grp
,
$s
;
# group membership
$s
.=
$subj
->slice(
$n
);
# keep track of total uniq subj
$grp_s
{
$s
} = 1;
}
my
$grp
= PDL::Stats::Kmeans::iv_cluster \
@grp
;
my
$spdl
= zeroes
$subj
->dim(0),
keys
(
%grp_s
) -
$grp
->dim(1);
my
$d1
= 0;
for
my
$g
(0 ..
$grp
->dim(1)-1) {
my
$col_inds
= which
$grp
->slice(
':'
,
$g
);
my
$gsub
=
$subj
->slice(
$col_inds
)->effect_code;
my
(
$nobs
,
$nsub
) =
$gsub
->dims;
$spdl
->slice(
$col_inds
, [
$d1
,
$d1
+
$nsub
-1]) .=
$gsub
;
$d1
+=
$nsub
;
}
$spdl
;
}
sub
_add_errors {
my
(
$subj
,
$ivs_ref
,
$idv
,
$raw_ivs
,
$btwn
) =
@_
;
my
$spdl
= _code_btwn(
$subj
, [
@$raw_ivs
[
@$btwn
]]);
# if btwn factor involved, or highest order inter for within factors
# elem is undef, so that
# @errors ind matches @$ivs_ref, with an extra elem at the end for subj
# mark btwn factors for error terms
# same error term for B(wn) and A(btwn) x B(wn) (Rutherford, p205)
my
%is_btwn
=
map
+(
$_
=>1),
@$idv
[
@$btwn
];
my
$has_btwn
=
keys
%is_btwn
;
my
%idv2indx
=
map
+(
$idv
->[
$_
]=>
$_
), 0..
$#$idv
;
my
$ie_subj
;
my
@errors
=
map
{
my
@fs
=
split
' ~ '
,
$idv
->[
$_
];
# separate bw and wn factors
# if only bw, error is bw x subj
# if only wn or wn and bw, error is wn x subj
my
@bw
= !
$has_btwn
? () :
grep
$is_btwn
{
$_
},
@fs
;
my
@wn
= !
$has_btwn
?
@fs
:
grep
!
$is_btwn
{
$_
},
@fs
;
$ie_subj
=
$_
if
!
defined
(
$ie_subj
) and !
@wn
;
my
$err
=
join
' ~ '
,
@wn
?
@wn
:
@bw
;
# highest order inter of within factors, use ss_residual as error
if
(
@wn
==
@$raw_ivs
-
@$btwn
) {
undef
}
# repeating btwn factors use ss_subject as error
elsif
(!
@wn
and
$_
>
$ie_subj
) {
$ie_subj
}
# repeating error term
elsif
(
$_
>
$idv2indx
{
$err
}) {
$idv2indx
{
$err
} }
elsif
(
@wn
) { interaction_code(
$ivs_ref
->[
$_
],
$spdl
) }
else
{
$spdl
}
} 0 ..
$#$ivs_ref
;
push
@errors
,
$has_btwn
?
$ie_subj
:
$spdl
;
\
@errors
;
}
sub
_fix_rptd_se {
# if ivnm lvls_ref for within ss only this can work for mixed design
my
(
$cm_ref
,
$ret
,
$ivnm
,
$lvls_ref
,
$n
) =
@_
;
my
@se
=
map
/^\| (.+?) \| se$/ ? $1 : (),
keys
%$cm_ref
;
my
@n_obs
=
map
{
my
@ivs
=
split
/ ~ /,
$_
;
my
$i_ivs
= which_id
$ivnm
, \
@ivs
;
my
$icollapsed
= setops pdl(0 ..
$#$ivnm
),
'XOR'
,
$i_ivs
;
my
$collapsed
=
$icollapsed
->nelem?
pdl(
@$lvls_ref
[(list
$icollapsed
)] )->prodover
: 1
;
$n
*
$collapsed
;
}
@se
;
for
my
$i
(0 ..
$#se
) {
$cm_ref
->{
"| $se[$i] | se"
}
.=
sqrt
(
$ret
->{
"| $se[$i] || err ms"
} /
$n_obs
[
$i
] );
}
$cm_ref
;
}
=head2 dummy_code
=for ref
Dummy coding of nominal variable (perl @ ref or 1d pdl) for use in regression.
Supports BAD value (missing or 'BAD' values result in the corresponding pdl elements being marked as BAD).
=for usage
pdl> @a = qw(a a a b b b c c c)
pdl> p $a = dummy_code(\@a)
[
[1 1 1 0 0 0 0 0 0]
[0 0 0 1 1 1 0 0 0]
]
=cut
*dummy_code
= \
&PDL::dummy_code
;
sub
PDL::dummy_code {
my
(
$var_ref
) =
@_
;
my
$var_e
= effect_code(
$var_ref
);
$var_e
->where(
$var_e
== -1 ) .= 0;
$var_e
;
}
=head2 effect_code
=for ref
Unweighted effect coding of nominal variable (perl @ ref or 1d pdl) for
use in regression. returns in @ context coded pdl and % ref to level -
pdl->dim(1) index.
Supports BAD value (missing or 'BAD' values result in the corresponding
pdl elements being marked as BAD).
