The London Perl and Raku Workshop takes place on 26th Oct 2024. If your company depends on Perl, please consider sponsoring and/or attending.


Text::Ngrams - Flexible Ngram analysis (for characters, words, and more)


For default character n-gram analysis of string:

  use Text::Ngrams;
  my $ng3 = Text::Ngrams->new;
  print $ng3->to_string;
  my @ngramsarray = $ng3->get_ngrams;

One can also feed tokens manually:

  use Text::Ngrams;
  my $ng3 = Text::Ngrams->new;

We can choose n-grams of various sizes, e.g.:

  my $ng = Text::Ngrams->new( windowsize => 6 );

or different types of n-grams, e.g.:

  my $ng = Text::Ngrams->new( type => byte );
  my $ng = Text::Ngrams->new( type => word );
  my $ng = Text::Ngrams->new( type => utf8 );

To process a list of files:

  $ng->process_files('somefile.txt', 'otherfile.txt');


This module implement text n-gram analysis, supporting several types of analysis, including character and word n-grams.

The module Text::Ngrams is very flexible. For example, it allows a user to manually feed a sequence of any tokens. It handles several types of tokens (character, word), and also allows a lot of flexibility in automatic recognition and feed of tokens and the way they are combined in an n-gram. It counts all n-gram frequencies up to the maximal specified length. The output format is meant to be pretty much human-readable, while also loadable by the module.

The module can be used from the command line through the script provided with the package.


The output looks like this (version number may be different):

  BEGIN OUTPUT BY Text::Ngrams version 1.1

  1-GRAMS (total count: 8)
  a     1
  b     1
  c     1
  d     1
  e     1
  f     1
  g     1
  h     1

  2-GRAMS (total count: 7)
  ab    1
  bc    1
  cd    1
  de    1
  ef    1
  fg    1
  gh    1

  3-GRAMS (total count: 6)
  abc   1
  bcd   1
  cde   1
  def   1
  efg   1
  fgh   1

  END OUTPUT BY Text::Ngrams

N-grams are encoded using encode_S (, so that they can always be recognized as \S+. This encoding does not change strings "too much", e.g., letters, digits, and most punctuation characters will remail unchanged, and space is replaced by underscore (_). However, all bytes (even with code greater than 127) are encoded in unambiguous and relatively compact way. Two functions, encode_S and decode_S, are provided for translating arbitrary string into this form and vice versa.

An example of word n-grams containing space:

  BEGIN OUTPUT BY Text::Ngrams version 1.1

  1-GRAMS (total count: 8)
  The   1
  brown 3
  fox   3
  quick 1

  2-GRAMS (total count: 7)
  The_brown     1
  brown_fox     2
  brown_quick   1
  fox_brown     2
  quick_fox     1

  END OUTPUT BY Text::Ngrams

Or, in case of byte type of processing:

  BEGIN OUTPUT BY Text::Ngrams version 1.1

  1-GRAMS (total count: 55)
  \t    3
  \n    3
  _     12
  ,     2
  .     3
  T     1
  b     3
  c     1
  ... etc

  2-GRAMS (total count: 54)
  \t_   1
  \tT   1
  \tb   1
  \n\t  2
  __    5
  _.    1
  _b    2
  _f    3
  _q    1
  ,\n   2
  .\n   1
  ..    2
  Th    1
  br    3
  ck    1
  e_    1
  ... etc

  END OUTPUT BY Text::Ngrams


new ( windowsize => POS_INTEGER, type => character|byte|word|utf8, limit => POS_INTEGER )

  my $ng = Text::Ngrams->new;
  my $ng = Text::Ngrams->new( windowsize=>10 );
  my $ng = Text::Ngrams->new( type=>'word' );
  my $ng = Text::Ngrams->new( limit=>10000 );
  and similar.

Creates a new Text::Ngrams object and returns it. Parameters:


Limit the number of distinct n-grams. Processing large files may be slow, so you can limit the total number of distinct n-grams which are counted to speed up processing. Less-frequent ones will be deleted.

BEWARE: If a limit is set, the n-gram counts at the end may not be correct due to periodical pruning of n-grams.


n-gram size (i.e., `n' itself). Default is 3 if not given. It is stored in $object->{windowsize}.


Specifies a predefined type of n-grams:

character (default)

Default character n-grams: Read letters, sequences of all other characters are replaced by a space, letters are turned uppercase.


Raw character n-grams: Don't ignore any bytes and don't pre-process them.


UTF8 characters: Variable length encoding.


Default word n-grams: One token is a word consisting of letters, digits and decimal digit are replaced by <NUMBER>, and everything else is ignored. A space is inserted when n-grams are formed.

One can also modify type, creating its own type, by fine-tuning several parameters (they can be undefined):

$o->{skiprex} - regular expression for ignoring stuff between tokens.

$o->{skipinsert} - string to replace a skiprex match that makes string too short (efficiency issue)

$o->{tokenrex} - regular expression for recognizing a token. If it is empty, it means chopping off one character.

$o->{processtoken} - routine for token preprocessing. Token is given and returned in $_.

