The London Perl and Raku Workshop takes place on 26th Oct 2024. If your company depends on Perl, please consider sponsoring and/or attending.

NAME

bignum - transparent big number support for Perl

SYNOPSIS

    use bignum;

    $x = 2 + 4.5,"\n";              # Math::BigFloat 6.5
    print 2 ** 512 * 0.1,"\n";      # really is what you think it is
    print inf * inf,"\n";           # prints inf
    print NaN * 3,"\n";             # prints NaN

    {
        no bignum;
        print 2 ** 256,"\n";        # a normal Perl scalar now
    }

    # for older Perls, import into current package:
    use bignum qw/hex oct/;
    print hex("0x1234567890123490"),"\n";
    print oct("01234567890123490"),"\n";

DESCRIPTION

All operators (including basic math operations) except the range operator .. are overloaded. All literal numeric constants are converted to Math::BigFloat objects.

So, the following:

    use bignum;
    $x = 1234;

creates a Math::BigFloat and stores a reference to in $x. This happens transparently and behind your back, so to speak.

You can see this with the following:

    perl -Mbignum -le 'print ref(1234)'

Since numbers are actually objects, you can call all the usual methods from Math::BigFloat on them. This even works to some extent on expressions:

    perl -Mbignum -le '$x = 1234; print $x->bdec()'
    perl -Mbignum -le 'print 1234->copy()->binc();'
    perl -Mbignum -le 'print 1234->copy()->binc->badd(6);'
    perl -Mbignum -le 'print +(1234)->copy()->binc()'

(Note that print doesn't do what you expect if the expression starts with '(' hence the +)

You can even chain the operations together as usual:

    perl -Mbignum -le 'print 1234->copy()->binc->badd(6);'
    1241

Please note the following does not work as expected (prints nothing), since overloading of '..' is not yet possible in Perl (as of v5.8.0):

    perl -Mbignum -le 'for (1..2) { print ref($_); }'

Options

bignum recognizes some options that can be passed while loading it via use. The options can (currently) be either a single letter form, or the long form. The following options exist:

a or accuracy

This sets the accuracy for all math operations. The argument must be greater than or equal to zero. See Math::BigInt's bround() function for details.

    perl -Mbignum=a,50 -le 'print sqrt(20)'

Note that setting precision and accuracy at the same time is not possible.

p or precision

This sets the precision for all math operations. The argument can be any integer. Negative values mean a fixed number of digits after the dot, while a positive value rounds to this digit left from the dot. 0 or 1 mean round to integer. See Math::BigInt's bfround() function for details.

    perl -Mbignum=p,-50 -le 'print sqrt(20)'

Note that setting precision and accuracy at the same time is not possible.

t or trace

This enables a trace mode and is primarily for debugging bignum or Math::BigInt/Math::BigFloat.

l or lib

Load a different math lib, see "Math Library".

    perl -Mbignum=l,GMP -e 'print 2 ** 512'

Currently there is no way to specify more than one library on the command line. This means the following does not work:

    perl -Mbignum=l,GMP,Pari -e 'print 2 ** 512'

This will be hopefully fixed soon ;)

hex

Override the built-in hex() method with a version that can handle big numbers. This overrides it by exporting it to the current package. Under Perl v5.10.0 and higher, this is not so necessary, as hex() is lexically overridden in the current scope whenever the bignum pragma is active.

oct

Override the built-in oct() method with a version that can handle big numbers. This overrides it by exporting it to the current package. Under Perl v5.10.0 and higher, this is not so necessary, as oct() is lexically overridden in the current scope whenever the bigint pragma is active.

v or version

This prints out the name and version of all modules used and then exits.

    perl -Mbignum=v

Methods

Beside import() and AUTOLOAD() there are only a few other methods.

Since all numbers are now objects, you can use all functions that are part of the Math::BigInt or Math::BigFloat API. It is wise to use only the bxxx() notation, and not the fxxx() notation, though. This makes it possible that the underlying object might morph into a different class than Math::BigFloat.

Caveats

But a warning is in order. When using the following to make a copy of a number, only a shallow copy will be made.

    $x = 9; $y = $x;
    $x = $y = 7;

If you want to make a real copy, use the following:

    $y = $x->copy();

Using the copy or the original with overloaded math is okay, e.g. the following work:

    $x = 9; $y = $x;
    print $x + 1, " ", $y,"\n";     # prints 10 9

but calling any method that modifies the number directly will result in both the original and the copy being destroyed:

    $x = 9; $y = $x;
    print $x->badd(1), " ", $y,"\n";        # prints 10 10

    $x = 9; $y = $x;
    print $x->binc(1), " ", $y,"\n";        # prints 10 10

    $x = 9; $y = $x;
    print $x->bmul(2), " ", $y,"\n";        # prints 18 18

Using methods that do not modify, but test the contents works:

    $x = 9; $y = $x;
    $z = 9 if $x->is_zero();                # works fine

See the documentation about the copy constructor and = in overload, as well as the documentation in Math::BigInt for further details.

inf()

A shortcut to return Math::BigFloat->binf(). Useful because Perl does not always handle bareword inf properly.