=for usage
my @var = qw( a a a b b b c c c );
my ($var_e, $map) = effect_code( \@var );
print $var_e . $var_e->info . "\n";
[
[ 1 1 1 0 0 0 -1 -1 -1]
[ 0 0 0 1 1 1 -1 -1 -1]
]
PDL: Double D [9,2]
print "$_\t$map->{$_}\n" for sort keys %$map
a 0
b 1
c 2
=cut
*effect_code
= \
&PDL::effect_code
;
sub
PDL::effect_code {
my
(
$var_ref
) =
@_
;
my
(
$var
,
$map_ref
) = PDL::Stats::Basic::code_ivs(
$var_ref
);
my
$var_max
=
$var
->max;
confess
"effect_code called with only one unique value"
if
$var_max
< 1;
my
$var_e
= yvals( float,
$var
->nelem,
$var_max
) ==
$var
;
$var_e
->slice(which(
$var
==
$var_max
), ) .= -1;
$var_e
=
$var_e
->setbadif(
$var
->isbad )
if
$var
->badflag;
wantarray
? (
$var_e
,
$map_ref
) :
$var_e
;
}
=head2 effect_code_w
=for ref
Weighted effect code for nominal variable. returns in @ context coded pdl and % ref to level - pdl->dim(1) index.
Supports BAD value (missing or 'BAD' values result in the corresponding pdl elements being marked as BAD).
=for usage
pdl> @a = qw( a a b b b c c )
pdl> p $a = effect_code_w(\@a)
[
[ 1 1 0 0 0 -1 -1]
[ 0 0 1 1 1 -1.5 -1.5]
]
=cut
*effect_code_w
= \
&PDL::effect_code_w
;
sub
PDL::effect_code_w {
my
(
$var_ref
) =
@_
;
my
(
$var_e
,
$map_ref
) = effect_code(
$var_ref
);
return
wantarray
? (
$var_e
,
$map_ref
) :
$var_e
if
$var_e
->sum == 0;
my
$pos
=
$var_e
== 1;
my
$neg
=
$var_e
== -1;
my
$w
=
$pos
->sumover /
$neg
->sumover;
my
$neg_ind
=
$neg
->whichND;
$var_e
->indexND(
$neg_ind
) *=
$w
->slice(
$neg_ind
->slice(
'(1)'
));
wantarray
? (
$var_e
,
$map_ref
) :
$var_e
;
}
=head2 interaction_code
Returns the coded interaction term for effect-coded variables.
Supports BAD value (missing or 'BAD' values result in the corresponding
pdl elements being marked as BAD).
=for usage
pdl> $a = sequence(6) > 2
pdl> p $a = $a->effect_code
[
[ 1 1 1 -1 -1 -1]
]
pdl> $b = pdl( qw( 0 1 2 0 1 2 ) )
pdl> p $b = $b->effect_code
[
[ 1 0 -1 1 0 -1]
[ 0 1 -1 0 1 -1]
]
pdl> p $ab = interaction_code( $a, $b )
[
[ 1 0 -1 -1 -0 1]
[ 0 1 -1 -0 -1 1]
]
=cut
*interaction_code
= \
&PDL::interaction_code
;
sub
PDL::interaction_code {
my
$i
= ones(
$_
[0]->dim(0), 1 );
$i
= (
$i
*
$_
->dummy(1))->clump(1,2)
for
@_
;
$i
;
}
=head2 ols
=for ref
Ordinary least squares regression, aka linear regression.
Unlike B<ols_t>, ols is not broadcastable, but it can handle bad value (by
ignoring observations with bad value in dependent or independent variables
list-wise) and returns the full model in list context with various stats.
IVs ($x) should be pdl dims $y->nelem or $y->nelem x n_iv. Do not supply
the constant vector in $x. Intercept is automatically added and returned
as FIRST of the coeffs if CONST=>1. Returns full model in list context
and coeff in scalar context.
For more on multiple linear regression see
=for options
Default options (case insensitive):
CONST => 1,
PLOT => 0, # see plot_residuals() for plot options
WIN => undef, # for plotting
=for usage
Usage:
# suppose this is a person's ratings for top 10 box office movies
# ascending sorted by box office
pdl> $y = pdl '[1 1 2 2 2 2 4 4 5 5]'
# construct IV with linear and quadratic component
pdl> p $x = cat sequence(10), sequence(10)**2
[
[ 0 1 2 3 4 5 6 7 8 9]
[ 0 1 4 9 16 25 36 49 64 81]
]
pdl> %m = $y->ols( $x )
pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
F 40.4225352112676
F_df [2 7]
F_p 0.000142834216344756
R2 0.920314253647587
# coeff constant linear quadratic
b [0.981818 0.212121 0.030303]
b_p [0.039910 0.328001 0.203034]
b_se [0.389875 0.201746 0.021579]
b_t [2.518284 1.051422 1.404218]
ss_model 19.8787878787879
ss_residual 1.72121212121212
ss_total 21.6
y_pred [0.98181818 1.2242424 1.5272727 ... 4.6181818 5.3454545]
=cut
*ols
= \
&PDL::ols
;
sub
PDL::ols {
_ols_common(0,
@_
);
}
# ivs = [nobs x nivs] so can `dog` retval
sub
_rm_bad_value {
my
(
$y
,
$ivs
) =
@_
;
return
(
$y
,
$ivs
,
undef
)
if
!
$y
->check_badflag and !
$ivs
->check_badflag;
my
$idx
= which(
$y
->isgood & (nbadover (
$ivs
->transpose)==0));
$_
=
$_
->slice(
$idx
)->sever
for
$y
,
$ivs
;
$_
->badflag(0)
for
$y
,
$ivs
;
(
$y
,
$ivs
,
$idx
);
}
=head2 ols_rptd
=for ref
Repeated measures linear regression.
Handles purely within-subject design for now.
(Lorch & Myers, 1990; Van den Noortgate & Onghena, 2006).
See F<t/glm.t> for an example using the Lorch and Myers data.