$o->{allow_iproc} - boolean, if set to true (1) allows for incomplete tokens to be preprocessed and put back (efficiency motivation)

For example, the types character, byte, and word are defined in the foolowing way:

  if ($params{type} eq 'character') {
      $self->{skiprex} = '';
      $self->{tokenrex} = qr/([a-zA-Z]|[^a-zA-Z]+)/;
      $self->{processtoken} =  sub { s/[^a-zA-Z]+/ /; $_ = uc $_ }
      $self->{allow_iproc} = 1;
  elsif ($params{type} eq 'byte') {
      $self->{skiprex} = '';
      $self->{tokenrex} = '';
      $self->{processtoken} = '';
  elsif ($params{type} eq 'utf8') {
      $self->{skiprex} = '';
      $self->{tokenrex} = qr/([\xF0-\xF4][\x80-\xBF][\x80-\xBF][\x80-\xBF]
      $self->{processtoken} = '';
  elsif ($params{type} eq 'word') {
      $self->{skiprex} = qr/[^a-zA-Z0-9]+/;
      $self->{skipinsert} = ' ';
      $self->{tokenrex} = qr/([a-zA-Z]+|(\d+(\.\d+)?|\d*\.\d+)([eE][-+]?\d+)?)/;
      $self->{processtoken} = sub { s/(\d+(\.\d+)?|\d*\.\d+)([eE][-+]?\d+)?/<NUMBER>/ }

feed_tokens ( list of tokens )


This function manually supplies tokens.

process_text ( list of strings )

  $ng->process_text('The brown quick fox, brown fox, brown fox ...');

Process text, i.e., break each string into tokens and feed them.

process_files ( file_names or file_handle_references)


Process files, similarly to text. The files are processed line by line, so there should not be any multi-line tokens.


Returns an array of requested n-grams and their friequencies in order (ngram1, f1, ngram2, f2, ...). The use of parameters is identical to the fuction to_string.


  print $ng3->to_string;
  print $ng->to_string( orderby=>'frequency' );
  print $ng->to_string( orderby=>'frequency', onlyfirst=>10000 );
  print $ng->to_string( orderby=>'frequency', onlyfirst=>10000, normalize=>1 );

Produce string representation of the n-gram tables.



The parameter orderby specifies the order of n-grams. The default value is 'ngram'.


The parameter onlyfirst causes printing only this many first n-grams for each n. It is incompatible with orderby='none'>.


The method to_string produces n-gram tables. However, if those tables are large and we know that we will write them to a file right after processing, it may save memory and time to provide the parameter out, which is a filename or reference to a file handle. (Experiments on my machine do not show significant improvement nor degradation.) Filename will be opened and closed, while the file handle will not.


This is a boolean parameter. By default, it is false (''), in which case n-gram counts are produced. If it is true (e.g., 1), the output will contain normalized frequencies; i.e., n-gram counts divided by the total number of n-grams of the same size.


This is a boolean parameter. By default, it is false (''), in which case n-grams for n=1 up to the maximal value are printed. If it is true, only a list of the most frequent n-grams with the maximal length is printed.

encode_S ( string )

  $e = Text::Ngrams::encode_S( $s );

or simply

  $e = encode_S($s);

if encode_S is imported. Encodes arbitrary string into an \S* form. See for detailed explanation.

decode_S ( string )

  $e = Text::Ngrams::decode_S( $s );

or simply

  $e = decode_S($s);

if decode_S is imported. Decodes a string encoded in the \S* form. See for detailed explanation.


This code originated in my "monkeys and rhinos" project in 2000, and is related to authorship attribution project. Some of the similar projects are (URLs can be found at my site):

Ngram Statistics Package in Perl, by T. Pedersen at al.

This is a package that includes a script for word n-grams.

Text::Ngram Perl Package by Simon Cozens

This is a package similar to Text::Ngrams for character n-grams. As an XS implementation it is supposed to be very efficient.

Perl script by Jarkko Hietaniemi

This is a script for analyzing character n-grams.

Waterloo Statistical N-Gram Language Modeling Toolkit, in C++ by Fuchun Peng

A n-gram language modeling package written in C++.


The preformance can vary a lot depending on the type of file, in particular on the content entropy. For example a file in English is processed faster than a file in Chinese, due to a larger number of distinct n-grams.

The following tests are preformed on a Pentium-III 550MHz, 512MB memory, Linux Red Hat 6 platform. (See - the script is included in this package.) --n=10 --type=byte 1Mfile

The 1Mfile is a 1MB file of Chinese text. The program spent consistently 20 sec per 100KB, giving 200 seconds (3min and 20sec) for the whole file. However, after 4 minutes I gave up on waiting for n-grams to be printed. The bottleneck seems to be encode_S function, so after: -n=10 --type=byte --orderby=frequency --onlyfirst=5000 1Mfile

it took about 3:24 + 5 =~ 9 minutes to print. After changing so that it provides parameter out to to_string in module (see Text::Ngrams), it still took: 3:09+1:28+4:40=9.17.


If a user customizes a type, it is possible that a resulting n-gram will be ambiguous. In this way, to different n-grams may be counted as one. With predefined types of n-grams, this should not happen. For example, if a user chooses that a token can contain a space, and uses space as an n-gram separator, then a trigram like this "x x x x" is ambiguous.

Method process_file does not handle multi-line tokens by default. This can be fixed, but it does not seem to be worth the code complication. There are various ways around this if one really needs such tokens: One way is to preprocess them. Another way is to read as much text as necessary at a time then to use process_text, which does handle multi-line tokens.


I would like to thank cpan-testers, Jost Kriege, Shlomo Yona, David Allen (for localizing and reporting and efficiency issue with ngram prunning), Andrija, Roger Zhang, Jeremy Moses, Kevin J. Ziese, Hassen Bouzgou, Michael Ricie, and Jingyi Yang for bug reports and comments.

I will be grateful for comments, bug reports, or just letting me know that you used the module.



 2003-2006 Vlado Keselj
      2005 Chris Jordan (contributed get_strings)

This module is provided "as is" without expressed or implied warranty. This is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

The latest version can be found at


Ngram Statistics Package in Perl, by T. Pedersen at al., Waterloo Statistical N-Gram Language Modeling Toolkit in C++ by Fuchun Peng, Perl script by Jarkko Hietaniemi, Simon Cozen's Text::Ngram module in CPAN.

The links should be available at