NaN()

A shortcut to return Math::BigFloat->bnan(). Useful because Perl does not always handle bareword NaN properly.

e
    # perl -Mbignum=e -wle 'print e'

Returns Euler's number e, aka exp(1).

PI()
    # perl -Mbignum=PI -wle 'print PI'

Returns PI.

bexp()
    bexp($power,$accuracy);

Returns Euler's number e raised to the appropriate power, to the wanted accuracy.

Example:

    # perl -Mbignum=bexp -wle 'print bexp(1,80)'
bpi()
    bpi($accuracy);

Returns PI to the wanted accuracy.

Example:

    # perl -Mbignum=bpi -wle 'print bpi(80)'
upgrade()

Return the class that numbers are upgraded to, if any.

in_effect()
    use bignum;

    print "in effect\n" if bignum::in_effect;       # true
    {
        no bignum;
        print "in effect\n" if bignum::in_effect;   # false
    }

Returns true or false if bignum is in effect in the current scope.

This method only works on Perl v5.9.4 or later.

Math Library

Math with the numbers is done (by default) by a module called Math::BigInt::Calc. This is equivalent to saying:

    use bignum lib => 'Calc';

You can change this by using:

    use bignum lib => 'GMP';

The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:

    use bignum lib => 'Foo,Math::BigInt::Bar';

Please see respective module documentation for further details.

Using lib warns if none of the specified libraries can be found and Math::BigInt did fall back to one of the default libraries. To suppress this warning, use try instead:

    use bignum try => 'GMP';

If you want the code to die instead of falling back, use only instead:

    use bignum only => 'GMP';

INTERNAL FORMAT

The numbers are stored as objects, and their internals might change at anytime, especially between math operations. The objects also might belong to different classes, like Math::BigInt, or Math::BigFloat. Mixing them together, even with normal scalars is not extraordinary, but normal and expected.

You should not depend on the internal format, all accesses must go through accessor methods. E.g. looking at $x->{sign} is not a bright idea since there is no guaranty that the object in question has such a hashkey, nor is a hash underneath at all.

SIGN

The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored separately. You can access it with the sign() method.

A sign of 'NaN' is used to represent the result when input arguments are not numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively minus infinity. You will get '+inf' when dividing a positive number by 0, and '-inf' when dividing any negative number by 0.

CAVEATS

Hexadecimal, octal, and binary floating point literals

Perl (and this module) accepts hexadecimal, octal, and binary floating point literals, but use them with care with Perl versions before v5.32.0, because some versions of Perl silently give the wrong result.

Operator vs literal overloading

bignum works by overloading handling of integer and floating point literals, converting them Math::BigFloat objects.

This means that arithmetic involving only string values or string literals are performed using Perl's built-in operators.

For example:

    use bignum;
    my $x = "900000000000000009";
    my $y = "900000000000000007";
    print $x - $y;

will output 0 on default 32-bit builds, since bigrat never sees the string literals. To ensure the expression is all treated as Math::BigInt or Math::BigFloat objects, use a literal number in the expression:

    print +(0+$x) - $y;
in_effect()

This method only works on Perl v5.9.4 or later.

hex()/oct()

bigint overrides these routines with versions that can also handle big integer values. Under Perl prior to version v5.9.4, however, this will not happen unless you specifically ask for it with the two import tags "hex" and "oct" - and then it will be global and cannot be disabled inside a scope with "no bigint":

    use bigint qw/hex oct/;

    print hex("0x1234567890123456");
    {
        no bigint;
        print hex("0x1234567890123456");
    }

The second call to hex() will warn about a non-portable constant.

Compare this to:

    use bigint;

    # will warn only under older than v5.9.4
    print hex("0x1234567890123456");

EXAMPLES

Some cool command line examples to impress the Python crowd ;)

    perl -Mbignum -le 'print sqrt(33)'
    perl -Mbignum -le 'print 2*255'
    perl -Mbignum -le 'print 4.5+2*255'
    perl -Mbignum -le 'print 3/7 + 5/7 + 8/3'
    perl -Mbignum -le 'print 123->is_odd()'
    perl -Mbignum -le 'print log(2)'
    perl -Mbignum -le 'print exp(1)'
    perl -Mbignum -le 'print 2 ** 0.5'
    perl -Mbignum=a,65 -le 'print 2 ** 0.2'
    perl -Mbignum=a,65,l,GMP -le 'print 7 ** 7777'

BUGS

Please report any bugs or feature requests to bug-math-bigint at rt.cpan.org, or through the web interface at https://rt.cpan.org/Ticket/Create.html?Queue=bignum (requires login). We will be notified, and then you'll automatically be notified of progress on your bug as I make changes.

SUPPORT

You can find documentation for this module with the perldoc command.

    perldoc bignum

You can also look for information at:

LICENSE

This program is free software; you may redistribute it and/or modify it under the same terms as Perl itself.

SEE ALSO

bigint and bigrat.

Math::BigInt, Math::BigFloat, Math::BigRat and Math::Big as well as Math::BigInt::FastCalc, Math::BigInt::Pari and Math::BigInt::GMP.

AUTHORS

  • (C) by Tels http://bloodgate.com/ in early 2002 - 2007.

  • Maintained by Peter John Acklam <pjacklam@gmail.com>, 2014-.