=for usage
Usage:
# This is the example from Lorch and Myers (1990),
# a study on how characteristics of sentences affected reading time
# Three within-subject IVs:
# SP -- serial position of sentence
# WORDS -- number of words in sentence
# NEW -- number of new arguments in sentence
# $subj can be 1D pdl or @ ref and must be the first argument
# IV can be 1D @ ref or pdl
# 1D @ ref is effect coded internally into pdl
# pdl is left as is
my %r = $rt->ols_rptd( $subj, $sp, $words, $new );
print "$_\t$r{$_}\n" for sort keys %r;
ss_residual 58.3754646504336
ss_subject 51.8590337714286
ss_total 405.188241771429
# SP WORDS NEW
F [ 7.208473 61.354153 1.0243311]
F_p [0.025006181 2.619081e-05 0.33792837]
coeff [0.33337285 0.45858933 0.15162986]
df [1 1 1]
df_err [9 9 9]
ms [ 18.450705 73.813294 0.57026483]
ms_err [ 2.5595857 1.2030692 0.55671923]
ss [ 18.450705 73.813294 0.57026483]
ss_err [ 23.036272 10.827623 5.0104731]
=cut
*ols_rptd
= \
&PDL::ols_rptd
;
sub
PDL::ols_rptd {
my
(
$y
,
$subj
,
@ivs_raw
) =
@_
;
$y
=
$y
->squeeze;
$y
->getndims > 1 and
croak
"ols_rptd does not support broadcasting"
;
my
@ivs
=
map
{ (
ref
$_
eq
'PDL'
and
$_
->ndims > 1)?
$_
:
ref
$_
eq
'PDL'
?
$_
->dummy(1)
:
scalar
effect_code(
$_
)
;
}
@ivs_raw
;
my
%r
;
$r
{ss_total} =
$y
->ss;
# STEP 1: subj
my
$s
= effect_code
$subj
;
my
$b_s
=
$y
->ols_t(
$s
);
my
$pred
= sumover(
$b_s
->slice(
'1:-1'
) *
$s
->transpose) +
$b_s
->slice(0);
$r
{ss_subject} =
$r
{ss_total} -
$y
->sse(
$pred
);
# STEP 2: add predictor variables
my
$iv_p
=
$s
->glue(1,
@ivs
);
my
$b_p
=
$y
->ols_t(
$iv_p
);
# only care about coeff for predictor vars. no subj or const coeff
$r
{coeff} =
$b_p
->slice([-
@ivs
,-1])->sever;
# get total sse for this step
$pred
= sumover(
$b_p
->slice(
'1:-1'
) *
$iv_p
->transpose) +
$b_p
->slice(0);
my
$ss_pe
=
$y
->sse(
$pred
);
# get predictor ss by successively reducing the model
$r
{ss} = zeroes
scalar
(
@ivs
);
for
my
$i
(0 ..
$#ivs
) {
my
$iv
=
$s
->glue(1,
@ivs
[
grep
$_
!=
$i
, 0..
$#ivs
]);
my
$b
=
$y
->ols_t(
$iv
);
$pred
= sumover(
$b
->slice(
'1:-1'
) *
$iv
->transpose) +
$b
->slice(0);
$r
{ss}->slice(
$i
) .=
$y
->sse(
$pred
) -
$ss_pe
;
}
# STEP 3: get predictor x subj interaction as error term
my
$iv_e
= PDL::glue 1,
map
interaction_code(
$s
,
$_
),
@ivs
;
# get total sse for this step. full model now.
my
$b_f
=
$y
->ols_t(
$iv_p
->glue(1,
$iv_e
) );
$pred
= sumover(
$b_f
->slice(
'1:-1'
) *
$iv_p
->glue(1,
$iv_e
)->transpose) +
$b_f
->slice(0);
$r
{ss_residual} =
$y
->sse(
$pred
);
# get predictor x subj ss by successively reducing the error term
$r
{ss_err} = zeroes
scalar
(
@ivs
);
for
my
$i
(0 ..
$#ivs
) {
my
$iv
=
$iv_p
->glue(1,
map
interaction_code(
$s
,
$_
),
@ivs
[
grep
$_
!=
$i
, 0..
$#ivs
]);
my
$b
=
$y
->ols_t(
$iv
);
my
$pred
= sumover(
$b
->slice(
'1:-1'
) *
$iv
->transpose) +
$b
->slice(0);
$r
{ss_err}->slice(
$i
) .=
$y
->sse(
$pred
) -
$r
{ss_residual};
}
# Finally, get MS, F, etc
$r
{df} = pdl(
map
$_
->squeeze->ndims,
@ivs
);
$r
{ms} =
$r
{ss} /
$r
{df};
$r
{df_err} =
$s
->dim(1) *
$r
{df};
$r
{ms_err} =
$r
{ss_err} /
$r
{df_err};
$r
{F} =
$r
{ms} /
$r
{ms_err};
$r
{F_p} = 1 -
$r
{F}->gsl_cdf_fdist_P(
$r
{df},
$r
{df_err} )
if
$CDF
;
%r
;
}
=head2 logistic
=for ref
Logistic regression with maximum likelihood estimation using L<PDL::Fit::LM>.
IVs ($x) should be pdl dims $y->nelem or $y->nelem x n_iv. Do not supply
the constant vector in $x. It is included in the model and returned as
LAST of coeff. Returns full model in list context and coeff in scalar
context.
The significance tests are likelihood ratio tests (-2LL deviance)
tests. IV significance is tested by comparing deviances between the
reduced model (ie with the IV in question removed) and the full model.
***NOTE: the results here are qualitatively similar to but not identical
with results from R, because different algorithms are used for the
nonlinear parameter fit. Use with discretion***
=for options
Default options (case insensitive):
INITP => zeroes( $x->dim(1) + 1 ), # n_iv + 1
MAXIT => 1000,
EPS => 1e-7,
=for usage
Usage:
# suppose this is whether a person had rented 10 movies
pdl> p $y = ushort( random(10)*2 )
[0 0 0 1 1 0 0 1 1 1]
# IV 1 is box office ranking
pdl> p $x1 = sequence(10)
[0 1 2 3 4 5 6 7 8 9]
# IV 2 is whether the movie is action- or chick-flick
pdl> p $x2 = sequence(10) % 2
[0 1 0 1 0 1 0 1 0 1]
# concatenate the IVs together
pdl> p $x = cat $x1, $x2
[
[0 1 2 3 4 5 6 7 8 9]
[0 1 0 1 0 1 0 1 0 1]
]
pdl> %m = $y->logistic( $x )
pdl> p "$_\t$m{$_}\n" for sort keys %m
D0 13.8629436111989
Dm 9.8627829791575
Dm_chisq 4.00016063204141
Dm_df 2
Dm_p 0.135324414081692
# ranking genre constant
b [0.41127706 0.53876358 -2.1201285]
b_chisq [ 3.5974504 0.16835559 2.8577151]
b_p [0.057868258 0.6815774 0.090936587]
iter 12
y_pred [0.10715577 0.23683909 ... 0.76316091 0.89284423]
# to get the covariance out, supply a true value for the COV option:
pdl> %m = $y->logistic( $x, {COV=>1} )
pdl> p $m{cov};
=cut
*logistic
= \
&PDL::logistic
;
sub
PDL::logistic {
my
(
$self
,
$ivs
,
$opt
) =
@_
;
$self
=
$self
->squeeze;
# make compatible w multiple var cases
$ivs
->getndims == 1 and
$ivs
=
$ivs
->dummy(1);
$self
->dim(0) !=
$ivs
->dim(0) and
carp
"mismatched n btwn DV and IV!"
;
my
%opt
= (
INITP
=> zeroes(
$ivs
->dim(1) + 1 ),
# n_ivs + 1
MAXIT
=> 1000,
EPS
=> 1e-7,
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
# not using it atm
$opt
{WT} = 1;
# Use lmfit. Fourth input argument is reference to user-defined
# copy INITP so we have the original value when needed
my
(
$yfit
,
$coeff
,
$cov
,
$iter
)
= PDL::Fit::LM::lmfit(
$ivs
,
$self
,
$opt
{WT}, \
&_logistic
,
$opt
{INITP}->copy,
{
Maxiter
=>
$opt
{MAXIT},
Eps
=>
$opt
{EPS} } );
# apparently at least coeff is child of some pdl
# which is changed in later lmfit calls
$yfit
=
$yfit
->copy;
$coeff
=
$coeff
->copy;
return
$coeff
unless
wantarray
;
my
%ret
;
my
$n0
=
$self
->where(
$self
== 0)->nelem;
my
$n1
=
$self
->nelem -
$n0
;
$ret
{cov} =
$cov
if
$opt
{COV};
$ret
{D0} = -2*(
$n0
*
log
(
$n0
/
$self
->nelem) +
$n1
*
log
(
$n1
/
$self
->nelem));
$ret
{Dm} = sum(
$self
->dvrs(
$yfit
) ** 2 );
$ret
{Dm_chisq} =
$ret
{D0} -
$ret
{Dm};
$ret
{Dm_df} =
$ivs
->dim(1);
$ret
{Dm_p}
= 1 - PDL::GSL::CDF::gsl_cdf_chisq_P(
$ret
{Dm_chisq},
$ret
{Dm_df} )
if
$CDF
;
my
$coeff_chisq
= zeroes
$opt
{INITP}->nelem;
if
(
$ivs
->dim(1) > 1 ) {
for
my
$k
(0 ..
$ivs
->dim(1)-1) {
my
@G
=
grep
{
$_
!=
$k
} (0 ..
$ivs
->dim(1)-1);
my
$G
=
$ivs
->dice_axis(1, \
@G
);
my
$init
=
$opt
{INITP}->dice([
@G
,
$opt
{INITP}->dim(0)-1 ])->copy;
my
$y_G
= PDL::Fit::LM::lmfit(
$G
,
$self
,
$opt
{WT}, \
&_logistic
,
$init
,
{
Maxiter
=>
$opt
{MAXIT},
Eps
=>
$opt
{EPS} } );
$coeff_chisq
->slice(
$k
) .=
$self
->dm(
$y_G
) -
$ret
{Dm};
}
}
else
{
# d0 is, by definition, the deviance with only intercept
$coeff_chisq
->slice(0) .=
$ret
{D0} -
$ret
{Dm};
}
my
$y_c
= PDL::Fit::LM::lmfit(
$ivs
,
$self
,
$opt
{WT}, \
&_logistic_no_intercept
,
$opt
{INITP}->slice(
'0:-2'
)->sever,
{
Maxiter
=>
$opt
{MAXIT},
Eps
=>
$opt
{EPS} } );
$coeff_chisq
->slice(-1) .=
$self
->dm(
$y_c
) -
$ret
{Dm};
$ret
{b} =
$coeff
;
$ret
{b_chisq} =
$coeff_chisq
;
$ret
{b_p} = 1 -
$ret
{b_chisq}->gsl_cdf_chisq_P( 1 )
if
$CDF
;
$ret
{y_pred} =
$yfit
;
$ret
{iter} =
$iter
;
for
(
keys
%ret
) {
ref
$ret
{
$_
} eq
'PDL'
and
$ret
{
$_
} =
$ret
{
$_
}->squeeze };
%ret
;
}
sub
_logistic {
my
(
$x
,
$par
,
$ym
,
$dyda
) =
@_
;
# $b and $c are fit parameters slope and intercept
my
$b
=
$par
->slice([0,
$x
->dim(1) - 1])->sever;
my
$c
=
$par
->slice(-1)->sever;
# Write function with dependent variable $ym,
# independent variable $x, and fit parameters as specified above.
# Use the .= (dot equals) assignment operator to express the equality
# (not just a plain equals)
$ym
.= 1 / ( 1 +
exp
( -1 * (sumover(
$b
*
$x
->transpose) +
$c
) ) );
my
@dy
=
map
$dyda
->slice(
",($_)"
), 0 ..
$par
->dim(0)-1;
# Partial derivative of the function with respect to each slope
# fit parameter ($b in this case). Again, note .= assignment
# operator (not just "equals")
$dy
[
$_
] .=
$x
->slice(
':'
,
$_
) *
$ym
* (1 -
$ym
)
for
(0 ..
$b
->dim(0)-1);
# Partial derivative of the function re intercept par
$dy
[-1] .=
$ym
* (1 -
$ym
);
}
sub
_logistic_no_intercept {
my
(
$x
,
$par
,
$ym
,
$dyda
) =
@_
;
my
$b
=
$par
->slice([0,
$x
->dim(1) - 1])->sever;
# Write function with dependent variable $ym,
# independent variable $x, and fit parameters as specified above.
# Use the .= (dot equals) assignment operator to express the equality
# (not just a plain equals)
$ym
.= 1 / ( 1 +
exp
( -1 * sumover(
$b
*
$x
->transpose) ) );
my
(
@dy
) =
map
{
$dyda
-> slice(
",($_)"
) } (0 ..
$par
->dim(0)-1);
# Partial derivative of the function with respect to each slope
# fit parameter ($b in this case). Again, note .= assignment
# operator (not just "equals")
$dy
[
$_
] .=
$x
->slice(
':'
,
$_
) *
$ym
* (1 -
$ym
)
for
0 ..
$b
->dim(0)-1;
}
=head2 pca
=for ref
Principal component analysis. Based on corr instead of cov.
Bad values are ignored pair-wise. OK when bad values are few but otherwise
probably should fill_m etc before pca). Uses L<PDL::MatrixOps/eigens_sym>.
=for options
Default options (case insensitive):
CORR => 1, # boolean. use correlation or covariance
PLOT => 0, # calls plot_screes by default
# can set plot_screes options here
WIN => undef, # for plotting
=for usage
Usage:
my $d = qsort random 10, 5; # 10 obs on 5 variables
my %r = $d->pca( \%opt );
print "$_\t$r{$_}\n" for (keys %r);
eigenvalue # variance accounted for by each component
[4.70192 0.199604 0.0471421 0.0372981 0.0140346]
eigenvector # dim var x comp. weights for mapping variables to component
[
[ -0.451251 -0.440696 -0.457628 -0.451491 -0.434618]
[ -0.274551 0.582455 0.131494 0.255261 -0.709168]
[ 0.43282 0.500662 -0.139209 -0.735144 -0.0467834]
[ 0.693634 -0.428171 0.125114 0.128145 -0.550879]
[ 0.229202 0.180393 -0.859217 0.4173 0.0503155]
]
loadings # dim var x comp. correlation between variable and component
[
[ -0.978489 -0.955601 -0.992316 -0.97901 -0.942421]
[ -0.122661 0.260224 0.0587476 0.114043 -0.316836]
[ 0.0939749 0.108705 -0.0302253 -0.159616 -0.0101577]
[ 0.13396 -0.0826915 0.0241629 0.0247483 -0.10639]
[ 0.027153 0.0213708 -0.101789 0.0494365 0.00596076]
]
pct_var # percent variance accounted for by each component
[0.940384 0.0399209 0.00942842 0.00745963 0.00280691]
Plot scores along the first two components,
$d->plot_scores( $r{eigenvector} );
=cut
*pca
= \
&PDL::pca
;
sub
PDL::pca {
my
(
$self
,
$opt
) =
@_
;
my
%opt
= (
CORR
=> 1,
PLOT
=> 0,
WIN
=>
undef
,
# for plotting
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
my
$var_var
=
$opt
{CORR}?
$self
->corr_table :
$self
->cov_table;
# value is axis pdl and score is var x axis
my
(
$eigvec
,
$eigval
) =
$var_var
->eigens_sym;
$eigvec
=
$eigvec
->transpose;
# compatibility with PDL::Slatec::eigsys
# ind is sticky point for broadcasting
my
$ind_sorted
=
$eigval
->qsorti->slice(
'-1:0'
);
$eigvec
=
$eigvec
->slice(
':'
,
$ind_sorted
)->sever;
$eigval
=
$eigval
->slice(
$ind_sorted
)->sever;
# var x axis
my
$var
=
$eigval
/
$eigval
->sum->sclr;
my
$loadings
;
if
(
$opt
{CORR}) {
$loadings
=
$eigvec
*
sqrt
(
$eigval
->transpose );
}
else
{
my
$scores
=
$eigvec
x
$self
->dev_m;
$loadings
=
$self
->corr(
$scores
->dummy(1) );
}
$var
->plot_screes(\
%opt
)
if
$opt
{PLOT};
(
eigenvalue
=>
$eigval
,
eigenvector
=>
$eigvec
,
pct_var
=>
$var
,
loadings
=>
$loadings
);
}
=head2 pca_sorti
Determine by which vars a component is best represented. Descending sort
vars by size of association with that component. Returns sorted var and
relevant component indices.
=for options
Default options (case insensitive):
NCOMP => 10, # maximum number of components to consider
=for usage
Usage:
# let's see if we replicated the Osgood et al. (1957) study
pdl> ($data, $idv, $ido) = rtable 'osgood_exp.csv', {v=>0}
# select a subset of var to do pca
pdl> $ind = which_id $idv, [qw( ACTIVE BASS BRIGHT CALM FAST GOOD HAPPY HARD LARGE HEAVY )]
pdl> $data = $data( ,$ind)->sever
pdl> @$idv = @$idv[list $ind]
pdl> %m = $data->pca
pdl> ($iv, $ic) = $m{loadings}->pca_sorti()
pdl> p "$idv->[$_]\t" . $m{loadings}->($_,$ic)->flat . "\n" for (list $iv)
# COMP0 COMP1 COMP2 COMP3
HAPPY [0.860191 0.364911 0.174372 -0.10484]
GOOD [0.848694 0.303652 0.198378 -0.115177]
CALM [0.821177 -0.130542 0.396215 -0.125368]
BRIGHT [0.78303 0.232808 -0.0534081 -0.0528796]
HEAVY [-0.623036 0.454826 0.50447 0.073007]
HARD [-0.679179 0.0505568 0.384467 0.165608]
ACTIVE [-0.161098 0.760778 -0.44893 -0.0888592]
FAST [-0.196042 0.71479 -0.471355 0.00460276]
LARGE [-0.241994 0.594644 0.634703 -0.00618055]
BASS [-0.621213 -0.124918 0.0605367 -0.765184]
=cut
*pca_sorti
= \
&PDL::pca_sorti
;
sub
PDL::pca_sorti {
# $self is pdl (var x component)
my
(
$self
,
$opt
) =
@_
;
my
%opt
= (
NCOMP
=> 10,
# maximum number of components to consider
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
my
$ncomp
= pdl(
$opt
{NCOMP},
$self
->dim(1))->min;
$self
=
$self
->dice_axis( 1, pdl(0..
$ncomp
-1) );
my
$icomp
=
$self
->transpose->
abs
->maximum_ind;
# sort between comp
my
$ivar_sort
=
$icomp
->qsorti;
$self
=
$self
->slice(
$ivar_sort
)->sever;
# sort within comp
my
$ic
=
$icomp
->slice(
$ivar_sort
)->iv_cluster;
for
my
$comp
(0 ..
$ic
->dim(1)-1) {
my
$i
=
$self
->slice(which(
$ic
->slice(
':'
,
$comp
)),
"($comp)"
)->qsorti->slice(
'-1:0'
);
$ivar_sort
->slice(which
$ic
->slice(
':'
,
$comp
))
.=
$ivar_sort
->slice(which
$ic
->slice(
':'
,
$comp
))->slice(
$i
);
}
wantarray
? (
$ivar_sort
, pdl(0 ..
$ic
->dim(1)-1)) :
$ivar_sort
;
}
=head2 plot_means
Plots means anova style. Can handle up to 4-way interactions (ie 4D pdl).
=for options
Default options (case insensitive):
IVNM => ['IV_0', 'IV_1', 'IV_2', 'IV_3'],
DVNM => 'DV',
AUTO => 1, # auto set dims to be on x-axis, line, panel
# if set 0, dim 0 goes on x-axis, dim 1 as lines
# dim 2+ as panels
# see PDL::Graphics::Simple for next option
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # individual square panel size in pixels
=for usage
Usage:
# see anova for mean / se pdl structure
$mean->plot_means( $se, {IVNM=>['apple', 'bake']} );
Or like this:
$m{'| apple ~ bake | m'}->plot_means;
=cut
*plot_means
= \
&PDL::plot_means
;
sub
PDL::plot_means {
my
$opt
=
ref
(
$_
[-1]) eq
'HASH'
?
pop
@_
:
undef
;
my
(
$self
,
$se
) =
@_
;
$self
=
$self
->squeeze;
if
(
$self
->ndims > 4) {
carp
"Data is > 4D. No plot here."
;
return
;
}
my
%opt
= (
IVNM
=> [
'IV_0'
,
'IV_1'
,
'IV_2'
,
'IV_3'
],
DVNM
=>
'DV'
,
AUTO
=> 1,
# auto set vars to be on X axis, line, panel
WIN
=>
undef
,
# PDL::Graphics::Simple object
SIZE
=> 640,
# individual square panel size in pixels
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
}
# decide which vars to plot as x axis, lines, panels
# put var w most levels on x axis
# put var w least levels on diff panels
my
@iD
= 0..3;
my
@dims
= (1, 1, 1, 1);
# splice ARRAY,OFFSET,LENGTH,LIST
splice
@dims
, 0,
$self
->ndims,
$self
->dims;
$self
=
$self
->reshape(
@dims
)->sever;
$se
=
$se
->reshape(
@dims
)->sever
if
defined
$se
;
@iD
=
reverse
list qsorti pdl
@dims
if
$opt
{AUTO};
# $iD[0] on x axis
# $iD[1] as separate lines
my
$nx
=
$self
->dim(
$iD
[2]);
# n xpanels
my
$ny
=
$self
->dim(
$iD
[3]);
# n ypanels
my
$w
=
$opt
{WIN} || PDL::Graphics::Simple::pgswin(
size
=>[
$opt
{SIZE}
*$nx
,
$opt
{SIZE}
*$ny
,
'px'
]);
my
$seq0
= sequence(
my
$dim0
=
$self
->dim(
$iD
[0]));
my
(
$pcount
,
@plots
) = 0;
for
my
$y
(0..
$ny
-1) {
for
my
$x
(0..
$nx
-1) {
my
$key_prefix
=
"$opt{IVNM}[$iD[0]]|"
;
$key_prefix
.=
$opt
{IVNM}[
$iD
[2]] .
"=$x|"
if
$nx
> 1;
$key_prefix
.=
$opt
{IVNM}[
$iD
[3]] .
"=$y|"
if
$ny
> 1;
for
(0 ..
$self
->dim(
$iD
[1]) - 1) {
my
$ke
=
"$key_prefix$opt{IVNM}[$iD[1]]=$_"
;
my
$ydiced
=
$self
->dice_axis(
$iD
[3],
$y
)->dice_axis(
$iD
[2],
$x
)->dice_axis(
$iD
[1],
$_
)->squeeze;
push
@plots
,
with
=>
'lines'
,
ke
=>
"$ke mean"
,
style
=>
$pcount
,
$seq0
+
$pcount
*0.05,
$ydiced
;
push
@plots
,
with
=>
'errorbars'
,
ke
=>
"$ke error"
,
style
=>
$pcount
,
$seq0
+
$pcount
*0.05,
$ydiced
,
$se
->dice_axis(
$iD
[3],
$y
)->dice_axis(
$iD
[2],
$x
)
->dice_axis(
$iD
[1],
$_
)->squeeze
if
defined
(
$se
);
$pcount
++;
}
}
}
my
(
$ymin
,
$ymax
) = pdl(
$self
, !
defined
$se
? () : (
$self
+
$se
,
$self
-
$se
))->minmax;
$w
->plot(
@plots
,
{
xlabel
=>
$opt
{IVNM}[
$iD
[0]],
ylabel
=>
$opt
{DVNM},
xrange
=>[-0.05,
$dim0
-1+
$pcount
*0.05],
yrange
=>[
$ymin
-0.05,
$ymax
+0.05] }
);
$w
;
}
=head2 plot_residuals
Plots residuals against predicted values.
=for usage
Usage:
use PDL::Graphics::Simple;
$w = pgswin();
$y->plot_residuals( $y_pred, { win=>$w } );
=for options
Default options (case insensitive):
# see PDL::Graphics::Simple for more info
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
COLOR => 1,
=cut
*plot_residuals
= \
&PDL::plot_residuals
;
sub
PDL::plot_residuals {
my
$opt
=
ref
(
$_
[-1]) eq
'HASH'
?
pop
@_
:
undef
;
my
(
$y
,
$y_pred
) =
@_
;
my
%opt
= (
# see PDL::Graphics::Simple for next options
WIN
=>
undef
,
# pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE
=> 640,
# plot size in pixels
COLOR
=> 1,
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
my
$residuals
=
$y
-
$y_pred
;
my
$win
=
$opt
{WIN} || PDL::Graphics::Simple::pgswin(
size
=>[
@opt
{
qw(SIZE SIZE)
},
'px'
]);
$win
->plot(
with
=>
'points'
,
style
=>
$opt
{COLOR},
$y_pred
,
$residuals
,
with
=>
'lines'
,
style
=>
$opt
{COLOR}, pdl(
$y_pred
->minmax), pdl(0,0),
# 0-line
{
xlabel
=>
'predicted value'
,
ylabel
=>
'residuals'
},
);
}
=head2 plot_scores
Plots standardized original and PCA transformed scores against two components. (Thank you, Bob MacCallum, for the documentation suggestion that led to this function.)
=for options
Default options (case insensitive):
CORR => 1, # boolean. PCA was based on correlation or covariance
COMP => [0,1], # indices to components to plot
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
COLOR => [1,2], # color for original and rotated scores
=for usage
Usage:
my %p = $data->pca();
$data->plot_scores( $p{eigenvector}, \%opt );
=cut
*plot_scores
= \
&PDL::plot_scores
;
sub
PDL::plot_scores {
my
$opt
=
ref
(
$_
[-1]) eq
'HASH'
?
pop
@_
:
undef
;
my
(
$self
,
$eigvec
) =
@_
;
my
%opt
= (
CORR
=> 1,
# boolean. PCA was based on correlation or covariance
COMP
=> [0,1],
# indices to components to plot
# see PDL::Graphics::Simple for next options
WIN
=>
undef
,
# pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE
=> 640,
# plot size in pixels
COLOR
=> [1,2],
# color for original and transformed scoress
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
}
my
$i
= pdl
$opt
{COMP};
my
$z
=
$opt
{CORR} ?
$self
->stddz :
$self
->dev_m;
# transformed normed values
my
$scores
= sumover(
$eigvec
->slice(
':'
,
$i
) *
$z
->transpose->dummy(1))->transpose;
$z
=
$z
->slice(
':'
,
$i
)->sever;
my
$win
=
$opt
{WIN} || PDL::Graphics::Simple::pgswin(
size
=>[
@opt
{
qw(SIZE SIZE)
},
'px'
]);
$win
->plot(
with
=>
'points'
,
style
=>
$opt
{COLOR}[0],
ke
=>
'original'
,
$z
->slice(
',(0)'
),
$z
->slice(
',(1)'
),
with
=>
'points'
,
style
=>
$opt
{COLOR}[1],
ke
=>
'transformed'
,
$scores
->slice(
',(0)'
),
$scores
->slice(
',(1)'
),
{
xlabel
=>
"Component $opt{COMP}[0]"
,
ylabel
=>
"Component $opt{COMP}[1]"
},
);
}
=head2 plot_screes
Scree plot. Plots proportion of variance accounted for by PCA components.
=for options
Default options (case insensitive):
NCOMP => 20, # max number of components to plot
CUT => 0, # set to plot cutoff line after this many components
# undef to plot suggested cutoff line for NCOMP comps
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
=for usage
Usage:
# variance should be in descending order
$d = qsort random 10, 5; # 10 obs on 5 variables
%pca = $d->pca( \%opt );
$pca{pct_var}->plot_screes( {ncomp=>16, win=>$win=PDL::Graphics::Simple::pgswin()} );
Or, because NCOMP is used so often, it is allowed a shortcut,
$pca{pct_var}->plot_screes( 16 );
=cut
*plot_scree
= \
&PDL::plot_screes
;
# here for now for compatibility
*plot_screes
= \
&PDL::plot_screes
;
sub
PDL::plot_screes {
my
$opt
=
ref
(
$_
[-1]) eq
'HASH'
?
pop
@_
:
undef
;
my
(
$self
,
$ncomp
) =
@_
;
my
%opt
= (
NCOMP
=> 20,
# max number of components to plot
CUT
=> 0,
# set to plot cutoff line after this many components
# undef to plot suggested cutoff line for NCOMP comps
# see PDL::Graphics::Simple for next options
WIN
=>
undef
,
# pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE
=> 640,
# plot size in pixels
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
$opt
{NCOMP} =
$ncomp
if
$ncomp
;
# re-use $ncomp below
$ncomp
= (
$self
->dim(0) <
$opt
{NCOMP})?
$self
->dim(0) :
$opt
{NCOMP};
my
$self_comp
=
$self
->slice([0,
$ncomp
-1]);
$opt
{CUT} = PDL::Stats::Kmeans::_scree_ind
$self_comp
if
!
defined
$opt
{CUT};
my
$win
=
$opt
{WIN} ||
PDL::Graphics::Simple::pgswin(
size
=>[
@opt
{
qw(SIZE SIZE)
},
'px'
]);
$win
->plot(
with
=>
'lines'
,
ke
=>
'scree'
, sequence(
$ncomp
),
$self_comp
,
!
$opt
{CUT} ? () : (
with
=>
'lines'
,
ke
=>
'cut'
, pdl(
$opt
{CUT}-.5,
$opt
{CUT}-.5), pdl(-.05,
$self
->max->sclr+.05)),
{
xlabel
=>
'Component'
,
ylabel
=>
'Proportion of Variance Accounted for'
,
xrange
=>[-0.05,
$ncomp
-0.95],
yrange
=>[0,1],
le
=>
'tr'
},
);
}
=head2 plot_stripchart
Stripchart plot. Plots ANOVA-style data, categorised against given IVs.
=for options
Default options (case insensitive):
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
DVNM => 'DV',
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
=for usage
Usage:
%m = $y->plot_stripchart( $a, \@b, { IVNM=>[qw(apple bake)] } );
=cut
my
$CHART_GAP
= 0.1;
*plot_stripchart
= \
&PDL::plot_stripchart
;
sub
PDL::plot_stripchart {
my
$opt
=
ref
(
$_
[-1]) eq
'HASH'
?
pop
@_
:
undef
;
my
(
$y
,
@ivs_raw
) =
@_
;
my
%opt
= (
IVNM
=> [],
# auto filled as ['IV_0', 'IV_1', ... ]
DVNM
=>
'DV'
,
WIN
=>
undef
,
# pgswin object. not closed here if passed
);
if
(
$opt
) {
$opt
{
uc
$_
} =
$opt
->{
$_
}
for
keys
%$opt
; }
$opt
{IVNM} = [
map
{
"IV_$_"
} 0 ..
$#ivs_raw
]
if
!
$opt
{IVNM} or !@{
$opt
{IVNM} };
my
$w
=
$opt
{WIN} || PDL::Graphics::Simple::pgswin();
my
@codes
=
map
[code_ivs(
$_
)],
@ivs_raw
;
my
@levels
=
map
{
my
$map
=
$_
->[1];
[
sort
{
$map
->{
$a
} <=>
$map
->{
$b
}}
keys
%$map
];
}
@codes
;
my
$xjitter
=
$y
->random *
$CHART_GAP
;
my
(
$pcount
,
@plots
) = 0;
push
@plots
,
with
=>
'points'
,
ke
=>
"all data"
,
$xjitter
+
$pcount
,
$y
;
$pcount
++;
for
my
$i
(0..
$#ivs_raw
) {
my
$levs
=
$levels
[
$i
];
my
$name
=
$opt
{IVNM}[
$i
];
my
$coded
=
$codes
[
$i
][0];
for
my
$j
(0..
$#$levs
) {
my
$inds
= which(
$coded
==
$j
);
push
@plots
,
with
=>
'points'
,
ke
=>
"$name=$levs->[$j]"
,
$xjitter
->slice(
$inds
)+
$pcount
+
$j
*$CHART_GAP
,
$y
->slice(
$inds
);
}
$pcount
++;
}
my
(
$ymin
,
$ymax
) =
$y
->minmax;
my
$xmax
=
$pcount
-1 +
$CHART_GAP
*($
#{$levels[-1]} + 2);
$w
->plot(
@plots
,
{
xlabel
=>
'IV'
,
ylabel
=>
$opt
{DVNM},
xrange
=>[-1,
$xmax
],
yrange
=>[
$ymin
-
$CHART_GAP
,
$ymax
+
$CHART_GAP
] }
);
$w
;
}
=head1 SEE ALSO
L<PDL::Fit::Linfit>
L<PDL::Fit::LM>
=head1 REFERENCES
Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied
Multiple Regression/correlation Analysis for the Behavioral Sciences
(3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
Hosmer, D.W., & Lemeshow, S. (2000). Applied Logistic Regression (2nd
ed.). New York, NY: Wiley-Interscience.
Lorch, R.F., & Myers, J.L. (1990). Regression analyses of repeated
measures data in cognitive research. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 16, 149-157.
Osgood C.E., Suci, G.J., & Tannenbaum, P.H. (1957). The Measurement of
Meaning. Champaign, IL: University of Illinois Press.
Rutherford, A. (2011). ANOVA and ANCOVA: A GLM Approach (2nd ed.). Wiley.
Shlens, J. (2009). A Tutorial on Principal Component Analysis. Retrieved
April 10, 2011 from http://citeseerx.ist.psu.edu/
The GLM procedure: unbalanced ANOVA for two-way design with
interaction. (2008). SAS/STAT(R) 9.2 User's Guide. Retrieved June 18,
2009 from http://support.sas.com/
Van den Noortgate, W., & Onghena, P. (2006). Analysing repeated
measures data in cognitive research: A comment on regression coefficient
analyses. European Journal of Cognitive Psychology, 18, 937-952.
=head1 AUTHOR
Copyright (C) 2009 Maggie J. Xiong <maggiexyz users.sourceforge.net>
All rights reserved. There is no warranty. You are allowed to redistribute
this software / documentation as described in the file COPYING in the
PDL distribution.
=cut
#line 2491 "lib/PDL/Stats/GLM.pm"
# Exit with OK status
1;